
CLASSICAL PROBABILITY 2008
3. THE LAW OF LARGE NUMBERS

JOHN MORIARTY

At school, the first experiment in probability might be to flip a fair
coin a large number of times and calculate the ratio of heads to tails.
The student might be tempted to take a short cut and invent the data
- because they believe strongly that the ratio should approximate 1.
How would we prove that the student is right?

Let X1, X2, X3, ... be a sequence of independent random variables,
and let

Sn =

n
∑

k=1

Xk,

which we call the nth partial sum. A law of large numbers provides
conditions under which there exists a constant µ such that

(1)
Sn

n
→ µ

as n → ∞. From the previous section, we know that statement (1)
isn’t precise - we must also specify the mode of convergence. If we have
convergence in probability, then we call it a weak law of large numbers,
whereas a strong law of large numbers means convergence almost surely.
We see from Theorem 2.2 that if the strong law holds then the weak
law holds - which helps to explain these names.

1. A weak law of large numbers

It is fairly easy to prove a weak law of large numbers using Cheby-
chev’s inequality.

Theorem 1.1. (A weak law of large numbers) Assume that X1, X2, ...
are independent (but not necessarily identically distributed). Also as-
sume that E(X2

n) ≤ M for some constant M > 0. Then

Sn

n
−

E(Sn)

n
→ 0

in probability as n → ∞.
1
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Proof. Let Yn := Xn − E(Xn) and let S ′
n =

∑n

k=1 Yk. By Chebychev’s
inequality,

P

(

|S ′
n|

n
≥ ǫ

)

≤
E(S ′

n)2

n2ǫ2
=

E(Y1 + ... + Yn)2

n2ǫ2

=

∑n

k=1 E(Y 2
k )

n2ǫ2
≤

M

nǫ2
→ 0

as n → ∞. Since
Sn

n
−

E(Sn)

n
=

S ′
n

n
,

this finishes the proof. �

We can also give a short proof for a strong law of large numbers, for
iid sequences, if we assume that the fourth moment is finite. Later, in
Section 3, we will see a version with less restrictive assumptions—the
tradeoff is that its proof will be longer.

Theorem 1.2. (A strong law of large numbers) Assume X1, X2, ...
are iid with E(X4

1 ) < ∞. Then Sn/n → µ almost surely as n → ∞,
where µ = E(X1).

Proof. Assume without loss of generality that E(Xn) = 0. Recall that,
to prove Sn/n → µ almost surely, it suffices to show that

∞
∑

n=1

P

(
∣

∣

∣

∣

Sn

n

∣

∣

∣

∣

> ǫ

)

< ∞

for all ǫ > 0 (Consequence 2.7 in the second part of the lecture notes).
From Chebychev’s inequality we have

P

(
∣

∣

∣

∣

Sn

n

∣

∣

∣

∣

> ǫ

)

≤
E(S4

n)

n4ǫ4
.

Moreover,

E(S4
n) = E(X1 + ... + Xn)4

= nE(X4
1 ) +

(

4
2

)(

n
2

)

(E(X2
1 ))2 ≤ C(n2 + 1)

for some constant C large enough (the remaining terms are 0 due to
independence and E(Xn) = 0). Consequently,

∞
∑

n=1

P

(
∣

∣

∣

∣

Sn

n

∣

∣

∣

∣

> ǫ

)

≤

∞
∑

n=1

C(n2 + 1)

ǫ4n4
< ∞,

which finishes the proof. �

We will now concentrate on proving the less restrictive version of the
strong law of large numbers, mentioned above. The version we prove
next only requires a first moment.
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2. Preparations for the general version of the strong

law of large numbers

In this section we provide a few results which will be needed in the
next section. However, especially the dominated convergence result
Theorem 2.3 and Theorem 2.4 are also of independent interest.

We begin with two lemmas from analysis, the first of which is very
intuitively appealing.

Lemma 2.1. (The Cesaro lemma) Let a1, a2, ... be a sequence of
real numbers. If an → a as n → ∞, then also

∑n

k=1 ak

n
→ a

as n → ∞.

Proof. Let ǫ > 0 and let N0 be a large number so that

|an − a| ≤ ǫ/2 for all n ≥ N0.

With N0 fixed, we may choose N1 > N0 so that
∑N0

k=1 |ak − a|

N1

≤ ǫ/2.

For n > N1 we then have
∣

∣

∣

∣

∑n

k=1 ak

n
− a

∣

∣

∣

∣

≤

∑n

k=1 |ak − a|

n

=

∑N0

k=1 |ak − a|

n
+

∑n

k=N0
|ak − a|

n

≤

∑N0

k=1 |ak − a|

N1

+
ǫ(n − N0)

2n
≤ ǫ,

which finishes the proof. �

Lemma 2.2. (The Kronecker lemma) Let a1, a2, ... be a sequence
of real numbers. If

∞
∑

n=1

an

n

converges, then
∑n

k=1 ak

n
→ 0

as n → ∞.

Proof. Let

Sn =
n
∑

k=1

ak

k
.
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Then Sn converges by assumption. Moreover, if we define S0 = 0, then

n
∑

k=1

ak =
n
∑

k=1

k(Sk − Sk−1) = nSn −
n
∑

k=1

Sk−1,

so
∑n

k=1 ak

n
= Sn −

∑n

k=1 Sk−1

n
→ 0

as n → ∞ by the Cesaro lemma. �

Theorem 2.3. (Dominated convergence) Assume Xn → X almost
surely. Also assume there exists a random variable Z such that |Xn| ≤
Z almost surely for all n, and EZ < ∞. Then

EXn → EX

as n → ∞.

Proof. Let Yn = |X − Xn|, and let ǫ > 0 and M > 0. Then

EYn = E
(

Yn1{Yn≤ǫ}

)

+ E
(

Yn1{Yn>ǫ}

)

≤ ǫ + 2E
(

Z1{Yn>ǫ}

)

= ǫ + 2E
(

Z1{Yn>ǫ}1{Z≤M}

)

+ 2E
(

Z1{Yn>ǫ}1{Z>M}

)

≤ ǫ + 2MP (Yn > ǫ) + 2E
(

Z1{Z>M}

)

.

Letting M → ∞, the last term can be made arbitrary small since∗

EZ < ∞, and then the middle term can be made arbitrary small by
letting n → ∞ since Xn → X in probability. Thus we have that∗

|EXn − EX| ≤ E|Xn − X| = EYn → 0

as n → ∞, which finishes the proof.
*: these steps may seems reasonable, but actually we cannot justify

them yet from what we have done. I will fix this if there is time. �

Question. Suppose you know the distribution function F of a ran-
dom variable X. What can you say about the mean, E(X)?

The next result gives a direct way to estimate E(X) from F , without
any intermediate steps.

Theorem 2.4. Assume X is non-negative. Then

∞
∑

n=1

P (X ≥ n) ≤ EX ≤ 1 +

∞
∑

n=1

P (X ≥ n).

In particular, EX < ∞ if and only if
∑∞

n=1 P (X ≥ n) < ∞.



LECTURE NOTES 3 5

Proof.

∞
∑

n=1

P (X ≥ n) =
∞
∑

n=1

∑

k≥n

P (k ≤ X < k + 1)

=

∞
∑

k=1

k
∑

n=1

P (k ≤ X < k + 1)

=

∞
∑

k=0

kP (k ≤ X < k + 1)

≤

∞
∑

k=0

E(X1{k≤X<k+1}) = E(X)

Similarly,

E(X) ≤
∞
∑

k=0

(k + 1)P (k ≤ X < k + 1)

=

∞
∑

n=1

P (X ≥ n) +

∞
∑

k=0

P (k ≤ X < k + 1)

=

∞
∑

n=1

P (X ≥ n) + 1.

�

Recall that Chebyshev’s inequality from Lecture Notes 2 gives a
bound on the probability that a random variable X is large. Recall
also the simulated random walks shown in lectures, where the position
of the walker at time n was the nth partial sum of her steps. The next
result combines these two ideas, giving a bound on the probability that
the random walk is large at any time up to time n.

Lemma 2.5. (Kolmogorov’s inequality) Assume X1, X2, ..., Xn are
independent, that E(Xk) = 0 and that E(X2

k) < ∞ for all k. Then,
for all ǫ > 0 we have

P

(

max
1≤k≤n

|Sk| ≥ ǫ

)

≤
E(S2

n)

ǫ2
.

Proof. We keep track of the first time that Sk gets large; this gives a
set of disjoint events, making the calculations easier. Let

Ak = {|Si| < ǫ for i = 1, 2, ..., k − 1 and |Sk| ≥ ǫ},

and set

A =
n
⋃

k=1

Ak = { max
1≤k≤n

|Sk| ≥ ǫ}.
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Then

E(S2
n) ≥ E(S2

n1A) =

n
∑

k=1

E(S2
nIAk

),

where

E(S2
nIAk

) = E
(

(Sk + Xk+1 + ... + Xn)21Ak

)

= E(S2
k1Ak

) + 2E (Sk(Xk+1 + ... + Xn)1Ak
)

+E
(

(Xk+1 + ... + Xn)21Ak

)

≥ E(S2
k1Ak

) ≥ ǫ2P (Ak),

where we have used the fact that X1, . . . , Xk are independent of Xk+1, . . . , Xn.
(Question: Can you see why E(SkXk+11Ak

) = 0? (Hint: think about
independence.) Can you see where this is used in the proof?)

Consequently,

E(S2
n) ≥ ǫ2

n
∑

k=1

P (Ak) = ǫ2P (A),

which finishes the proof. �

When studying sequences and series, you met various ways to test
whether a series of numbers converges—ratio test, integral test, . . . But
what about a series of random numbers? Intuitively, you might think
about a random walk - when does the walker’s position converge?

The next result gives sufficient conditions.

Lemma 2.6. Assume X1, X2, ... are independent with E(Xn) = 0. Also
assume that

∑∞
n=1 E(X2

n) < ∞. Then

Sn =
n
∑

k=1

Xk

converges almost surely as n → ∞.

Proof.

P

(

sup
k≥0

|Sn+k − Sn| ≥ ǫ

)

= lim
N→∞

P

(

sup
0≤k≤N

|Sn+k − Sn| ≥ ǫ

)

≤ lim
N→∞

E(Xn+1 + ... + Xn+N)2

ǫ2

=

∑∞
k=n+1 E(X2

k)

ǫ2
→ 0

as n → ∞ (note that we used Kolmogorov’s inequality above). It
follows (why?) that Sn converges almost surely as n → ∞. (Hint: think
about Cauchy sequences, and note that the events An = {supk,l≥n |Sk−
Sl| ≥ 2ǫ} are decreasing as n → ∞) �
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Example Let X1, X2, ... be independent, and assume

Xn =







n1−ǫ with probability 1

2n log n

−n1−ǫ with probability 1

2n log n

0 with probability 1 − 1
n log n

for some ǫ > 0. Then since
∞
∑

n=1

V (Xn)

n2
=

∞
∑

n=1

1

n1+2ǫ log n
< ∞,

Lemma 2.6 shows that

P

(

∞
∑

n=1

Xn

n
converges

)

= 1

so by the Kronecker lemma,

P

(

X1 + ... + Xn

n
→ 0 as n → ∞

)

= 1.

Compare this with Problem 3 on Exercise Sheet 5 which shows that
Sn/n does not converge almost surely in the example above if ǫ = 0.

3. The strong law of large numbers

Now we are ready to prove a general version of the strong law of
large numbers.

Theorem 3.1. Strong law of large numbers Let X1, X2, ... be a
sequence of iid random variables such that E|X1| < ∞. Then

Sn

n
→ E(X1)

almost surely as n → ∞.

Proof. Without loss of generality (why?) we may assume that E(Xn) =
0. Since E|X1| < ∞ we have

∑

n

P (|Xn| ≥ n) =
∑

n

P (|X1| ≥ n) < ∞,

so the first Borel-Cantelli lemma implies that

P (|Xn| < n for all but finitely many n) = 1.

Define the sequence X̃1, X̃2, ... by

X̃n =

{

Xn if |Xn| < n
0 if |Xn| ≥ n,

and note that Sn/n → 0 almost surely if and only if (X̃1+...+X̃n)/n →
0 almost surely. Moreover,

E(X̃n) = E(X11{|X1|<n}) → E(X1) = 0
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by dominated convergence. Thus
∑n

k=1 E(X̃k)

n
→ 0

by the Cesaro lemma, so

Sn

n
→ 0 a.s. ⇐⇒

∑n

k=1 Yk

n
→ 0 a.s.,

where
Yk := X̃k − E(X̃k).

Thus, by the Kronecker Lemma it suffices to show that
∑∞

k=1
Yk

k
con-

verges almost surely. According to Lemma 2.6 above, it therefore suf-
fices to show that

∞
∑

n=1

V (Yn)

n2
< ∞.

But we have
∞
∑

n=1

V (Yn)

n2
≤

∞
∑

n=1

E(X̃2
n)

n2
=

∞
∑

n=1

1

n2
E
(

X2
11{|X1|<n}

)

=

∞
∑

n=1

1

n2

n
∑

k=1

E
(

X2
11{k−1≤|X1|<k}

)

=

∞
∑

k=1

E
(

X2
11{k−1≤|X1|<k}

)

∞
∑

n=k

1

n2

≤
∞
∑

k=1

2

k
E
(

X2
11{k−1≤|X1|<k}

)

≤ 2
∞
∑

k=1

E
(

|X1|1{k−1≤|X1|<k}

)

= 2E|X1| < ∞,

which thus finishes the proof. �

We finish this section with a converse to the strong law of large num-
bers. It shows that the assumption about a finite moment is necessary.
Thus there is no hope of proving a more general version than the one
above.

Theorem 3.2. Assume X1, X2, ... are iid and that

Sn

n
→ µ

almost surely as n → ∞ for some µ. Then E|Xn| < ∞, and µ =
E(Xn).

Proof. First note that, by assumption,

Xn

n
=

Sn

n
−

n − 1

n

Sn−1

n − 1
→ 0
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almost surely as n → ∞. Therefore

P (|Xn| ≥ n i.o.) = 0.

By the second Borel-Cantelli lemma,
∞
∑

n=1

P (|X1| ≥ n) =

∞
∑

n=1

P (|Xn| ≥ n) < ∞.

It follows from Theorem 2.4 above that E|X1| < ∞. Moreover, from
the strong law of large numbers, µ = E(Xn). �


