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Çag̃atay Candan
Department of Electrical and Electronics Engin.

METU, Ankara,
Turkey.

May 14, 2011

Abstract

The steady-state response of RC circuit to the square wave input is examined. The solution
is given by three different approaches. The goal is to emphasize the generality, practicality and
therefore the importance of the Fourier series based approach. The notes have been prepared to
be distributed as an handout in EE 202 (Circuit Theory II) course.

1 RC Circuit : A Leaky Integrator

The first order parallel RC circuit can be considered as a integrator with a leakage term. The leakage
is due to the resistance which absorbs some part of the incoming current, as shown in Figure 1. For
the given circuit, the capacitor current is is(t)− vc(t)/R; and the capacitor voltage is:

vc(t) = V0 +
1

C

∫ t

0−

(
is(t

′)− vc(t
′)

R

)
dt′ (1)

where vc(0
−) = V0. The change in capacitor voltage in between t1 and t2 can be expressed as follows:

vc(t2)− vc(t1) =
1

C

∫ t2

t1

(
is(t

′)− vc(t
′)

R

)
dt′

If t2 is set as t1 + ϵ (ϵ > 0), then the direction of change at t1 (whether the capacitor voltage is
increasing or decreasing) can be written as follows:

vc(t1 + ϵ)− vc(t1) =
1

C

∫ t1+ϵ

t1

(
is(t

′)− vc(t
′)

R

)
dt′ ≈ 1

C

(
is(t1)−

vc(t1)

R

)
ϵ (2)

The part of the equation above having approximately equal sign is due to Newton’s calculus, which says
that under fairly general conditions (Riemann integrable functions) the integral can be approximated

with a rectangle of height
(
is(t1)− vc(t1)

R

)
and width ϵ. (Even though these results are not critical for

the presented RC circuit study, make sure that you understand the nature of these approximations
(infinitesimal calculus) and internalize these ideas as much as possible.)

It is clear from the last relation that vc(t) increases at t = t1, that is vc(t1 + ϵ) > vc(t1); if(
is(t1)− vc(t1)

R

)
> 0 or equivalently is(t1) >

vc(t1)
R . There are no surprises in this argument, since the

current source produces is(t1) amperes at t = t1 and the amount of current reaching the capacitor(
is(t1)− vc(t1)

R

)
. If this value is greater than zero, there is some charge deposited on the plates of

the capacitor due to the applied current. If this current is being applied for ϵ seconds, then the total

charge deposited is
(
is(t1)− vc(t1)

R

)
ϵ. Since Q = CV (the defining equation for the capacitor), we

can get the voltage increase due to the application of the current for ϵ seconds as 1
C

(
is(t1)− vc(t1)

R

)
ϵ.

This is exactly equal to the right hand side of (2). We know that such infinitesimal arguments can be
formally proved and turn into exact arguments as ϵ → 0.
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Figure 1: RC circuit with square wave input Figure 2: Zero-state response

In these notes, we examine the response due to the square wave of of a given duty cycle. The DC
current source in Figure 1 can be considered to be periodically turned ON and OFF. As illustrated in
the same figure, the time that the source is ON is much shorter than the time that is OFF. The ratio
of ON time and the period (ON time plus OFF time) is called the duty cycle. During the application
of 1 Ampere input, the capacitor is being charged; that is its voltages increases (assuming that it is
initially less than 1 V) and during the OFF cycle, the voltage of the capacitor decays towards zero.
You can consider the described system as a system with a periodic push with large gaps between the
pushes. Every push inserts some energy into the system, when the push is over the energy in the
system decays towards zero.

If the resistor in the circuit is disconnected, R → ∞; then the system becomes lossless and every
push results in a potential increment of 1

C tON volts for the capacitor. The system for R → ∞ is a
perfect integrator. The response is unbounded (see Figure 2).

When the resistance is placed back into the system; the integrator becomes leaky, that is some of
the part of the energy leaks out of the system (dissipated as heat over the resistor).

The described electrical system can be considered to be analogous to the leaky bucket system.
Assume that there is a leaky bucket in our possession and we are turning on the faucet to fill the
bucket; since the bucket is leaky, some of the stored water leaks out. When the bucket is close to full,
the leakage is faster; since the weight of the water in the bucket exerts a bigger pressure to the hole.
An illustration of the analogy is given in Figure 3.

The laws of nature, or we should say the mathematics of associated with the nature, treat the
first order RC circuit and the leaky bucket system identically. If there is no hole in the bucket and
we turn on and off the faucet periodically; the amount of water in the bucket increases by time.
Assume that there is ∆ kg’s of water put into the bucket at every faucet opening. Then after N
openings, the total amount of mass in the bucket is N∆ and the tip of the water level is h = N∆

ρArea .
Here the base area of the bucket is denoted by Area (assume bucket is in the form of a cylinder,
i.e. not the one in Figure 3) and the density of the water is taken as ρ = 1gr/cm3. The center of
mass of the water is at the level of h

2 . The total stored energy in the bucket, through mgh relation,
is N∆g N∆

2ρArea = 1
2gAreaρ(

N∆
ρArea)

2 = 1
2Kh2. This relation is almost like 1

2CV 2
c where the the bucket

capacitance(!) K is Area× g × ρ and the height of water level h is the bucket voltage(!). We stop at
this point, since we do not want to confuse EE 202 students with the intricate details of the bucket
analysis, even though this analogy is quite fun.

Going back to the RC circuit, by taking the derivative of both sides of (1), we can convert the
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Figure 3: RC Circuit and the leaky bucket

integral equation into the differential equation given below:

C
d

dt
vc(t) = is(t)−

vc(t)

R

Now, we can easily write the step-response of the circuit as follows:

vstepc (t) = R(1− e−t/RC)u(t)

Next, we use the LTI property of the circuit to write the zero-state response due to pulse of tON

seconds (pulse(t) = u(t)− u(t− tON)) as follows:

vpulsec (t) = vstepc (t)− vstepc (t− tON)

Finally, the response due to the square wave input can be written as

vc(t) =
∞∑
k=0

vpulsec (t− kT ). (3)

This concludes the zero-state of analysis of RC circuit with the square wave input. In the following
sections, we approach the steady-state part of the response from three different viewpoints. The first
approach tries to evaluate the steady-state response by examining the asymptotical behaviour of (3).
The second approaches uses the periodicity of the solution to get the steady state part. The third
approach is very general. It is the solution by the Fourier series.

2 Steady-State Response to Square Wave Input

The square wave input injects energy into the system during the ON cycle. Some part of the energy in
the circuit is dissipated over the resistor during the OFF cycle. As time progresses, the cycle of energy
increase and decrease over the capacitor balances each other, that is the capacitor voltage reaches
a maximum value which is show as Ass

2 in Figure 2 (the level reached at the end of ON-cycle); and
dissipates its energy to Ass

1 which is the level at the end of OFF-cycle. This operation repeats itself
over the next cycles. In this section, we examine the described steady-state response of this system
swinging between Ass

1 and Ass
2 levels as shown in Figure 2.

2.1 Steady-State Response by Asymptotical Behaviour of the Zero-state Response

We have already given the zero-state response to the square wave input in (3). The steady-state
solution is the zero-state solution as t → ∞. We can write the equation (3) more explicitly as follows:

vzsc (t) = R

∞∑
k=0

(
(1− e−

t−kT
RC )u(t− kT )− (1− e−

t−tON−kT

RC )u(t− tON − kT )
)

We examine the response after the application N’th pulse as shown in Figure 4. The response after
N’th pulse has two segments. The segment during which the input is ON and OFF. These segments
are examined in two different cases.
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Figure 4: Definitions for ∆1 and ∆2

Case 1: OFF-Cycle (tON < ∆1 < T )

In this case we examine the response during the OFF-cycle of the input. We assume that the
N’th pulse starts at t = NT and the pulse energies the system for the next tON seconds and then the
OFF-cycle starts. We examine the OFF-cycle in this case.

The OFF-cycle of the N’th pulse is between NT + tON and (N + 1)T seconds. For NT + tON <
t < (N + 1)T , the response can be written as follows:

vzsc (NT +∆1) = R

N∑
k=0

(
(1− e−

NT+∆1−kT
RC )− (1− e−

NT+∆1−tON−kT

RC )
)

= Re−
∆1
RC

N∑
k=0

(
e−

(N−k)T−tON
RC − e

−(N−k)T
RC

)
= Re−

∆1
RC

N∑
k=0

e
−(N−k)T

RC

(
e

tON
RC − 1

)
= Re−

∆1
RC

(
e

tON
RC − 1

) N∑
k=0

e
−(N−k)T

RC

= Re−
∆1
RC

(
e

tON
RC − 1

) N∑
k=0

e
−kT
RC

= Re−
∆1
RC

(
e

tON
RC − 1

) 1− e
−(N+1)T

RC

1− e
−T
RC

For the steady-state solution, we need N → ∞. For N → ∞, the value of the steady-state solution
after ∆1 seconds from the start of the ON-cycle is:

vssc (∆1) = Re−
∆1
RC

(
e

tON
RC − 1

) 1

1− e
−T
RC

, where tON < ∆1 < T

For simplicity, we examine the 50% duty-cycle square wave and set tON = T/2. The steady state
solution for this choice is

vssc (∆1) = Re−
∆1
RC

e
T

2RC − 1

1− e
−T
RC

, where tON < ∆1 < T

From the last equation and the value of Ass
1 can be evaluated. For the 50% duty cycle input, vssc (T−)
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can be evaluated as follows:

Ass
1 = vssc (T−) = R

e−
T

2RC − e
−T
RC

1− e
−T
RC

= Re−
T

2RC
1− e

−T
2RC

1− e
−T
RC

= R
e−

T
2RC

1 + e
−T
2RC

(4)

The value of Ass
2 for the 50% duty cycle input can be evaluated from vssc ((T2 )

+):

Ass
2 = vssc ((

T

2
)+) = R

1− e
−T
2RC

1− e
−T
RC

= R
1

1 + e
−T
2RC

(5)

Case 2: ON-Cycle (0 < ∆2 < TON)

We examine the response during the ON cycle. We introduce ∆2 parameter (0 < ∆2 < TON) as
shown in Figure 4.

vzsc (NT +∆2) = R

N∑
k=0

(
(1− e−

NT+∆2−kT
RC )

)
−R

N−1∑
k=0

(
(1− e−

NT+∆2−tON−kT

RC )
)

(6)

= R
(
(1− e−

∆2
RC )
)
+R

N−1∑
k=0

(
(1− e−

NT+∆2−kT
RC )− (1− e−

NT+∆2−tON−kT

RC )
)

= R
(
(1− e−

∆2
RC )
)
+Re−

∆2
RC

(
e

tON
RC − 1

) N∑
k=1

e
−kT
RC

= R
(
(1− e−

∆2
RC )
)
+Re−

∆2
RC

(
e

tON
RC − 1

) 1− e
−NT
RC

1− e
−T
RC

e
−T
RC

To reach the steady-state solution, we let N → ∞ and treat vssc (∆2) as the steady-state response after
∆2 seconds from the start of an input pulse. Here 0 < ∆2 < TON, therefore the response is limited to
the ON cycle only.

vssc (∆2) = R

(
1 +

e−
∆2
RC (e

tON−T

RC − 1)

1− e
−T
RC

)
, where 0 < ∆2 < tON (7)

For the 50% duty cycle input, vssc (∆2) simplifies as follows:

vssc (∆2) = R

(
1 +

e−
∆2
RC (e

−T
2RC − 1)

1− e
−T
RC

)
, where 0 < ∆2 < tON =

T

2
(8)

The values of Ass
1 and Ass

2 can be derived by evaluating vc(0+) and vc((T/2)
−) using (8). These values

are identical to the earlier findings given in (4) and (5) as expected.

2.2 Steady-State Response Through Imposed Periodicity

The ON-cycle of the square wave injects energy into the system. At the end of the ON-cycle, the
response reaches the peak value of Ass

2 then the capacitor discharges to Ass
1 level. From that point on,

a new ON-cycle starts and charges the capacitor to the same Ass
2 level which is the maximum level

reached for the steady-state solution. This is the steady-state operation of the system.
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Assume that vc(NT ) = Ass
1 and the capacitor voltage increases during the next tON = T

2 seconds
due to applied current, as shown in Figure 4. The capacitor voltage during the ON cycle can be easily
written as follows:

vc(t) = R− (R−Ass
1 )e−(t−NT )/RC , NT < t < NT + T/2

Then Ass
2 value (the value reached at the end of ON-cycle) can be written as follows:

vc(NT + T/2) = Ass
2 = R− (R−Ass

1 )e−T/2RC (9)

During the OFF-cycle, that is for NT + T/2 < t < (N + 1)T , the capacitor discharges from Ass
2 level

according to the relation shown below:

vc(t) = Ass
2 e−

t−(NT+T/2)
RC NT + T/2 < t < (N + 1)T

At the end of OFF-cycle, the capacitor voltage reaches Ass
1 level for the steady-state solution.

vc((N + 1)T ) = Ass
1 = Ass

2 e−T/2RC (10)

Substituting Ass
2 from (9) into (10), we get the following equation for Ass

1 :

Ass
1 = (R− (R−Ass

1 )e−T/2RC)e−T/2RC (11)

and we can solve for Ass
1 from this equation. The result is identical to our earlier findings given (4).

Next, we can find Ass
2 from (10) which is also identical to (5).

2.3 Steady-state Response Calculation Through the Fourier Series

Fourier series is used to express (almost) any periodic signal in terms of sines and cosines. We have not
studied this important result in this course, but we utilize the expansion to produce the steady-state
solution to the problem.

The square wave with 50% duty cycle can be expanded in Fourier series as follows:

is(t) =
1

2
+

2

π

∞∑
k=1, k:odd

1

k
sin(ω0kt) (12)

Here ω0 =
2π
T . Figures 5 to 8 show the Fourier series expansion of the square wave input given in (12).

It can be noted that the Fourier series converges to the square wave for the values of t for which the
function is continuous. The convergence of Fourier series requires a careful analysis, but for the sake
of circuit analysis; it is clear that we can approximate the input with the series without much worry.

The frequency response of RC circuit in question is lowpass and the associated transfer function
can be written as follows:

H(s) =
1/C

s+ 1/RC
(13)

Then the steady-state response at the output can be immediately written as follows:

vssc (t) =
1

2
H(0) +

2

π

∞∑
k=1,k:odd

|H(jω0k)|
k

sin(ω0kt+ ∠H(jω0k)) (14)

This result follows from the fundamental result shown in Figure 9. (The result shown in Figure 9 is
also valid for the sine functions, since ϕ in the Figure can be taken as −90◦.)

It is easy to verify the following calculation:

|H(jω)| =
1/C√

w2 + (1/RC)2

∠H(jω) = − tan−1(ωRC)
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Figure 5: The first 3 terms of the Fourier Series
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Figure 6: The first 8 terms of the Fourier Series

0 1 2 3 4 5 6 7 8 9 10
−2

0

2

4

6

8

10

12

Square wave with 50% duty cycle, Period = 5
(Series Truncated to 20 terms)

t

Figure 7: The first 20 terms of the Fourier Series
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Figure 8: The first 40 terms of the Fourier Series
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Figure 9: The fundamental result of LTI systems

We can now write, very easily, the steady-state solution in the series form as follows:

vssc (t) =
1

2
R+

2

π

∞∑
k=1,k:odd

1/C

k
√

(w0k)2 + (1/RC)2
sin(ω0kt− tan−1(ω0kRC)) (15)

Figures 10 to 17 shows the response calculated through the Fourier Series method. In these figures,
the input is also shown and Ass

1 and Ass
2 levels (calculated using the other methods) are also indicated.

The samples of the complete solution is also shown by cross signs. In all figures R = 1 and C is varied
to change the time-constant of the system.

Figure 10 shows a system with a time-constant of 8 seconds, which is quite large, considering the
fact that the ON-cycle is 5 seconds in all figures. Therefore the capacitor requires many ON-cycles
to reach the Ass

2 level. The following figures show the circuit with gradually smaller time constants.
Therefore the steady-state level (or the maximum voltage for the capacitor) is reached earlier in
comparison to Figure 10.

Figure 17 shows a system with the time-constant of 1/8 seconds. Evident from the associated
figure, the system is capable of following the input closely, that is the deviation of the output and the
input curves is very little. This is due to almost immediate charging of capacitor during the ON cycle
and again almost immediate discharging of the capacitor during the OFF cycle.
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Figure 10: Time-constant: 16 seconds.
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Figure 11: Time-constant: 8 seconds.
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Figure 12: Time-constant: 4 seconds.
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Figure 13: Time-constant: 2 seconds.

9



0 5 10 15 20 25 30
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
RC=1 seconds, Square Wave Period=5

 

 

input
ss sol. (F.S.)
complete sol.

A
2
ss

A
1
ss

Figure 14: Time-constant: 1 second.
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Figure 15: Time-constant: 1/2 seconds.
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Figure 16: Time-constant: 1/4 seconds.
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Figure 17: Time-constant: 1/8 seconds.
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Figures 18 to 21 show the frequency response of the system and the magnitude spectrum of the
input. In these figures, the magnitude spectrum of the input is the same (the spectrum of 50%
duty-cycle square wave) but the system changes, since the capacitance in the circuit is varied.

Figure 18 shows the system with the time-constant of 16 seconds. It can be noted that the pass-
band of this system includes only the DC component of the square wave. The other components are
significantly attenuated. For example the term of fundamental frequency is attenuated by 25 dB. The
higher order harmonics are attenuated even more. Figure 10 shows that during the ON cycle, the
increase has almost a constant slope. This is due to integration of the DC term of the input. The
other terms does not effect the output as much as the DC term. Again from the same figure, we can
also note that Ass

1 and Ass
2 values are also quite close to each other. Therefore the AC terms at the

output does not cause a large swing over DC value.
Figure 19 shows a system with larger passband. The time-domain picture given in Figure 13

shows that the DC term and the term of fundamental frequency is dominant at the output, that is the
time-domain picture is almost like a sinusoid with a DC bias. The frequency domain picture given in
Figure 19 shows that the fundamental frequency is attenuated by roughly 6 dB. Since the fundamental
tone has the power of 12 dB, the term appears at the output with the reduced power of 6 dB. The
DC term appears at the output with the power of 10 dB. This simple and rough calculation shows
that the DC term and the fundamental frequency has a power difference of 4 dB. In other words, if
the DC term at the output takes the value of A, the term of fundamental frequency has an amplitude

A
104/20

= 0.63A. From Figure 13, it can be observed that the DC level is 0.5. Then A = 0.5 and the
fundamental tone has an amplitude around 0.6 × 0.5 = 0.3 which is a result matching the curve in
Figure 13. (The curve in Figure 13 swings between (0.5+0.3) and (0.5-0.3) volts.)

Figures 20 and 21 show the response of the filters having wider passbands. As can be observed
from these figures, many components of the Fourier series representing the input pass through the
system with a little attenuation in comparison to the earlier systems. This is especially evident
in Figure 21. Figure 21 shows that the first 4 terms of the series reside in the passband and the
5th component (the first out-of-band component) is attenuated by 3.5 dB which is an insignificant
attenuation in comparison to the earlier systems. From the frequency domain picture, we can expect
that the response at the output should be quite similar to the input. Figures 16 and 17 (especially
Figure 17) show that the output response is quite fast and follows the input closely. This is also
expected when one considers the time-constants of the systems.

3 Conclusions

In these notes we have examined the steady-state solution when square wave input is applied to the
first order RC filter. These notes have been prepared to illustrate the concepts of

� steady-state solution

� AC steady-state solution

� relation between AC steady-state solution and transfer function

� importance of Fourier series for the calculation of steady-state solution for arbitrary periodic
input

We would like to note that when the fundamental result of LTI systems shown in Figure 9 and
the Fourier series expansion are combined, the steady-state solution of an arbitrary LTI system to an
arbitrary periodic input can be easily found.
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Figure 18: Time-constant: 16 sec. (ωc =
1
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Figure 19: Time-constant: 2 sec. (ωc =
1
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Figure 20: Time-constant: 1/4 sec. (ωc = 4)
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Figure 21: Time-constant: 1/8 sec. (ωc = 8)
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A Appendix

A.1 Matlab Code Generating Figures 10-17

1 %%% SAVE THIS FILE AS sqwaveresp.m
2

3 T=5; %period of square wave
4 maxt=30; %maximum solution time
5 numterms=5; %number of terms in the Fourier Series
6 A=1; %Peak value of square wave
7 R=1; %R in ohms
8 C=16; %C in Farads
9

10 %do not change below unless you know what you are doing
11 t=linspace(0,maxt,2048);
12 omega0=2*pi/T;
13 x=A/2*ones(size(t));
14 sqw=A/2*ones(size(t));
15 y=x;
16 for k=1:2:(2*numterms−1),
17 x=x+2*A/pi/k*sin(omega0*k*t);
18 H=R/(1+j*omega0*k*C*R);
19 y=y+abs(H)*2*A/pi/k*sin(omega0*k*t+angle(H));
20 sqw= sqw + 2*A/pi/k*sin(omega0*k*t);
21 end;
22 figure(1),plot(t,sqw),
23 title(['Square wave with 50% duty cycle, Period = ' num2str(T) ...
24 char(10) '(Series Truncated to ' num2str(numterms) ' terms)']);
25 xlabel('t');
26 figure(2),
27 plot(t,[x; y]); hold on;
28

29 A1ss=A*exp(−T/2/R/C)/(1+exp(−T/2/R/C)),
30 A2ss=A*1/(1+exp(−T/2/R/C)),
31

32 [tout,ycomp] = ode45(@(t,ycomp) rccircuit(t,ycomp,R,C,A,T),[0 max(t)],0);
33 plot(tout,ycomp,'x');
34 plot(tout,A2ss*ones(size(tout)),'−−r');
35 plot(tout,A1ss*ones(size(tout)),'−.r');
36 hold off;
37 title(['RC=' num2str(R*C) ' seconds, Square Wave Period=' num2str(T) ]);
38

39 legend('input','ss sol. (F.S.)', ...
40 'complete sol.','A 2ˆ{ss}','A 1ˆ{ss}','location','southeast');

1 function dx=rccircuit(t,x,R,C,A,T)
2 % Save this file as rccircuit.m
3 %Used in sqwaveresp.m −−−
4 %
5

6 in = A*(rem(t,T)≤(T/2)); % input:50% duty cycle square wave
7 %dx = 1/R/C*(in−x);
8 dx = 1/C*(in − x/R);
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A.2 Matlab Code Generating Figures 18-21

1 %Save this file as freqresp sqwave.m
2

3 T=5; %period of square wave
4 maxt=30; %maximum solution time
5 numterms=5; %number of terms in the Fourier Series
6 A=1; %Peak value of square wave
7 R=1; %R in ohms
8 C=1/8; %C in Farads
9

10 %do not change below
11 t=linspace(0,maxt,2048);
12 omega=0:0.05:2*pi*(2*numterms−1+0.5)/T;
13

14 omega0=2*pi/T;
15 x=A/2*ones(size(t));
16 sqw=A/2*ones(size(t));
17 y=x;
18

19 Hf = R./(1+j*omega*C*R);
20 inp=1/2;omega0vec=0;
21 for k=1:2:(2*numterms−1),
22 omega0vec=[omega0vec omega0*k];
23 inp=[inp 2/k/pi];
24 end;
25 inp=2*pi*inp;
26

27 figure(1),
28 subplot(211)
29 plot(omega,20*log10(abs(Hf)),'−'); hold on
30 ind=omega<(1/R/C);
31 plot(omega(ind),20*log10(abs(Hf(ind))),'−r');
32 title(['Magnitude Response of 1st Order System (RC=' num2str(R*C) ')']);
33 ylabel('dB'); xlabel('\omega (rad/sec)');
34 legend('Magnitude Response','Passband');
35 hold off
36

37 subplot(212)
38 stem(omega0vec, 20*log10(abs(inp))),
39 title(['Magnitude Spectrum of Input' char(10) '(Impulses are shown with circles)']);
40 ylabel('dB'); xlabel('\omega (rad/sec)');
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