

Diode Logic

- Diode Logic suffers from voltage degradation from one stage to the next.
- Diode Logic only permits the OR and AND functions.
- Diode Logic is used extensively but not in integrated circuits!

Level-Shifted Diode Logic

With either input at 0V, $V_x=0.7V$, D_L is just cut off, and $V_{OUT}=0V$.

With both inputs at 1V, $V_X=1.7V$ and $V_{OUT}=1V$.

With $V_A = V_B = 5V$, both input diodes are cut off. Then

$$V_{OUT} = R_L \left(\frac{V_{CC} - 0.7V}{R_H + R_L} \right)$$

- Level shifting eliminates the voltage degradation from the input to the ouput. However,
- the logic swing falls short of rail-to-rail, and
- the inverting function still is not available without using a transistor!

Primitive Precursor to DTL

- If any input goes high, the transistor saturates and V_{OUT} goes low.
- If all inputs are low, the transistor cuts off and V_{OUT} goes high.
- This is a NOR gate.
- "Current Hogging" is a problem because the bipolar transistors can not be matched precisely.

Improved gate with reversed diodes.

- If all inputs are high, the transistor saturates and V_{OUT} goes low.
- If any input goes low, the base current is diverted out through the input diode. The transistor cuts off and V_{OUT} goes high.
- This is a NAND gate.
- The gate works <u>marginally</u> because $V_D = V_{BEA} = 0.7V$.

Basic DTL NAND gate.

- If all inputs are high, $V_x = 2.2V$ and the transistor is saturated.
- If any input goes low (0.2V), $V_x=0.9V$, and the transistor cuts off.
- The added resistor R_D provides a discharge path for stored base charge in the BJT, to provide a reasonable t_{PLH}.

The noise margins are more symmetric than in the RTL case.

DTL Power Dissipation

Scaling R_B and R_C involves a direct tradeoff between speed and power.

P =

DTL Fanout

Good fanout requires high
 *b*_F, large R_D/R_B.

 $N_{\rm max} =$

 $I_{CS} =$

930 Series DTL (ca 1964 A.D.)

One of the series diodes is replaced by Q_1 , providing more base drive for Q_2 and improving the fanout (N_{max} = 45).

Does Q_1 saturate?

930 DTL Characteristics	
V _{OH} / V _{OL}	5.0V/0.2V
V _{IH} / V _{IL}	1.5V / 1.4V
Fanout	45
Dissipation	10mW
t _P	75ns

930 DTL Propagation Delays

Transistor-Transistor Logic (TTL)

Why TTL?

- The DTL input uses a number of diodes which take up considerable chip area.
- In TTL, a single multi-emitter BJT replaces the input diodes, resulting in a more area-efficient design.
- DTL was ousted by faster TTL gates by 1974.

Basic TTL NAND Gate.

- ALL INPUTS HIGH.
 - Q₁ is reverse active.
 - Q₀ is saturated.
 - $V_{OL} = V_{CES}$
- ANY INPUT LOW.
 - Q_l is saturated.
 - Q₀ is cut off.
 - $V_{OH} = V_{CC}$

<u>Multi-emitter transistor.</u> Forward-biased emitter base junctions override reverse-biased junctions in determining the base and collector currents.

TTL Switching Speed: t_{PLH}

- The depletion capacitance of the Q₁ EB junction must discharge;
- Base charge must be removed from the saturated Q_S;
- Ditto for Q_0 ; and
- The capactive load must be charged to V_{CC}.

<u>Multi-emitter transistor.</u> Forward-biased emitter base junctions override reverse-biased junctions in determining the base and collector currents.

TTL Switching Speed: t_{PLH}

- The time required to discharge the Q₁ depletion layers is << 1ns.</p>
- The time required to extract the Q_S base charge is also << 1ns:</p>
 - Q₁ becomes forward active;
 - |I_{BR}| becomes large for Q_S

Removal of base charge from Q_0 is similar to the DTL case. With $R_D = 1 \ kW$, $t_s = 10$ ns (these are typical values for 7400 series TTL).

TTL Switching Speed: t_{PLH}

Charging of the capacitive load can be slow with "passive pullup." e.g., with a $5k\Omega$ pull-up resistor and a 15 pF load (ten TTL gates) RC = 75 ns and $t_r = 2.3RC = 173$ ns!

TTL with Active Pullup

- In the previous example, the dominant switching speed limitation was the charging of capacitive loads through the pullup resistor.
- A small pullup resistance will improve the switching speed but will also increase the power and reduce the fanout.

With active pullup, we can achieve the best of both worlds:

- When the output is low, Q_P is cutoff, minimizing the power and maximizing the fanout;
- when the output goes high, Q_P becomes forward active to provide maximum drive current for a quick rise time.

TTL with Active Pullup

With a high output,
 Q_S is cutoff
 Q_P is forward active
 With a low output,
 Q_S is saturated

The low output case is unsatisfactory with this circuit:

$$V_{BP} = V_{EP} =$$

 $V_{BEP} =$

The "Totem Pole Output" solves this problem. University of Connecticut

TTL with "Totem Pole Output"

- During turn-off, Q_S switches off before Q_O.
- Q_P begins to conduct when $V_{CS} = V_{CESO} + V_D + V_{BEAP}$ = 1.6V

Initially,

 $I_{BP} =$

 R_{CP} limits the collector current to a safe value.

Typical 74xx Series TTL

74xx TTL Characteristics	
t _{PLH}	12 ns
t_{PHI}	8 ns
Fanout	10
Dissipation	10 mW
PDP	100 pJ

The anti-ringing diodes at the input are normally cut off. During switching transients, they turn on if an input goes more negative than -0.7V.

Standard TTL: VTC

• $V_{IN}=0$. Q_I is saturated; Q_S , Q_O are cutoff; Q_P is forward active.

 $V_{OH} =$

(the drop in the base resistor is small)

First Breakpoint. Q_S turns on.

 $V_{IL} =$

(at the edge of conduction, $I_C=0$)

Standard TTL: VTC

Second Breakpoint. Q₀ turns on.

 $V_{IN} =$

$$V_{OUT} =$$

<u>Third Breakpoint.</u> Q₀ saturates.

 $V_{IH} =$

Standard TTL: VTC

$$V_{NML} =$$

 $V_{NMH} =$

Standard TTL: Low State R_{OUT}

For the saturated BJT with $I_B = 2.4$ mA, the output impedance is

 $R_{OL} =$

The very low output impedance means that noise currents are translated into tiny noise voltages. Thus only a small noise margin is neccesary.

Standard TTL: Input Current

I_{IH} (Q₁ is reverse active)

 $I_{BI} =$

$$I_{IH} =$$
 I_{IL} (Q₁ is saturated)
 $I_{IL} =$

Standard TTL: DC Fanout

With high inputs,

$$I_{CI} =$$

$$I_{CS} =$$

$$I_{BO} =$$

To keep Q₀ saturated,

 $N_{\rm max} =$

AC considerations usually limit the fanout to a much lower number.

Standard TTL: DC Dissipation

Advanced TTL Designs

- Schottky Clamping. Q_S and Q_O may be Schottky clamped, preventing saturation. This greatly improves t_{PLH}.
- Darlington Pullup. The Darlington pullup arrangement increases the average output drive current for charging a capacitive load. Although R_{CP} limits the maximum output current, this maximum drive is maintained over a wider range of V_{OUT} than with a single pullup transistor.
- Squaring Circuit. Active pull-down for the base of the output transistor squares the VTC, improving the low noise margin. An added benefit is faster charge removal for the output transistor.
- Improved Fabrication. Smaller devices, and oxide isolation, have steadily reduced parasitic capacitances and reduced RC time constants.

Darlington Pullup

- Q_{P2} is added, forming a Darlington pair with Q_P.
- The EB junction of Q_{P2} introduces a 0.7V level shift, so DL can be eliminated.
- Q_{P2} can not saturate, so Schottky clamping is not neccessary.
- R_{EP} is needed to provide a discharge path for Q_{P2} base charge.

The Darlington emitter follower provides a very low output impedance, approaching R_C/b^2 . This greatly reduces the rise time.

Squaring Circuit

- **There is no path for Q_s emitter current until Q_D and Q_0 turn on.**
- \mathbf{Q}_{S} and \mathbf{Q}_{O} begin to conduct simultaneously.
- BP1 is eliminated from the VTC; in other words, the VTC is "squared."
- V_{IL} is increased, improving the low noise margin.

Schottky TTL (74S / 54S Series)

