Middle East Technical University
 Department of Electrical and Electronics Engineering
 EE 531 - HW \#3

Due: Nov. 24, 2014 (in-class)

1. (Textbook) Exercise 2.10
2. (Ross, Intro. Prob. Models, $10^{\text {th }}$ Edition) Let $\{N(t), t \geq 0\}$ be a Poisson process with rate λ. For $s<t$, find
a. $\quad P\{N(t)>N(s)\}$,
b. $P\{N(s)=0 \mid N(t)=3\}$,
c. $E\{N(t) \mid N(s)=4\}$,
d. $E\{N(s) \mid N(t)=4\}$.
3. (Ross, Intro. Prob. Models, $10^{\text {th }}$ Edition) Let X and Y be independent exponential random variables with respective rates λ and μ. Let $M=\min (X, Y)$. Find
a. $\mathrm{E}\{M X \mid M=X\}$,
b. $\mathrm{E}\{M X \mid M=Y\}$,
c. $\operatorname{Cov}(X, M)$.

Hint: Consider modeling X and Y as two processes generated from a mother Poisson process.
4. (Ross, Intro. Prob. Models, $10^{\text {th }}$ Edition) Cars pass a certain street location according to a Poisson process with rate λ. A woman who wants to cross the street at that location waits until she can see that no cars will come by in the next T time units.
a. Find the probability that her waiting time is 0 .
b. Find her expected waiting time.

Hint: Check page 95 of textbook for the definition of X^{*}.
5. (Textbook) Exercise 2.12
6. (Textbook) Exercise 2.23 parts a, b and c.
7. (Ross, Intro. Prob. Models, $10^{\text {th }}$ Edition) Let $\{N(t), t \geq 0\}$ be a non-homogeneous Poisson process with mean value function $m(t)=\int_{0}^{t} \lambda\left(t^{\prime}\right) d t^{\prime}$. Given $N(t)=n$, show that the unordered set of arrival times has the same distribution as n independent and identically distributed random variables having the distribution function

$$
F(x)=\left\{\begin{array}{cc}
\frac{m(x)}{m(t)} & x \leq t \\
1 & x>t
\end{array}\right.
$$

Hint: Extend the proof given for the homogeneous process.

