
Computation

Visualization

Programming

MATLAB Function Reference
Volume 2: F - O
Version 6

MATLAB
®

The Language of Technical Computing

How to Contact The MathWorks:

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

http://www.mathworks.com Web
ftp.mathworks.com Anonymous FTP server
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
subscribe@mathworks.com Subscribing user registration
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

MATLAB Function Reference Volume 2 F- O
 COPYRIGHT 1984 - 2000 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
Target Language Compiler is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: December 1996 First printing New for MATLAB 5.0 (Release 10)
June 1997 Revised for 5.1 Online version, MATLAB 5.1
October 1997 Revised for 5.2 Online version, MATLAB 5.2
January 1999 Revised for 5.3 Online version (Release 11)
June 1999 Second printing MATLAB 5.3 (Release 11)
November 2000 Revised for 6.0 Online version (Release 12)

ii

Contents

1
Functions by Category

General Purpose Commands . viii

Operators and Special Characters . x

Logical Functions . xi

Language Constructs and Debugging . xi

Elementary Matrices and Matrix Manipulation xiii

Specialized Matrices . xv

Elementary Math Functions . xv

Specialized Math Functions . xvi

Coordinate System Conversion . xvii

Matrix Functions - Numerical Linear Algebra xvii

Data Analysis and Fourier Transform Functions xviii

Polynomial and Interpolation Functions xix

Function Functions – Nonlinear Numerical Methods xx

Sparse Matrix Functions . xxi

Sound Processing Functions . xxiii

Character String Functions . xxiii

File I/O Functions . xxv

iii Contents

Bitwise Functions . xxvi

Structure Functions . xxvi

MATLAB Object Functions . xxvi

MATLAB Interface to Java . xxvi

Cell Array Functions . xxvii

Multidimensional Array Functions xxvii

Plotting and Data Visualization . xxvii

Graphical User Interfaces . xxxiv

Serial Port I/O . xxxv

Volume 2 Reference

Index

iv Contents

v Contents

1
Functions by Category

1-vii

This section lists MATLAB functions grouped by functional area.

General Purpose Commands

Operators and Special Characters

Logical Functions

Language Constructs and Debugging

Elementary Matrices and Matrix Manipulation

Specialized Matrices

Elementary Math Functions

Specialized Math Functions

Coordinate System Conversion

Matrix Functions - Numerical Linear Algebra

Data Analysis and Fourier Transform Functions

Polynomial and Interpolation Functions

Function Functions – Nonlinear Numerical Methods

Sparse Matrix Functions

Sound Processing Functions

Character String Functions

File I/O Functions

Bitwise Functions

Structure Functions

MATLAB Object Functions

MATLAB Interface to Java

Cell Array Functions

1-viii

General Purpose Commands

Managing Commands and Functions
addpath Add directories to MATLAB’s search path
doc Display HTML documentation in Help browser
docopt Display location of help file directory for UNIX platforms
genpath Generate a path string
help Display M-file help for MATLAB functions in the Command Window
helpbrowser Display Help browser for access to all MathWorks online help
helpdesk Display the Help browser
helpwin Display M-file help and provide access to M-file help for all functions
lasterr Last error message
lastwarn Last warning message
license Show MATLAB license number
lookfor Search for specified keyword in all help entries
partialpath Partial pathname
path Control MATLAB’s directory search path
pathtool Open the GUI for viewing and modifying MATLAB’s path
profile Start the M-file profiler, a utility for debugging and optimizing code
profreport Generate a profile report
rehash Refresh function and file system caches
rmpath Remove directories from MATLAB’s search path
support Open MathWorks Technical Support Web Page
type List file
ver Display version information for MATLAB, Simulink, and toolboxes
version Get MATLAB version number
web Point Help browser or Web browser at file or Web site
what List MATLAB-specific files in current directory
whatsnew Display README files for MATLAB and toolboxes
which Locate functions and files

Multidimensional Array Functions

Plotting and Data Visualization

Graphical User Interface Creation

Serial Port I/O

1-ix

Managing Variables and the Workspace
clear Remove items from the workspace
disp Display text or array
length Length of vector
load Retrieve variables from disk
memory Help for memory limitations
mlock Prevent M-file clearing
munlock Allow M-file clearing
openvar Open workspace variable in Array Editor, for graphical editing
pack Consolidate workspace memory
save Save workspace variables on disk
saveas Save figure or model using specified format
size Array dimensions
who, whos List the variables in the workspace
workspace Display the Workspace Browser, a GUI for managing the workspace

Controlling the Command Window
clc Clear Command Window
echo Echo M-files during execution
format Control the display format for output
home Move cursor to upper left corner of Command Window
more Control paged output for the Command Window

Working with Files and the Operating Environment
beep Produce a beep sound
cd Change working directory
checkin Check file into source control system
checkout Check file out of source control system
cmopts Get name of source control system, and PVCS project filename
copyfile Copy file
customverctrlAllow custom source control system
delete Delete files or graphics objects
diary Save session to a disk file
dir Display a directory listing
dos Execute a DOS command and return the result
edit Edit an M-file
fileparts Get filename parts
filebrowser Display Current Directory browser, for viewing files
fullfile Build full filename from parts
info Display contact information or toolbox Readme files
inmem Functions in memory

1-x

ls List directory on UNIX
matlabroot Get root directory of MATLAB installation
mkdir Make new directory
open Open files based on extension
pwd Display current directory
tempdir Return the name of the system’s temporary directory
tempname Unique name for temporary file
undocheckout Undo previous checkout from source control system
unix Execute a UNIX command and return the result
! Execute operating system command

Starting and Quitting MATLAB
finish MATLAB termination M-file
exit Terminate MATLAB
matlab Start MATLAB (UNIX systems only)
matlabrc MATLAB startup M-file
quit Terminate MATLAB
startup MATLAB startup M-file

Operators and Special Characters
+ Plus
- Minus
* Matrix multiplication
.* Array multiplication
^ Matrix power
.^ Array power
kron Kronecker tensor product
\ Backslash or left division
/ Slash or right division
./ and .\ Array division, right and left
: Colon
() Parentheses
[] Brackets
{} Curly braces
. Decimal point
... Continuation
, Comma
; Semicolon
% Comment
! Exclamation point

1-xi

' Transpose and quote
.' Nonconjugated transpose
= Assignment
== Equality
< > Relational operators
& Logical AND
| Logical OR
~ Logical NOT
xor Logical EXCLUSIVE OR

Logical Functions
all Test to determine if all elements are nonzero
any Test for any nonzeros
exist Check if a variable or file exists
find Find indices and values of nonzero elements
is* Detect state
isa Detect an object of a given class
iskeyword Testif string is a MATLAB keyword
isvarname Test if string is a valid variable name
logical Convert numeric values to logical
mislocked True if M-file cannot be cleared

Language Constructs and Debugging

MATLAB as a Programming Language
builtin Execute builtin function from overloaded method
eval Interpret strings containing MATLAB expressions
evalc Evaluate MATLAB expression with capture
evalin Evaluate expression in workspace
feval Function evaluation
function Function M-files
global Define global variables
nargchk Check number of input arguments
persistent Define persistent variable
script Script M-files

Control Flow
break Terminate execution offor loop orwhile loop

1-xii

case Case switch
catch Begin catch block
continue Pass control to the next iteration offor or while loop
else Conditionally execute statements
elseif Conditionally execute statements
end Terminatefor, while, switch, try, andif statements or indicate last

index
error Display error messages
for Repeat statements a specific number of times
if Conditionally execute statements
otherwise Default part ofswitch statement
return Return to the invoking function
switch Switch among several cases based on expression
try Begintry block
warning Display warning message
while Repeat statements an indefinite number of times

Interactive Input
input Request user input
keyboard Invoke the keyboard in an M-file
menu Generate a menu of choices for user input
pause Halt execution temporarily

Object-Oriented Programming
class Create object or return class of object
double Convert to double precision
inferiorto Inferior class relationship
inline Construct an inline object
int8, int16, int32

Convert to signed integer
isa Detect an object of a given class
loadobj Extends theload function for user objects
saveobj Save filter for objects
single Convert to single precision
superiorto Superior class relationship
uint8, uint16, uint32

Convert to unsigned integer

Debugging
dbclear Clear breakpoints

1-xiii

dbcont Resume execution
dbdown Change local workspace context
dbmex Enable MEX-file debugging
dbquit Quit debug mode
dbstack Display function call stack
dbstatus List all breakpoints
dbstep Execute one or more lines from a breakpoint
dbstop Set breakpoints in an M-file function
dbtype List M-file with line numbers
dbup Change local workspace context

Function Handles
function_handle

MATLAB data type that is a handle to a function
functions Return information about a function handle
func2str Constructs a function name string from a function handle
str2func Constructs a function handle from a function name string

Elementary Matrices and Matrix Manipulation

Elementary Matrices and Arrays
blkdiag Construct a block diagonal matrix from input arguments
eye Identity matrix
linspace Generate linearly spaced vectors
logspace Generate logarithmically spaced vectors
numel Number of elements in a matrix or cell array
ones Create an array of all ones
rand Uniformly distributed random numbers and arrays
randn Normally distributed random numbers and arrays
zeros Create an array of all zeros
: (colon) Regularly spaced vector

Special Variables and Constants
ans The most recent answer
computer Identify the computer on which MATLAB is running
eps Floating-point relative accuracy
i Imaginary unit
Inf Infinity
inputname Input argument name

1-xiv

j Imaginary unit
NaN Not-a-Number
nargin, nargout

Number of function arguments
nargoutchk Validate number of output arguments
pi Ratio of a circle’s circumference to its diameter,π
realmax Largest positive floating-point number
realmin Smallest positive floating-point number
varargin, varargout

Pass or return variable numbers of arguments

Time and Dates
calendar Calendar
clock Current time as a date vector
cputime Elapsed CPU time
date Current date string
datenum Serial date number
datestr Date string format
datevec Date components
eomday End of month
etime Elapsed time
now Current date and time
tic, toc Stopwatch timer
weekday Day of the week

Matrix Manipulation
cat Concatenate arrays
diag Diagonal matrices and diagonals of a matrix
fliplr Flip matrices left-right
flipud Flip matrices up-down
repmat Replicate and tile an array
reshape Reshape array
rot90 Rotate matrix 90 degrees
tril Lower triangular part of a matrix
triu Upper triangular part of a matrix
: (colon) Index into array, rearrange array

Vector Functions
cross Vector cross product
dot Vector dot product

1-xv

intersect Set intersection of two vectors
ismember Detect members of a set
setdiff Return the set difference of two vector
setxor Set exclusive or of two vectors
union Set union of two vectors
unique Unique elements of a vector

Specialized Matrices
compan Companion matrix
gallery Test matrices
hadamard Hadamard matrix
hankel Hankel matrix
hilb Hilbert matrix
invhilb Inverse of the Hilbert matrix
magic Magic square
pascal Pascal matrix
toeplitz Toeplitz matrix
wilkinson Wilkinson’s eigenvalue test matrix

Elementary Math Functions
abs Absolute value and complex magnitude
acos, acosh Inverse cosine and inverse hyperbolic cosine
acot, acoth Inverse cotangent and inverse hyperbolic cotangent
acsc, acsch Inverse cosecant and inverse hyperbolic cosecant
angle Phase angle
asec, asech Inverse secant and inverse hyperbolic secant
asin, asinh Inverse sine and inverse hyperbolic sine
atan, atanh Inverse tangent and inverse hyperbolic tangent
atan2 Four-quadrant inverse tangent
ceil Round toward infinity
complex Construct complex data from real and imaginary components
conj Complex conjugate
cos, cosh Cosine and hyperbolic cosine
cot, coth Cotangent and hyperbolic cotangent
csc, csch Cosecant and hyperbolic cosecant
exp Exponential
fix Round towards zero
floor Round towards minus infinity
gcd Greatest common divisor

1-xvi

imag Imaginary part of a complex number
lcm Least common multiple
log Natural logarithm
log2 Base 2 logarithm and dissect floating-point numbers into exponent and

mantissa
log10 Common (base 10) logarithm
mod Modulus (signed remainder after division)
nchoosek Binomial coefficient or all combinations
real Real part of complex number
rem Remainder after division
round Round to nearest integer
sec, sech Secant and hyperbolic secant
sign Signum function
sin, sinh Sine and hyperbolic sine
sqrt Square root
tan, tanh Tangent and hyperbolic tangent

Specialized Math Functions
airy Airy functions
besselh Bessel functions of the third kind (Hankel functions)
besseli, besselk

Modified Bessel functions
besselj, bessely

Bessel functions
beta, betainc, betaln

Beta functions
ellipj Jacobi elliptic functions
ellipke Complete elliptic integrals of the first and second kind
erf, erfc, erfcx, erfinv

Error functions
expint Exponential integral
factorial Factorial function
gamma, gammainc, gammaln

Gamma functions
legendre Associated Legendre functions
pow2 Base 2 power and scale floating-point numbers
rat, rats Rational fraction approximation

1-xvii

Coordinate System Conversion
cart2pol Transform Cartesian coordinates to polar or cylindrical
cart2sph Transform Cartesian coordinates to spherical
pol2cart Transform polar or cylindrical coordinates to Cartesian
sph2cart Transform spherical coordinates to Cartesian

Matrix Functions - Numerical Linear Algebra

Matrix Analysis
cond Condition number with respect to inversion
condeig Condition number with respect to eigenvalues
det Matrix determinant
norm Vector and matrix norms
null Null space of a matrix
orth Range space of a matrix
rank Rank of a matrix7
rcond Matrix reciprocal condition number estimate
rref, rrefmovie

Reduced row echelon form
subspace Angle between two subspaces
trace Sum of diagonal elements

Linear Equations
chol Cholesky factorization
inv Matrix inverse
lscov Least squares solution in the presence of known covariance
lu LU matrix factorization
lsqnonneg Nonnegative least squares
minres Minimum Residual Method
pinv Moore-Penrose pseudoinverse of a matrix
qr Orthogonal-triangular decomposition
symmlq Symmetric LQ method

Eigenvalues and Singular Values
balance Improve accuracy of computed eigenvalues
cdf2rdf Convert complex diagonal form to real block diagonal form
eig Eigenvalues and eigenvectors
gsvd Generalized singular value decomposition

1-xviii

hess Hessenberg form of a matrix
poly Polynomial with specified roots
qz QZ factorization for generalized eigenvalues
rsf2csf Convert real Schur form to complex Schur form
schur Schur decomposition
svd Singular value decomposition

Matrix Functions
expm Matrix exponential
funm Evaluate general matrix function
logm Matrix logarithm
sqrtm Matrix square root

Low Level Functions
qrdelete Delete column from QR factorization
qrinsert Insert column in QR factorization

Data Analysis and Fourier Transform Functions

Basic Operations
cumprod Cumulative product
cumsum Cumulative sum
cumtrapz Cumulative trapezoidal numerical integration
factor Prime factors
inpolygon Detect points inside a polygonal region
max Maximum elements of an array
mean Average or mean value of arrays
median Median value of arrays
min Minimum elements of an array
perms All possible permutations
polyarea Area of polygon
primes Generate list of prime numbers
prod Product of array elements
rectint Rectangle intersection Area
sort Sort elements in ascending order
sortrows Sort rows in ascending order
std Standard deviation
sum Sum of array elements
trapz Trapezoidal numerical integration

1-xix

var Variance

Finite Differences
del2 Discrete Laplacian
diff Differences and approximate derivatives
gradient Numerical gradient

Correlation
corrcoef Correlation coefficients
cov Covariance matrix

Filtering and Convolution
conv Convolution and polynomial multiplication
conv2 Two-dimensional convolution
deconv Deconvolution and polynomial division
filter Filter data with an infinite impulse response (IIR) or finite impulse

response (FIR) filter
filter2 Two-dimensional digital filtering

Fourier Transforms
abs Absolute value and complex magnitude
angle Phase angle
cplxpair Sort complex numbers into complex conjugate pairs
fft One-dimensional fast Fourier transform
fft2 Two-dimensional fast Fourier transform
fftshift Shift DC component of fast Fourier transform to center of spectrum
ifft Inverse one-dimensional fast Fourier transform
ifft2 Inverse two-dimensional fast Fourier transform
ifftn Inverse multidimensional fast Fourier transform
ifftshift Inverse FFT shift
nextpow2 Next power of two
unwrap Correct phase angles

Polynomial and Interpolation Functions

Polynomials
conv Convolution and polynomial multiplication

1-xx

deconv Deconvolution and polynomial division
poly Polynomial with specified roots
polyder Polynomial derivative
polyeig Polynomial eigenvalue problem
polyfit Polynomial curve fitting
polyint Analytic polynomial integration
polyval Polynomial evaluation
polyvalm Matrix polynomial evaluation
residue Convert between partial fraction expansion and polynomial coefficients
roots Polynomial roots

Data Interpolation
convhull Convex hull
convhulln Multidimensional convex hull
delaunay Delaunay triangulation
delaunay3 Three-dimensionalDelaunay tessellation
delaunayn Multidimensional Delaunay tessellation
dsearch Search for nearest point
dsearchn Multidimensional closest point search
griddata Data gridding
griddata3 Data gridding and hypersurface fitting for three-dimensional

data
griddatan Data gridding and hypersurface fitting (dimension >= 2)
interp1 One-dimensional data interpolation (table lookup)
interp2 Two-dimensional data interpolation (table lookup)
interp3 Three-dimensional data interpolation (table lookup)
interpft One-dimensional interpolation using the FFT method
interpn Multidimensional data interpolation (table lookup)
meshgrid Generate X and Y matrices for three-dimensional plots
ndgrid Generate arrays for multidimensional functions and interpolation
pchip Piecewise Cubic Hermite Interpolating Polynomial (PCHIP)
ppval Piecewise polynomial evaluation
spline Cubic spline data interpolation
tsearch Search for enclosing Delaunay triangle
tsearchn Multidimensional closest simplex search
voronoi Voronoi diagram
voronoin Multidimensional Voronoi diagrams

Function Functions – Nonlinear Numerical Methods
bvp4c Solve two-point boundry value problems (BVPs) for

1-xxi

ordinary differential equations (ODEs)
bvpget Extract parameters from BVP options structure
bvpinit Form the initial guess forbvp4c
bvpset Create/alter BVP options structure
bvpval Evaluate the solution computed bybvp4c
dblquad Numerical evaluation of double integrals
fminbnd Minimize a function of one variable
fminsearch Minimize a function of several variables
fzero Find zero of a function of one variable
ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb

Solve initial value problems for ODEs
odeget Extract parameters from ODE options structure
odeset Create/alter ODE options structure
optimget Get optimization options structure parameter values
optimset Create or edit optimization options parameter structure
pdepe Solve initial-boundary value problems
pdeval Evaluate the solution computed by pdepe
quad Numerical evaluation of integrals, adaptive Simpson quadrature
quadl Numerical evaluation of integrals, adaptive Lobatto quadrature
vectorize Vectorize expression

Sparse Matrix Functions

Elementary Sparse Matrices
spdiags Extract and create sparse band and diagonal matrices
speye Sparse identity matrix
sprand Sparse uniformly distributed random matrix
sprandn Sparse normally distributed random matrix
sprandsym Sparse symmetric random matrix

Full to Sparse Conversion
find Find indices and values of nonzero elements
full Convert sparse matrix to full matrix
sparse Create sparse matrix
spconvert Import matrix from sparse matrix external format

Working with Nonzero Entries of Sparse Matrices
nnz Number of nonzero matrix elements
nonzeros Nonzero matrix elements

1-xxii

nzmax Amount of storage allocated for nonzero matrix elements
spalloc Allocate space for sparse matrix
spfun Apply function to nonzero sparse matrix elements
spones Replace nonzero sparse matrix elements with ones

Visualizing Sparse Matrices
spy Visualize sparsity pattern

Reordering Algorithms
colamd Column approximate minimum degree permutation
colmmd Sparse column minimum degree permutation
colperm Sparse column permutation based on nonzero count
dmperm Dulmage-Mendelsohn decomposition
randperm Random permutation
symamd Symmetric approximate minimum degree permutation
symmmd Sparse symmetric minimum degree ordering
symrcm Sparse reverse Cuthill-McKee ordering

Norm, Condition Number, and Rank
condest 1-norm matrix condition number estimate
normest 2-norm estimate

Sparse Systems of Linear Equations
bicg BiConjugate Gradients method
bicgstab BiConjugate Gradients Stabilized method
cgs Conjugate Gradients Squared method
cholinc Sparse Incomplete Cholesky and Cholesky-Infinity factorizations
cholupdate Rank 1 update to Cholesky factorization
gmres Generalized Minimum Residual method (with restarts)
lsqr LSQR implementation of Conjugate Gradients on the normal equations
luinc Incomplete LU matrix factorizations
pcg Preconditioned Conjugate Gradients method
qmr Quasi-Minimal Residual method
qr Orthogonal-triangular decomposition
qrdelete Delete column from QR factorization
qrinsert Insert column in QR factorization
qrupdate Rank 1 update to QR factorization

1-xxiii

Sparse Eigenvalues and Singular Values
eigs Find eigenvalues and eigenvectors
svds Find singular values

Miscellaneous
spparms Set parameters for sparse matrix routines

Sound Processing Functions

General Sound Functions
lin2mu Convert linear audio signal to mu-law
mu2lin Convert mu-law audio signal to linear
sound Convert vector into sound
soundsc Scale data and play as sound

SPARCstation-Specific Sound Functions
auread Read NeXT/SUN (.au) sound file
auwrite Write NeXT/SUN (.au) sound file

.WAV Sound Functions
wavplay Play recorded sound on a PC-based audio output device
wavread Read Microsoft WAVE (.wav) sound file
wavrecord Record sound using a PC-based audio input device
wavwrite Write Microsoft WAVE (.wav) sound file

Character String Functions

General
abs Absolute value and complex magnitude
eval Interpret strings containing MATLAB expressions
real Real part of complex number
strings MATLAB string handling

String to Function Handle Conversion
func2str Constructs a function name string from a function handle

1-xxiv

str2func Constructs a function handle from a function name string

String Manipulation
deblank Strip trailing blanks from the end of a string
findstr Find one string within another
lower Convert string to lower case
strcat String concatenation
strcmp Compare strings
strcmpi Compare strings, ignoring case
strjust Justify a character array
strmatch Find possible matches for a string
strncmp Compare the firstn characters of strings
strncmpi Compare the firstn characters of strings, ignoring case
strrep String search and replace
strtok First token in string
strvcat Vertical concatenation of strings
symvar Determine symbolic variables in an expression
texlabel Produce the TeX format from a character string
upper Convert string to upper case

String to Number Conversion
char Create character array (string)
int2str Integer to string conversion
mat2str Convert a matrix into a string
num2str Number to string conversion
sprintf Write formatted data to a string
sscanf Read string under format control
str2double Convert string to double-precision value
str2mat String to matrix conversion
str2num String to number conversion

Radix Conversion
bin2dec Binary to decimal number conversion
dec2bin Decimal to binary number conversion
dec2hex Decimal to hexadecimal number conversion
hex2dec Hexadecimal to decimal number conversion
hex2num Hexadecimal to double number conversion

1-xxv

File I/O Functions

File Opening and Closing
fclose Close one or more open files
fopen Open a file or obtain information about open files

Unformatted I/O
fread Read binary data from file
fwrite Write binary data to a file

Formatted I/O
fgetl Return the next line of a file as a string without line terminator(s)
fgets Return the next line of a file as a string with line terminator(s)
fprintf Write formatted data to file
fscanf Read formatted data from file

File Positioning
feof Test for end-of-file
ferror Query MATLAB about errors in file input or output
frewind Rewind an open file
fseek Set file position indicator
ftell Get file position indicator

String Conversion
sprintf Write formatted data to a string
sscanf Read string under format control

Specialized File I/O
dlmread Read an ASCII delimited file into a matrix
dlmwrite Write a matrix to an ASCII delimited file
hdf HDF interface
imfinfo Return information about a graphics file
imread Read image from graphics file
imwrite Write an image to a graphics file
strread Read formatted data from a string
textread Read formatted data from text file
wk1read Read a Lotus123 WK1 spreadsheet file into a matrix

1-xxvi

wk1write Write a matrix to a Lotus123 WK1 spreadsheet file

Bitwise Functions
bitand Bit-wise AND
bitcmp Complement bits
bitor Bit-wise OR
bitmax Maximum floating-point integer
bitset Set bit
bitshift Bit-wise shift
bitget Get bit
bitxor Bit-wise XOR

Structure Functions
fieldnames Field names of a structure
getfield Get field of structure array
rmfield Remove structure fields
setfield Set field of structure array
struct Create structure array
struct2cell Structure to cell array conversion

MATLAB Object Functions
class Create object or return class of object
isa Detect an object of a given class
methods Display method names
methodsview Displays information on all methods implemented by a class
subsasgn Overloaded method for A(I)=B, A{I}=B, and A.field=B
subsindex Overloaded method for X(A)
subsref Overloaded method for A(I), A{I} and A.field

MATLAB Interface to Java
class Create object or return class of object
import Add a package or class to the current Java import list
isa Detect an object of a given class
isjava Test whether an object is a Java object
javaArray Constructs a Java array

1-xxvii

javaMethod Invokes a Java method
javaObject Constructs a Java object
methods Display method names
methodsview Displays information on all methods implemented by a class

Cell Array Functions
cell Create cell array
cellfun Apply a function to each element in a cell array
cellstr Create cell array of strings from character array
cell2struct Cell array to structure array conversion
celldisp Display cell array contents
cellplot Graphically display the structure of cell arrays
num2cell Convert a numeric array into a cell array

Multidimensional Array Functions
cat Concatenate arrays
flipdim Flip array along a specified dimension
ind2sub Subscripts from linear index
ipermute Inverse permute the dimensions of a multidimensional array
ndgrid Generate arrays for multidimensional functions and interpolation
ndims Number of array dimensions
permute Rearrange the dimensions of a multidimensional array
reshape Reshape array
shiftdim Shift dimensions
squeeze Remove singleton dimensions
sub2ind Single index from subscripts

Plotting and Data Visualization

Basic Plots and Graphs
bar Vertical bar chart
barh Horizontal bar chart
hist Plot histograms
histc Histogram count
hold Hold current graph
loglog Plot using log-log scales
pie Pie plot

1-xxviii

plot Plot vectors or matrices.
polar Polar coordinate plot
semilogx Semi-log scale plot
semilogy Semi-log scale plot
subplot Create axes in tiled positions

Three-Dimensional Plotting
bar3 Vertical 3-D bar chart
bar3h Horizontal 3-D bar chart
comet3 3-D comet plot
cylinder Generate cylinder
fill3 Draw filled 3-D polygons in 3-space
plot3 Plot lines and points in 3-D space
quiver3 3-D quiver (or velocity) plot
slice Volumetric slice plot
sphere Generate sphere
stem3 Plot discrete surface data
waterfall Waterfall plot

Plot Annotation and Grids
clabel Add contour labels to a contour plot
datetick Date formatted tick labels
grid Grid lines for 2-D and 3-D plots
gtext Place text on a 2-D graph using a mouse
legend Graph legend for lines and patches
plotyy Plot graphs with Y tick labels on the left and right
title Titles for 2-D and 3-D plots
xlabel X-axis labels for 2-D and 3-D plots
ylabel Y-axis labels for 2-D and 3-D plots
zlabel Z-axis labels for 3-D plots

Surface, Mesh, and Contour Plots
contour Contour (level curves) plot
contourc Contour computation
contourf Filled contour plot
hidden Mesh hidden line removal mode
meshc Combination mesh/contourplot
mesh 3-D mesh with reference plane
peaks A sample function of two variables
surf 3-D shaded surface graph

1-xxix

surface Create surface low-level objects
surfc Combination surf/contourplot
surfl 3-D shaded surface with lighting
trimesh Triangular mesh plot
trisurf Triangular surface plot

Volume Visualization
coneplot Plot velocity vectors as cones in 3-D vector field
contourslice Draw contours in volume slice plane
curl Compute the curl and angular velocity of a vector field
divergence Compute the divergence of a vector field
flow Generate scalar volume data
interpstreamspeedInterpolate streamline vertices from vector-field magnitudes
isocaps Compute isosurface end-cap geometry
isocolors Compute the colors of isosurface vertices
isonormals Compute normals of isosurface vertices
isosurface Extract isosurface data from volume data
reducepatch Reduce the number of patch faces
reducevolume Reduce number of elements in volume data set
shrinkfaces Reduce the size of patch faces
slice Draw slice planes in volume
smooth3 Smooth 3-D data
stream2 Compute 2-D stream line data
stream3 Compute 3-D stream line data
streamline Draw stream lines from 2- or 3-D vector data
streamparticlesDraws stream particles from vector volume data
streamribbon Draws stream ribbons from vector volume data
streamslice Draws well-spaced stream lines from vector volume data
streamtube Draws stream tubes from vector volume data
surf2patch Convert srface data to patch data
subvolume Extract subset of volume data set
volumebounds Return coordinate and color limits for volume (scalar and vector)

Domain Generation
griddata Data gridding and surface fitting
meshgrid Generation of X and Y arrays for 3-D plots

Specialized Plotting
area Area plot
box Axis box for 2-D and 3-D plots

1-xxx

comet Comet plot
compass Compass plot
errorbar Plot graph with error bars
ezcontour Easy to use contour plotter
ezcontourf Easy to use filled contour plotter
ezmesh Easy to use 3-D mesh plotter
ezmeshc Easy to use combination mesh/contour plotter
ezplot Easy to use function plotter
ezplot3 Easy to use 3-D parametric curve plotter
ezpolar Easy to use polar coordinate plotter
ezsurf Easy to use 3-D colored surface plotter
ezsurfc Easy to use combination surface/contour plotter
feather Feather plot
fill Draw filled 2-D polygons
fplot Plot a function
pareto Pareto char
pie3 3-D pie plot
plotmatrix Scatter plot matrix
pcolor Pseudocolor (checkerboard) plot
rose Plot rose or angle histogram
quiver Quiver (or velocity) plot
ribbon Ribbon plot
stairs Stairstep graph
scatter Scatter plot
scatter3 3-D scatter plot
stem Plot discrete sequence data
convhull Convex hull
delaunay Delaunay triangulation
dsearch Search Delaunay triangulation for nearest point
inpolygon True for points inside a polygonal region
polyarea Area of polygon
tsearch Search for enclosing Delaunay triangle
voronoi Voronoi diagram

View Control
camdolly Move camera position and target
camlookat View specific objects
camorbit Orbit about camera target
campan Rotate camera target about camera position
campos Set or get camera position
camproj Set or get projection type
camroll Rotate camera about viewing axis

1-xxxi

camtarget Set or get camera target
camup Set or get camera up-vector
camva Set or get camera view angle
camzoom Zoom camera in or out
daspect Set or get data aspect ratio
pbaspect Set or get plot box aspect ratio
view 3-D graph viewpoint specification.
viewmtx Generate view transformation matrices
xlim Set or get the currentx-axis limits
ylim Set or get the currenty-axis limits
zlim Set or get the currentz-axis limits

Lighting
camlight Cerate or position Light
light Light object creation function
lighting Lighting mode
lightangle Position light in sphereical coordinates
material Material reflectance mode

Transparency
alpha Set or query transparency properties for objects in current axes
alphamap Specify the figure alphamap
alim Set or query the axes alpha limits

Color Operations
brighten Brighten or darken color map
caxis Pseudocolor axis scaling
colorbar Display color bar (color scale)
colordef Set up color defaults
colormap Set the color look-up table (list of colormaps)
graymon Graphics figure defaults set for grayscale monitor
hsv2rgb Hue-saturation-value to red-green-blue conversion
rgb2hsv RGB to HSVconversion
rgbplot Plot color map
shading Color shading mode
spinmap Spin the colormap
surfnorm 3-D surface normals
whitebg Change axes background color for plots

1-xxxii

Colormaps
autumn Shades of red and yellow color map
bone Gray-scale with a tinge of blue color map
contrast Gray color map to enhance image contrast
cool Shades of cyan and magenta color map
copper Linear copper-tone color map
flag Alternating red, white, blue, and black color map
gray Linear gray-scale color map
hot Black-red-yellow-white color map
hsv Hue-saturation-value (HSV) color map
jet Variant of HSV
lines Line color colormap
prism Colormap of prism colors
spring Shades of magenta and yellow color map
summer Shades of green and yellow colormap
winter Shades of blue and green color map

Printing
orient Hardcopy paper orientation
pagesetupdlg Page position dialog box
print Print graph or save graph to file
printdlg Print dialog box
printopt Configure local printer defaults
saveas Save figure to graphic file

Handle Graphics, General
allchild Find all children of specified objects
copyobj Make a copy of a graphics object and its children
findall Find all graphics objects (including hidden handles)
findobj Find objects with specified property values
gcbo Return object whose callback is currently executing
gco Return handle of current object
get Get object properties
rotate Rotate objects about specified origin and direction
ishandle True for graphics objects
set Set object properties

Working with Application Data
getappdata Get value of application data
isappdata True if application data exists

1-xxxiii

rmappdata Remove application data
setappdata Specify application data

Handle Graphics, Object Creation
axes Create Axes object
figure Create Figure (graph) windows
image Create Image (2-D matrix)
light Create Light object (illuminates Patch and Surface)
line Create Line object (3-D polylines)
patch Create Patch object (polygons)
rectangle Create Rectangle object (2-D rectangle)
surface Create Surface (quadrilaterals)
text Create Text object (character strings)
uicontextmenuCreate context menu (popup associated with object)

Handle Graphics, Figure Windows
capture Screen capture of the current figure
clc Clear figure window
clf Clear figure
close Close specified window
closereq Default close request function
gcf Get current figure handle
newplot Graphics M-file preamble forNextPlot property
refresh Refresh figure
saveas Save figure or model to desired output format

Handle Graphics, Axes
axis Plot axis scaling and appearance
cla Clear Axes
gca Get current Axes handle

Object Manipulation
reset Reset axis or figure
rotate3d Interactively rotate the view of a 3-D plot
selectmoveresizeInteractively select, move, or resize objects

Interactive User Input
ginput Graphical input from a mouse or cursor

1-xxxiv

zoom Zoom in and out on a 2-D plot

Region of Interest
dragrect Drag XOR rectangles with mouse
drawnow Complete any pending drawing
rbbox Rubberband box

Graphical User Interfaces

Dialog Boxes
dialog Create a dialog box
errordlg Create error dialog box
helpdlg Display help dialog box
inputdlg Create input dialog box
listdlg Create list selection dialog box
msgbox Create message dialog box
pagedlg Display page layout dialog box
printdlg Display print dialog box
questdlg Create question dialog box
uigetfile Display dialog box to retrieve name of file for reading
uiputfile Display dialog box to retrieve name of file for writing
uisetcolor Interactively set aColorSpec using a dialog box
uisetfont Interactively set a font using a dialog box
warndlg Create warning dialog box

User Interface Deployment
guidata Store or retrieve application data
guihandles Create a structure of handles
movegui Move GUI figure onscreen
openfig Open or raise GUI figure

User Interface Development
guide Open the GUI Layout Editor
inspect Display Property Inspector

User Interface Objects
menu Generate a menu of choices for user input

1-xxxv

uicontextmenuCreate context menu
uicontrol Create user interface control
uimenu Create user interface menu

Other Functions
dragrect Drag rectangles with mouse
findfigs Display off-screen visible figure windows
gcbf Return handle of figure containing callback object
gcbo Return handle of object whose callback is executing
rbbox Create rubberband box for area selection
selectmoveresizeSelect, move, resize, or copy Axes and Uicontrol graphics objects
textwrap Return wrapped string matrix for given Uicontrol
uiresume Used withuiwait, controls program execution
uiwait Used withuiresume, controls program execution
waitbar Display wait bar
waitforbuttonpressWait for key/buttonpress over figure

Serial Port I/O

Creating a Serial Port Object
serial Create a serial port object

Writing and Reading Data
fgetl Read one line of text from the device and discard the

terminator
fgets Read one line of text from the device and include the

terminator
fprintf Write text to the device
fread Read binary data from the device
fscanf Read data from the device, and format as text
fwrite Write binary data to the device
readasync Read data asynchronously from the device
stopasync Stop asynchronous read and write operations

Configuring and Returning Properties
get Return serial port object properties
set Configure or display serial port object properties

1-xxxvi

State Change
fclose Disconnect a serial port object from the device
fopen Connect a serial port object to the device
record Record data and event information to a file

General Purpose
clear Remove a serial port object from the MATLAB workspace
delete Remove a serial port object from memory
disp Display serial port object summary information
instraction Display event information when an event occurs
instrfind Return serial port objects from memory to the MATLAB

workspace
isvalid Determine if serial port objects are valid
length Length of serial port object array
load Load serial port objects and variables into the MATLAB

workspace
save Save serial port objects and variables to a MAT-file
serialbreak Send a break to the device connected to the serial port
size Size of serial port object array

1-xxxvii

Volume 2 Reference

Volume 2 Reference

480

This volume describes the MATLAB operators, special characters, commands,
and functions listed alphabetically from F through O.

Please note that in the three volumes of the MATLAB Function Reference, operators
and special characters are listed alphabetically according to these categories:

• Arithmetic Operators

• Colon

• Logical Operators

• Special Characters

• Relational Operators

factor

481

1factorPurpose Prime factors

Syntax f = factor(n)

Description f = factor(n) returns a row vector containing the prime factors of n.

Examples f = factor(123)
f =
 3 41

See Also isprime, primes

factorial

482

1factorialPurpose Factorial function

Syntax factorial(n)

Description factorial(n) is the product of all the integers from 1 to n, i.e. prod(1:n).
Since double pricision numbers only have about 15 digits, the answer is only
accurate for n <= 21. For larger n, the answer will have the right magnitute,
and is accurate for the first 15 digits.

See Also prod

fclose

483

1fclosePurpose Close one or more open files

Syntax status = fclose(fid)
status = fclose('all')

Description status = fclose(fid) closes the specified file, if it is open, returning 0 if
successful and –1 if unsuccessful. Argument fid is a file identifier associated
with an open file. (See fopen for a complete description of fid).

status = fclose('all') closes all open files, (except standard input, output,
and error), returning 0 if successful and –1 if unsuccessful.

See Also ferror, fopen, fprintf, fread, frewind, fscanf, fseek, ftell, fwrite

fclose (serial)

484

1fclose (serial)Purpose Disconnect a serial port object from the device

Syntax fclose(obj)

Arguments

Description fclose(obj) disconnects obj from the device.

Remarks If obj was successfully disconnected, then the Status property is configured to
closed and the RecordStatus property is configured to off. You can reconnect
obj to the device using the fopen function.

An error is returned if you issue fclose while data is being written
asynchronously. In this case, you should abort the write operation with the
stopasync function, or wait for the write operation to complete.

If you use the help command to display help for fclose, then you need to
supply the pathname shown below.

help serial/fclose

Example This example creates the serial port object s, connects s to the device, writes
and reads text data, and then disconnects s from the device using fclose.

s = serial('COM1');
fopen(s)
fprintf(s, '*IDN?')
idn = fscanf(s);
fclose(s)

At this point, the device is available to be connected to a serial port object. If
you no longer need s, you should remove from memory with the delete
function, and remove it from the workspace with the clear command.

See Also Functions
clear, delete, fopen, stopasync

Properties
RecordStatus, Status

obj A serial port object or an array of serial port objects.

feather

485

1featherPurpose Plot velocity vectors

Syntax feather(U,V)
feather(Z)
feather(...,LineSpec)

Description A feather plot displays vectors emanating from equally spaced points along a
horizontal axis. You express the vector components relative to the origin of the
respective vector.

feather(U,V) displays the vectors specified by U and V, where U contains the x
components as relative coordinates, and V contains the y components as
relative coordinates.

feather(Z) displays the vectors specified by the complex numbers in Z. This is
equivalent to feather(real(Z),imag(Z)).

feather(...,LineSpec) draws a feather plot using the line type, marker
symbol, and color specified by LineSpec.

Examples Create a feather plot showing the direction of theta.

theta = (–90:10:90)*pi/180;
r = 2*ones(size(theta));
[u,v] = pol2cart(theta,r);
feather(u,v);

feather

486

See Also compass, LineSpec, rose

0 2 4 6 8 10 12 14 16 18 20
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

feof

487

1feofPurpose Test for end-of-file

Syntax eofstat = feof(fid)

Description eofstat = feof(fid) returns 1 if the end-of-file indicator for the file, fid, has
been set, and 0 otherwise. (See fopen for a complete description of fid.)

The end-of-file indicator is set when there is no more input from the file.

See Also fopen

ferror

488

1ferrorPurpose Query MATLAB about errors in file input or output

Syntax message = ferror(fid)
message = ferror(fid,'clear')
[message,errnum] = ferror(...)

Description message = ferror(fid) returns the error message message. Argument fid is
a file identifier associated with an open file (See fopen for a complete
description of fid).

message = ferror(fid,'clear') clears the error indicator for the specified
file.

[message,errnum] = ferror(...) returns the error status number errnum of
the most recent file I/O operation associated with the specified file.

If the most recent I/O operation performed on the specified file was successful,
the value of message is empty and ferror returns an errnum value of 0.

A nonzero errnum indicates that an error occurred in the most recent file I/O
operation. The value of message is a string that may contain information about
the nature of the error. If the message is not helpful, consult the C run-time
library manual for your host operating system for further details.

See Also fclose, fopen, fprintf, fread, fscanf, fseek, ftell, fwrite

feval

489

1fevalPurpose Function evaluation

Syntax [y1,y2,...] = feval(fhandle,x1,...,xn)
[y1,y2,...] = feval(function,x1,...,xn)

Description [y1,y2,...] = feval(fhandle,x1,...,xn) evaluates the function handle,
fhandle, using arguments x1 through xn. If the function handle is bound to
more than one built-in or M-file, (that is, it represents a set of overloaded
functions), then the data type of the arguments x1 through xn, determines
which function is dispatched to.

[y1,y2...] = feval(function,x1,...,xn) If function is a quoted string
containing the name of a function (usually defined by an M-file), then
feval(function,x1,...,xn) evaluates that function at the given arguments.
The function parameter must be a simple function name; it cannot contain
path information.

Note The preferred means of evaluating a function by reference is to use a
function handle. To support backward compatibility, feval also accepts a
function name string as a first argument. However, function handles offer the
additional performance, reliability, and source file control benefits listed in the
section “An Overview of Function Handles”.

Remarks The following two statements are equivalent.

[V,D] = eig(A)
[V,D] = feval(@eig,A)

Examples The following example passes a function handle, fhandle, in a call to fminbnd.
The fhandle argument is a handle to the humps function.

fhandle = @humps;
x = fminbnd(fhandle, 0.3, 1);

The fminbnd function uses feval to evaluate the function handle that was
passed in.

function [xf,fval,exitflag,output] = ...

feval

490

 fminbnd(funfcn,ax,bx,options,varargin)
 .
 .
 .
fx = feval(funfcn,x,varargin{:});

In the next example, @deblank returns a function handle to variable, fhandle.
Examining the handle using functions(fhandle) reveals that it is bound to
two M-files that implement the deblank function. The default, strfun\
deblank.m, handles most argument types. However, the function is overloaded
by a second M-file (in the @cell subdirectory) to handle cell array arguments
as well.

fhandle = @deblank;

ff = functions(fhandle);
ff.default
ans =
 matlabroot\toolbox\matlab\strfun\deblank.m
ff.methods
ans =
 cell: 'matlabroot\toolbox\matlab\strfun\@cell\deblank.m'

When the function handle is evaluated on a cell array, feval determines from
the argument type that the appropriate function to dispatch to is the one that
resides in strfun\@cell.

feval(fhandle, {'string ','with ','blanks '})
ans =
 'string' 'with' 'blanks'

See Also assignin, function_handle, functions, builtin, eval, evalin

fft

491

1fftPurpose One-dimensional fast Fourier transform

Syntax Y = fft(X)
Y = fft(X,n)
Y = fft(X,[],dim)
Y = fft(X,n,dim)

Definition The functions X = fft(x) and x = ifft(X) implement the transform and
inverse transform pair given for vectors of length N by:

where

is an Nth root of unity.

Description Y = fft(X) returns the discrete Fourier transform (DFT) of vector X, computed
with a fast Fourier transform (FFT) algorithm.

If X is a matrix, fft returns the Fourier transform of each column of the matrix.

If X is a multidimensional array, fft operates on the first nonsingleton
dimension.

Y = fft(X,n) returns the n-point DFT. If the length of X is less than n, X is
padded with trailing zeros to length n. If the length of X is greater than n, the
sequence X is truncated. When X is a matrix, the length of the columns are
adjusted in the same manner.

Y = fft(X,[],dim) and Y = fft(X,n,dim) applies the FFT operation across
the dimension dim.

X k() x j()ω
N

j 1–() k 1–()

j 1=

N

∑=

x j() 1 N⁄() X k()ω N
j 1–() k 1–()–

k 1=

N

∑=

ωN e 2πi–() N⁄=

fft

492

Examples A common use of Fourier transforms is to find the frequency components of a
signal buried in a noisy time domain signal. Consider data sampled at 1000 Hz.
Form a signal containing 50 Hz and 120 Hz and corrupt it with some zero-mean
random noise:

t = 0:0.001:0.6;
x = sin(2∗pi∗50∗t)+sin(2∗pi∗120∗t);
y = x + 2∗randn(size(t));
plot(y(1:50))
title('Signal Corrupted with Zero-Mean Random Noise')
xlabel('time (seconds)')

It is difficult to identify the frequency components by looking at the original
signal. Converting to the frequency domain, the discrete Fourier transform of
the noisy signal y is found by taking the 512-point fast Fourier transform
(FFT):

Y = fft(y,512);

The power spectrum, a measurement of the power at various frequencies, is

Pyy = Y.∗ conj(Y) / 512;

0 5 10 15 20 25 30 35 40 45 50
−5

−4

−3

−2

−1

0

1

2

3

4

5
Signal Corrupted with Zero−Mean Random Noise

time (seconds)

fft

493

Graph the first 257 points (the other 255 points are redundant) on a meaningful
frequency axis.

f = 1000∗(0:256)/512;
plot(f,Pyy(1:257))
title('Frequency content of y')
xlabel('frequency (Hz)')

This represents the frequency content of y in the range from DC up to and
including the Nyquist frequency. (The signal produces the strong peaks.)

Algorithm The FFT functions (fft, fft2, fftn, ifft, ifft2, ifftn) are based on a library
called FFTW [3],[4]. To compute an N-point DFT when N is composite (that is,
when N = N1N2), the FFTW library decomposes the problem using the
Cooley-Tukey algorithm [1], which first computes N1 transforms of size N2, and
then computes N2 transforms of size N1. The decomposition is applied
recursively to both the N1- and N2-point DFTs until the problem can be solved
using one of several machine-generated fixed-size “codelets.” The codelets in
turn use several algorithms in combination, including a variation of
Cooley-Tukey [5], a prime factor algorithm [6], and a split-radix algorithm [2].
The particular factorization of N is chosen heuristically.

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80
Frequency content of y

frequency (Hz)

fft

494

When N is a prime number, the FFTW library first decomposes an N-point
problem into three (N-1)-point problems using Rader’s algorithm [7]. It then
uses the Cooley-Tukey decomposition described above to compute the
(N-1)-point DFTs.

For most N, real-input DFTs require roughly half the computation time of
complex-input DFTs. However, when N has large prime factors, there is little
or no speed difference.

The execution time for fft depends on the length of the transform. It is fastest
for powers of two. It is almost as fast for lengths that have only small prime
factors. It is typically several times slower for lengths that are prime or which
have large prime factors.

See Also dftmtx, filter, and freqz in the Signal Processing Toolbox, and:

fft2, fftn, fftshift, ifft

References [1] Cooley, J. W. and J. W. Tukey, “An Algorithm for the Machine Computation
of the Complex Fourier Series,” Mathematics of Computation, Vol. 19, April
1965, pp. 297-301.

[2] Duhamel, P. and M. Vetterli, “Fast Fourier Transforms: A Tutorial Review
and a State of the Art,” Signal Processing, Vol. 19, April 1990, pp. 259-299.

[3] FFTW (http://www.fftw.org)

[4] Frigo, M. and S. G. Johnson, “FFTW: An Adaptive Software Architecture for
the FFT,” Proceedings of the International Conference on Acoustics, Speech,
and Signal Processing, Vol. 3, 1998, pp. 1381-1384.

[5] Oppenheim, A. V. and R. W. Schafer, Discrete-Time Signal Processing,
Prentice-Hall, 1989, p. 611.

[6] Oppenheim, A. V. and R. W. Schafer, Discrete-Time Signal Processing,
Prentice-Hall, 1989, p. 619.

[7] Rader, C. M., “Discrete Fourier Transforms when the Number of Data
Samples Is Prime,” Proceedings of the IEEE, Vol. 56, June 1968, pp. 1107-1108.

fft2

495

1fft2Purpose Two-dimensional fast Fourier transform

Syntax Y = fft2(X)
Y = fft2(X,m,n)

Description Y = fft2(X) returns the two-dimensional discrete Fourier transform (DFT) of
X, computed with a fast Fourier transform (FFT) algorithm. The result Y is the
same size as X.

Y = fft2(X,m,n) truncates X, or pads X with zeros to create an m-by-n array
before doing the transform. The result is m-by-n.

Algorithm fft2(X) can be simply computed as

fft(fft(X).').'

This computes the one-dimensional DFT of each column X, then of each row of
the result. The execution time for fft depends on the length of the transform.
It is fastest for powers of two. It is almost as fast for lengths that have only
small prime factors. It is typically several times slower for lengths that are
prime or which have large prime factors.

See Also fft, fftn, fftshift, ifft2

fftn

496

1fftnPurpose Multidimensional fast Fourier transform

Syntax Y = fftn(X)
Y = fftn(X,siz)

Description Y = fftn(X) returns the discrete Fourier transform (DFT) of X, computed
with a multidimensional fast Fourier transform (FFT) algorithm. The result Y
is the same size as X.

Y = fftn(X,siz) pads X with zeros, or truncates X, to create a
multidimensional array of size siz before performing the transform. The size
of the result Y is siz.

Algorithm fftn(X) is equivalent to

Y = X;
for p = 1:length(size(X))
 Y = fft(Y,[],p);
end

This computes in-place the one-dimensional fast Fourier transform along each
dimension of X. The execution time for fft depends on the length of the
transform. It is fastest for powers of two. It is almost as fast for lengths that
have only small prime factors. It is typically several times slower for lengths
that are prime or which have large prime factors.

See Also fft, fft2, fftn, ifftn

fftshift

497

1fftshiftPurpose Shift zero-frequency component of fast Fourier transform to center of spectrum

Syntax Y = fftshift(X)
Y = fftshift(X,dim)

Description Y = fftshift(X) rearranges the outputs of fft, fft2, and fftn by moving the
zero-frequency component to the center of the array. It is useful for visualizing
a Fourier transform with the zero-frequency component in the middle of the
spectrum.

For vectors, fftshift(X) swaps the left and right halves of X. For matrices,
fftshift(X) swaps quadrants one and three of X with quadrants two and four.
For higher-dimensional arrays, fftshift(X) swaps “half-spaces” of X along
each dimension.

Y = fftshift(X,dim) applies the fftshift operation along the dimension
dim.

Examples For any matrix X

Y = fft2(X)

has Y(1,1) = sum(sum(X)); the zero-frequency component of the signal is in
the upper-left corner of the two-dimensional FFT. For

Z = fftshift(Y)

this zero-frequency component is near the center of the matrix.

See Also fft, fft2, fftn, ifftshift

fgetl

498

1fgetlPurpose Read line from file, discard newline character

Syntax tline = fgetl(fid)

Description tline = fgetl(fid) returns the next line of the file associated with the file
identifier fid. If fgetl encounters the end-of-file indicator, it returns –1. (See
fopen for a complete description of fid.) fgetl is intended for use with text files
only.

The returned string tline does not include the line terminator(s) with the text
line. To obtain the line terminators, use fgets.

Example The example reads every line of the M-file fgetl.m.

fid=fopen('fgetl.m');
while 1

tline = fgetl(fid);
if ~ischar(tline), break, end
disp(tline)

end
fclose(fid);

See Also fgets

fgetl (serial)

499

1fgetl (serial)Purpose Read one line of text from the device and discard the terminator

Syntax tline = fgetl(obj)
[tline,count] = fgetl(obj)
[tline,count,msg] = fgetl(obj)

Arguments

Description tline = fgetl(obj) reads one line of text from the device connected to obj,
and returns the data to tline. The returned data does not include the
terminator with the text line. To include the terminator, use fgets.

[tline,count] = fgetl(obj) returns the number of values read to count.

[tline,count,msg] = fgetl(obj) returns a warning message to msg if the
read operation was unsuccessful.

Remarks Before you can read text from the device, it must be connected to obj with the
fopen function. A connected serial port object has a Status property value of
open. An error is returned if you attempt to perform a read operation while obj
is not connected to the device.

If msg is not included as an output argument and the read operation was not
successful, then a warning message is returned to the command line.

The ValuesReceived property value is increased by the number of values read
– including the terminator – each time fgetl is issued.

If you use the help command to display help for fgetl, then you need to supply
the pathname shown below.

help serial/fgetl

Rules for Completing a Read Operation with fgetl
A read operation with fgetl blocks access to the MATLAB command line until:

obj A serial port object.

tline Text read from the instrument, excluding the terminator.

count The number of values read, including the terminator.

msg A message indicating if the read operation was unsuccessful.

fgetl (serial)

500

• The terminator specified by the Terminator property is reached.

• The time specified by the Timeout property passes.

• The input buffer is filled.

Example Create the serial port object s, connect s to a Tektronix TDS 210 oscilloscope,
and write the RS232? command with the fprintf function. RS232? instructs
the scope to return serial port communications settings.

s = serial('COM1');
fopen(s)
fprintf(s,'RS232?')

Since the default value for the ReadAsyncMode property is continuous, data is
automatically returned to the input buffer.

s.BytesAvailable
ans =
 17

Use fgetl to read the data returned from the previous write operation, and
discard the terminator.

settings = fgetl(s)
settings =
9600;0;0;NONE;LF
length(settings)
ans =
 16

Disconnect s from the scope, and remove s from memory and the workspace.

fclose(s)
delete(s)
clear s

See Also Functions
fgets, fopen

Properties
BytesAvailable, InputBufferSize, ReadAsyncMode, Status, Terminator,
Timeout, ValuesReceived

fgets

501

1fgetsPurpose Read line from file, keep newline character

Syntax tline = fgets(fid)
tline = fgets(fid,nchar)

Description tline = fgets(fid) returns the next line of the file associated with file
identifier fid. If fgets encounters the end-of-file indicator, it returns –1. (See
fopen for a complete description of fid.) fgets is intended for use with text files
only.

The returned string tline includes the line terminators associated with the
text line. To obtain the string without the line terminators, use fgetl.

tline = fgets(fid,nchar) returns at most nchar characters of the next line.
No additional characters are read after the line terminators or an end-of-file.

See Also fgetl

fgets (serial)

502

1fgets (serial)Purpose Read one line of text from the device and include the terminator

Syntax tline = fgets(obj)
[tline,count] = fgets(obj)
[tline,count,msg] = fgets(obj)

Arguments

Description tline = fgets(obj) reads one line of text from the device connected to obj,
and returns the data to tline. The returned data includes the terminator with
the text line. To exclude the terminator, use fgetl.

[tline,count] = fgets(obj) returns the number of values read to count.

[tline,count,msg] = fgets(obj) returns a warning message to msg if the
read operation was unsuccessful.

Remarks Before you can read text from the device, it must be connected to obj with the
fopen function. A connected serial port object has a Status property value of
open. An error is returned if you attempt to perform a read operation while obj
is not connected to the device.

If msg is not included as an output argument and the read operation was not
successful, then a warning message is returned to the command line.

The ValuesReceived property value is increased by the number of values read
– including the terminator – each time fgets is issued.

If you use the help command to display help for fgets, then you need to supply
the pathname shown below.

help serial/fgets

Rules for Completing a Read Operation with fgets
A read operation with fgets blocks access to the MATLAB command line until:

obj A serial port object.

tline Text read from the instrument, including the terminator.

count The number of bytes read, including the terminator.

msg A message indicating if the read operation was unsuccessful.

fgets (serial)

503

• The terminator specified by the Terminator property is reached.

• The time specified by the Timeout property passes.

• The input buffer is filled.

Example Create the serial port object s, connect s to a Tektronix TDS 210 oscilloscope,
and write the RS232? command with the fprintf function. RS232? instructs
the scope to return serial port communications settings.

s = serial('COM1');
fopen(s)
fprintf(s,'RS232?')

Since the default value for the ReadAsyncMode property is continuous, data is
automatically returned to the input buffer.

s.BytesAvailable
ans =
 17

Use fgets to read the data returned from the previous write operation, and
include the terminator.

settings = fgets(s)
settings =
9600;0;0;NONE;LF
length(settings)
ans =
 17

Disconnect s from the scope, and remove s from memory and the workspace.

fclose(s)
delete(s)
clear s

See Also Functions
fgetl, fopen

Properties
BytesAvailable, BytesAvailableAction, InputBufferSize, Status,
Terminator, Timeout, ValuesReceived

fieldnames

504

1fieldnamesPurpose Return field names of a structure, or property names of a MATLAB object or
Java object

Syntax names = fieldnames(s)
names = fieldnames(obj)
names = fieldnames(obj,’-full’)

Description names = fieldnames(s) returns a cell array of strings containing the
structure field names associated with the structure s.

names = fieldnames(obj) returns a cell array of strings containing the names
of the public data fields associated with obj, which is either a MATLAB or a
Java object.

names = fieldnames(obj,’-full’) returns a cell array of strings containing
the name, type, attributes, and inheritance of each field associated with obj,
which is either a MATLAB or a Java object.

Examples Given the structure

mystr(1,1).name = 'alice';
mystr(1,1).ID = 0;
mystr(2,1).name = 'gertrude';
mystr(2,1).ID = 1

the command n = fieldnames(mystr) yields

n =

 'name'
 'ID'

In another example, if x is an object of Java class java.awt.Frame, the
command fieldnames(x) results in the display

ans =
'width'
'height'

See Also 1getfield,setfield,rmfield

figflag

505

1figflagPurpose Test if figure is on screen

Syntax [flag] = figflag('figurename')
[flag,fig] = figflag('figurename')
[...] = figflag('figurename',silent)

Description Use figflag to determine if a particular figure exists, bring a figure to the
foreground, or set the window focus to a figure.

[flag] = figflag('figurename') returns a 1 if the figure named
'figurename' exists and pops the figure to the foreground; otherwise this
function returns 0.

[flag,fig] = figflag('figurename') returns a 1 in flag, returns the
figure’s handle in fig, and pops the figure to the foreground, if the figure
named 'figurename' exists. Otherwise this function returns 0.

[...] = figflag('figurename',silent) pops the figure window to the
foreground if silent is 0, and leaves the figure in its current position if silent
is 1.

Examples To determine if a figure window named 'Fluid Jet Simulation' exists, type

[flag,fig] = figflag('Fluid Jet Simulation')

MATLAB returns:

flag =
1

fig =
1

If two figures with handles 1 and 3 have the name 'Fluid Jet Simulation',
MATLAB returns:

flag =
1

fig =
1 3

See Also figure

figure

506

1figurePurpose Create a figure graphics object

Syntax figure
figure('PropertyName',PropertyValue,...)
figure(h)
h = figure(...)

Description figure creates figure graphics objects. figure objects are the individual
windows on the screen in which MATLAB displays graphical output.

figure creates a new figure object using default property values.

figure('PropertyName',PropertyValue,...) creates a new figure object
using the values of the properties specified. MATLAB uses default values for
any properties that you do not explicitly define as arguments.

figure(h) does one of two things, depending on whether or not a figure with
handle h exists. If h is the handle to an existing figure, figure(h) makes the
figure identified by h the current figure, makes it visible, and raises it above all
other figures on the screen. The current figure is the target for graphics output.
If h is not the handle to an existing figure, but is an integer, figure(h) creates
a figure, and assigns it the handle h. figure(h) where h is not the handle to a
figure, and is not an integer, is an error.

h = figure(...) returns the handle to the figure object.

Remarks To create a figure object, MATLAB creates a new window whose characteristics
are controlled by default figure properties (both factory installed and user
defined) and properties specified as arguments. See the properties section for
a description of these properties.

You can specify properties as property name/property value pairs, structure
arrays, and cell arrays (see the set and get reference pages for examples of
how to specify these data types).

Use set to modify the properties of an existing figure or get to query the
current values of figure properties.

The gcf command returns the handle to the current figure and is useful as an
argument to the set and get commands.

figure

507

Example To create a figure window that is one quarter the size of your screen and is
positioned in the upper-left corner, use the root object’s ScreenSize property to
determine the size. ScreenSize is a four-element vector: [left, bottom, width,
height]:

scrsz = get(0,'ScreenSize');
figure('Position',[1 scrsz(4)/2 scrsz(3)/2 scrsz(4)/2])

See Also axes, uicontrol, uimenu, close, clf, gcf, rootobject

Object
Hierarchy

Setting Default Properties
You can set default figure properties only on the root level.

set(0,'DefaultFigureProperty',PropertyValue...)

Where Property is the name of the figure property and PropertyValue is the
value you are specifying. Use set and get to access figure properties.

Uimenu

Line

Axes Uicontrol

Image

Figure

Uicontextmenu

Light SurfacePatch Text

Root

Rectangle

figure

508

Property List The following table lists all figure properties and provides a brief description of
each. The property name links bring you an expanded description of the
properties.

Property Name Property Description Property Value

Positioning the Figure

Position Location and size of figure Value: a 4-element vector
[left, bottom, width, height]
Default: depends on display

Units Units used to interpret the Position
property

Values: inches,
centimeters, normalized,
points, pixels, characters
Default: pixels

Specifying Style and Appearance

Color Color of the figure background Values: ColorSpec
Default: depends on color
scheme (see colordef)

MenuBar Toggle the figure menu bar on and
off

Values: none, figure
Default: figure

Name Figure window title Values: string
Default: '' (empty string)

NumberTitle Display “Figure No. n”, where n is
the figure number

Values: on, off
Default: on

Resize Specify whether the figure window
can be resized using the mouse

Values: on, off
Default: on

SelectionHighlight Highlight figure when selected
(Selected property set to on)

Values: on, off
Default: on

Visible Make the figure visible or invisible Values: on, off
Default: on

figure

509

WindowStyle Select normal or modal window Values: normal, modal
Default: normal

Controlling the Colormap

Colormap The figure colormap Values: m-by-3 matrix of
RGB values
Default: the jet colormap

Dithermap Colormap used for truecolor data on
pseudocolor displays

Values: m-by-3 matrix of
RGB values
Default: colormap with full
range of colors

DithermapMode Enable MATLAB-generated
dithermap

Values: auto, manual
Default: manual

FixedColors Colors not obtained from colormap Values: m-by-3 matrix of
RGB values (read only)

MinColormap Minimum number of system color
table entries to use

Values: scalar
Default: 64

ShareColors Allow MATLAB to share system
color table slots

Values on, off
Default: on

Specifying Transparency

Alphamap The figure alphamap m-by-1 matrix of alpha
values

Specifying the Renderer

BackingStore Enable off screen pixel buffering Values: on, off
Default: on

DoubleBuffer Flash-free rendering for simple
animations

Values: on, off
Default: off

Property Name Property Description Property Value

figure

510

Renderer Rendering method used for screen
and printing

Values: painters, zbuffer,
OpenGL
Default: automatic selection
by MATLAB

General Information About the Figure

Children Handle of any uicontrol, uimenu, and
uicontextmenu objects displayed in
the figure

Values: vector of handles

FileName Used by guide String

Parent The root object is the parent of all
figures

Value: always 0

Selected Indicate whether figure is in a
“selected” state.

Values: on, off
Default: on

Tag User-specified label Value: any string
Default: '' (empty string)

Type The type of graphics object (read
only)

Value: the string 'figure'

UserData User-specified data Values: any matrix
Default: [] (empty matrix)

RendererMode Automatic or user-selected renderer Values: auto, manual
Default: auto

Information About Current State

CurrentAxes Handle of the current axes in this
figure

Values: axes handle

CurrentCharacter The last key pressed in this figure Values: single character

CurrentObject Handle of the current object in this
figure

Values: graphics object
handle

Property Name Property Description Property Value

figure

511

CurrentPoint Location of the last button click in
this figure

Values: 2-element vector
[x-coord, y-coord]

SelectionType Mouse selection type Values: normal, extended,
alt, open

Callback Routine Execution

BusyAction Specify how to handle callback
routine interruption

Values: cancel, queue
Default: queue

ButtonDownFcn Define a callback routine that
executes when a mouse button is
pressed on an unoccupied spot in the
figure

Values: string
Default: empty string

CloseRequestFcn Define a callback routine that
executes when you call the close
command

Values: string
Default: closereq

CreateFcn Define a callback routine that
executes when a figure is created

Values: string
Default: empty string

DeleteFcn Define a callback routine that
executes when the figure is deleted
(via close or delete)

Values: string
Default: empty string

Interruptible Determine if callback routine can be
interrupted

Values: on, off
Default: on (can be
interrupted)

KeyPressFcn Define a callback routine that
executes when a key is pressed in the
figure window

Values: string
Default: empty string

ResizeFcn Define a callback routine that
executes when the figure is resized

Values: string
Default: empty string

UIContextMenu Associate a context menu with the
figure

Values: handle of a
Uicontrextmenu

Property Name Property Description Property Value

figure

512

WindowButtonDownFcn Define a callback routine that
executes when you press the mouse
button down in the figure

Values: string
Default: empty string

WindowButtonMotionFcn Define a callback routine that
executes when you move the pointer
in the figure

Values: string
Default: empty string

WindowButtonUpFcn Define a callback routine that
executes when you release the mouse
button

Values: string
Default: empty string

Controlling Access to Objects

IntegerHandle Specify integer or noninteger figure
handle

Values: on, off
Default: on (integer handle)

HandleVisibility Determine if figure handle is visible
to users or not

Values: on, callback, off
Default: on

HitTest Determine if the figure can become
the current object (see the figure
CurrentObject property)

Values: on, off
Default: on

NextPlot Determine how to display additional
graphics to this figure

Values: add, replace,
replacechildren
Default: add

Defining the Pointer

Pointer Select the pointer symbol Values: crosshair, arrow,
watch, topl, topr, botl, botr,
circle, cross, fleur, left,
right, top, bottom,
fullcrosshair, ibeam,
custom
Default: arrow

Property Name Property Description Property Value

figure

513

PointerShapeCData Data that defines the pointer Values: 16-by-16 matrix
Default: set Pointer to
custom and see

PointerShapeHotSpot Specify the pointer active spot Values: 2-element vector
[row, column]
Default: [1,1]

Properties That Affect Printing

InvertHardcopy Change figure colors for printing Values: on, off
Default: on

PaperOrientation Horizontal or vertical paper
orientation

Values: portrait, landscape
Default: portrait

PaperPosition Control positioning figure on printed
page

Values: 4-element vector
[left, bottom, width, height]

PaperPositionMode Enable WYSIWYG printing of figure Values: auto, manual
Default: manual

PaperSize Size of the current PaperType
specified in PaperUnits

Values: [width, height]

PaperType Select from standard paper sizes Values: see property
description
Default: usletter

PaperUnits Units used to specify the PaperSize
and PaperPosition

Values: normalized, inches,
centimeters, points
Default: inches

Controlling the XWindows Display (UNIX only)

Property Name Property Description Property Value

figure

514

XDisplay Specify display for MATLAB (UNIX
only)

Values: display identifier
Default: :0.0

XVisual Select visual used by MATLAB
(UNIX only)

Values: visual ID

XVisualMode Auto or manual selection of visual
(UNIX only)

Values: auto, manual
Default: auto

Property Name Property Description Property Value

Figure Properties

515

1Figure PropertiesModifying
Properties

You can set and query graphics object properties in two ways:

• The Property Editor is an interactive tool that enables you to see and change
object property values.

• The set and get commands enable you to set and query the values of
properties

To change the default value of properties see Settingcreating_plots Default
Property Values.

Figure
Property
Descriptions

This section lists property names along with the type of values each accepts.
Curly braces { } enclose default values.

Alphamap m-by-1 matrix of alpha values

Figure alphamap. This property is an m-by-1 array of non-NaN alpha values.
MATLAB accesses alpha values by their row number. For example, an index of
1 specifies the first alpha value, an index of 2 specifies the second alpha value,
and so on. Alphamaps can be any length. The default alphamap contains 64
values that progress linearly from 0 to 1.

Alphamaps affect the rendering of surface, image, and patch objects, but do not
affect other graphics objects.

BackingStore {on} | off

Off screen pixel buffer. When BackingStore is on, MATLAB stores a copy of the
figure window in an off-screen pixel buffer. When obscured parts of the figure
window are exposed, MATLAB copies the window contents from this buffer
rather than regenerating the objects on the screen. This increases the speed
with which the screen is redrawn.

While refreshing the screen quickly is generally desirable, the buffers required
do consume system memory. If memory limitations occur, you can set
BackingStore to off to disable this feature and release the memory used by the
buffers. If your computer does not support backingstore, setting the
BackingStore property results in a warning message, but has no other effect.

Setting BackingStore to off can increase the speed of animations because it
eliminates the need to draw into both an off-screen buffer and the figure
window.

Figure Properties

516

BusyAction cancel | {queue}

Callback routine interruption. The BusyAction property enables you to control
how MATLAB handles events that potentially interrupt executing callback
routines. If there is a callback routine executing, subsequently invoked
callback routines always attempt to interrupt it. If the Interruptible property
of the object whose callback is executing is set to on (the default), then
interruption occurs at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the object owning
the executing callback) determines how MATLAB handles the event. The
choices are:

• cancel – discard the event that attempted to execute a second callback
routine.

• queue – queue the event that attempted to execute a second callback routine
until the current callback finishes.

ButtonDownFcn string

Button press callback function. A callback routine that executes whenever you
press a mouse button while the pointer is in the figure window, but not over a
child object (i.e., uicontrol, axes, or axes child). Define this routine as a string
that is a valid MATLAB expression or the name of an M-file. The expression
executes in the MATLAB workspace.

Children vector of handles

Children of the figure. A vector containing the handles of all axes, uicontrol,
uicontextmenu, and uimenu objects displayed within the figure. You can
change the order of the handles and thereby change the stacking of the objects
on the display.

Clipping {on} | off

This property has no effect on figures.

CloseRequestFcn string

Function executed on figure close. This property defines a function that
MATLAB executes whenever you issue the close command (either a
close(figure_handle) or a close all), when you close a figure window from
the computer’s window manager menu, or when you quit MATLAB.

Figure Properties

517

The CloseRequestFcn provides a mechanism to intervene in the closing of a
figure. It allows you to, for example, display a dialog box to ask a user to
confirm or cancel the close operation or to prevent users from closing a figure
that contains a GUI.

The basic mechanism is:

• A user issues the close command from the command line, by closing the
window from the computer’s window manager menu, or by quiting MATLAB.

• The close operation executes the function defined by the figure
CloseRequestFcn. The default function is named closereq and is predefined
as:

shh = get(0,'ShowHiddenHandles');
set(0,'ShowHiddenHandles','on');
currFig = get(0,'CurrentFigure');
set(0,'ShowHiddenHandles',shh);
delete(currFig);

These statements unconditionally delete the current figure, destroying the
window. closereq takes advantage of the fact that the close command makes
all figures specified as arguments the current figure before calling the
respective close request function.

You can set CloseRequestFcn to any string that is a valid MATLAB statement,
including the name of an M-file. For example,

set(gcf,'CloseRequestFcn','disp(''This window is immortal'')')

This close request function never closes the figure window; it simply echoes
“This window is immortal” on the command line. Unless the close request
function calls delete, MATLAB never closes the figure. (Note that you can
always call delete(figure_handle) from the command line if you have
created a window with a nondestructive close request function.)

A more useful application of the close request function is to display a question
dialog box asking the user to confirm the close operation. The following M-file
illustrates how to do this.

% my_closereq
% User-defined close request function
% to display a question dialog box

Figure Properties

518

selection = questdlg('Close Specified Figure?',...
 'Close Request Function',...
 'Yes','No','Yes');
switch selection,
 case 'Yes',
 delete(gcf)
 case 'No'
 return
end

Now assign this M-file to the CloseRequestFcn of a figure:

set(figure_handle,'CloseRequestFcn','my_closereq')

To make this M-file your default close request function, set a default value on
the root level.

set(0,'DefaultFigureCloseRequestFcn','my_closereq')

MATLAB then uses this setting for the CloseRequestFcn of all subsequently
created figures.

Color ColorSpec

Background color. This property controls the figure window background color.
You can specify a color using a three-element vector of RGB values or one of
MATLAB’s predefined names. See ColorSpec for more information.

Colormap m-by-3 matrix of RGB values

Figure colormap. This property is an m-by-3 array of red, green, and blue
(RGB) intensity values that define m individual colors. MATLAB accesses
colors by their row number. For example, an index of 1 specifies the first RGB
triplet, an index of 2 specifies the second RGB triplet, and so on. Colormaps can
be any length (up to 256 only on MS-Windows), but must be three columns
wide. The default figure colormap contains 64 predefined colors.

Colormaps affect the rendering of surface, image, and patch objects, but
generally do not affect other graphics objects. See colormap and ColorSpec for
more information.

Figure Properties

519

CreateFcn string

Callback routine executed during object creation. This property defines a
callback routine that executes when MATLAB creates a figure object. You must
define this property as a default value for figures. For example, the statement,

set(0,'DefaultFigureCreateFcn',...
'set(gcbo,''IntegerHandle'',''off'')')

defines a default value on the root level that causes the created figure to use
noninteger handles whenever you (or MATLAB) create a figure. MATLAB
executes this routine after setting all properties for the figure. Setting this
property on an existing figure object has no effect.

The handle of the object whose CreateFcn is being executed is accessible only
through the root CallbackObject property, which you can query using gcbo.

CurrentAxes handle of current axes

Target axes in this figure. MATLAB sets this property to the handle of the
figure’s current axes (i.e., the handle returned by the gca command when this
figure is the current figure). In all figures for which axes children exist, there
is always a current axes. The current axes does not have to be the topmost axes,
and setting an axes to be the CurrentAxes does not restack it above all other
axes.

You can make an axes current using the axes and set commands. For example,
axes(axes_handle) and set(gcf,'CurrentAxes',axes_handle) both make
the axes identified by the handle axes_handle the current axes. In addition,
axes(axes_handle) restacks the axes above all other axes in the figure.

If a figure contains no axes, get(gcf,'CurrentAxes') returns the empty
matrix. Note that the gca function actually creates an axes if one does not exist.

CurrentCharacter single character

Last key pressed. MATLAB sets this property to the last key pressed in the
figure window. CurrentCharacter is useful for obtaining user input.

CurrentMenu (Obsolete)

This property produces a warning message when queried. It has been
superseded by the root CallbackObject property.

Figure Properties

520

CurrentObject object handle

Handle of current object. MATLAB sets this property to the handle of the object
that is under the current point (see the CurrentPoint property). This object is
the front-most object in the stacking order. You can use this property to
determine which object a user has selected. The function gco provides a
convenient way to retrieve the CurrentObject of the CurrentFigure.

CurrentPoint two-element vector: [x-coordinate, y-coordinate]

Location of last button click in this figure. MATLAB sets this property to the
location of the pointer at the time of the most recent mouse button press.
MATLAB updates this property whenever you press the mouse button while
the pointer is in the figure window.

In addition, MATLAB updates CurrentPoint before executing callback
routines defined for the figure WindowButtonMotionFcn and
WindowButtonUpFcn properties. This enables you to query CurrentPoint from
these callback routines. It behaves like this:

• If there is no callback routine defined for the WindowButtonMotionFcn or the
WindowButtonUpFcn, then MATLAB updates the CurrentPoint only when
the mouse button is pressed down within the figure window.

• If there is a callback routine defined for the WindowButtonMotionFcn, then
MATLAB updates the CurrentPoint just before executing the callback. Note
that the WindowButtonMotionFcn executes only within the figure window
unless the mouse button is pressed down within the window and then held
down while the pointer is moved around the screen. In this case, the routine
executes (and the CurrentPoint is updated) anywhere on the screen until
the mouse button is released.

• If there is a callback routine defined for the WindowButtonUpFcn, MATLAB
updates the CurrentPoint just before executing the callback. Note that the
WindowButtonUpFcn executes only while the pointer is within the figure
window unless the mouse button is pressed down initially within the
window. In this case, releasing the button anywhere on the screen triggers
callback execution, which is preceded by an update of the CurrentPoint.

The figure CurrentPoint is updated only when certain events occur, as
previously described. In some situations, (such as when the
WindowButtonMotionFcn takes a long time to execute and the pointer is moved
very rapidly) the CurrentPoint may not reflect the actual location of the

Figure Properties

521

pointer, but rather the location at the time when the WindowButtonMotionFcn
began execution.

The CurrentPoint is measured from the lower-left corner of the figure window,
in units determined by the Units property.

The root PointerLocation property contains the location of the pointer
updated synchronously with pointer movement. However, the location is
measured with respect to the screen, not a figure window.

See uicontrol for information on how this property is set when you click on a
uicontrol object.

DeleteFcn string

Delete figure callback routine. A callback routine that executes when the figure
object is deleted (e.g., when you issue a delete or a close command). MATLAB
executes the routine before destroying the object’s properties so these values
are available to the callback routine.

The handle of the object whose DeleteFcn is being executed is accessible only
through the root CallbackObject property, which you can query using gcbo.

Dithermap m-by-3 matrix of RGB values

Colormap used for true-color data on pseudocolor displays. This property
defines a colormap that MATLAB uses to dither true-color CData for display on
pseudocolor (8-bit or less) displays. MATLAB maps each RGB color defined as
true-color CData to the closest color in the dithermap. The default Dithermap
contains colors that span the full spectrum so any color values map reasonably
well.

However, if the true-color data contains a wide range of shades in one color, you
may achieve better results by defining your own dithermap. See the
DithermapMode property.

DithermapMode auto | {manual}

MATLAB generated dithermap. In manual mode, MATLAB uses the colormap
defined in the Dithermap property to display direct color on pseudocolor
displays. When DithermapMode is auto, MATLAB generates a dithermap based
on the colors currently displayed. This is useful if the default dithermap does
not produce satisfactory results.

Figure Properties

522

The process of generating the dithermap can be quite time consuming and is
repeated whenever MATLAB re-renders the display (e.g., when you add a new
object or resize the window). You can avoid unnecessary regeneration by
setting this property back to manual and save the generated dithermap (which
MATLAB loaded into the Dithermap property).

DoubleBuffer on | {off}

Flash-free rendering for simple animations. Double buffering is the process of
drawing to an off-screen pixel buffer and then blitting the buffer contents to the
screen once the drawing is complete. Double buffering generally produces
flash-free rendering for simple animations (such as those involving lines, as
opposed to objects containing large numbers of polygons). Use double buffering
with the animated objects’ EraseMode property set to normal. Use the set
command to enable double buffering.

set(figure_handle,'DoubleBuffer','on')

Double buffering works only when the figure Renderer property is set to
painters.

FileName String

GUI M-file. This property is used by the guide GUI builder to store the name
of the generated M-file.

FixedColors m-by-3 matrix of RGB values (read only)

Non-colormap colors. Fixed colors define all colors appearing in a figure
window that are not obtained from the figure colormap. These colors include
axis lines and labels, the color of line, text, uicontrol, and uimenu objects, and
any colors that you explicitly define, for example, with a statement like:

set(gcf,'Color',[0.3,0.7,0.9]).

Fixed color definitions reside in the system color table and do not appear in the
figure colormap. For this reason, fixed colors can limit the number of
simultaneously displayed colors if the number of fixed colors plus the number
of entries in the figure colormap exceed your system’s maximum number of
colors.

(See the root ScreenDepth property for information on determining the total
number of colors supported on your system. See the MinColorMap and

Figure Properties

523

ShareColors properties for information on how MATLAB shares colors
between applications.)

HandleVisibility {on} | callback | off (GUIDE default off)

Control access to object’s handle by command-line users and GUIs. This
property determines when an object’s handle is visible in its parent’s list of
children. HandleVisibility is useful for preventing command-line users from
accidentally drawing into or deleting a figure that contains only user interface
devices (such as a dialog box).

Handles are always visible when HandleVisibility is on.

Setting HandleVisibility to callback causes handles to be visible from
within callback routines or functions invoked by callback routines, but not from
within functions invoked from the command line. This provides a means to
protect GUIs from command-line users, while allowing callback routines to
have complete access to object handles.

Setting HandleVisibility to off makes handles invisible at all times. This
may be necessary when a callback routine invokes a function that might
potentially damage the GUI (such as evaluating a user-typed string), and so
temporarily hides its own handles during the execution of that function.

When a handle is not visible in its parent’s list of children, it cannot be returned
by functions that obtain handles by searching the object hierarchy or querying
handle properties. This includes get, findobj, gca, gcf, gco, newplot, cla, clf,
and close.

When a handle’s visibility is restricted using callback or off, the object’s
handle does not appear in its parent’s Children property, figures do not appear
in the root’s CurrentFigure property, objects do not appear in the root’s
CallbackObject property or in the figure’s CurrentObject property, and axes
do not appear in their parent’s CurrentAxes property.

You can set the root ShowHiddenHandles property to on to make all handles
visible, regardless of their HandleVisibility settings (this does not affect the
values of the HandleVisibility properties).

Handles that are hidden are still valid. If you know an object’s handle, you can
set and get its properties, and pass it to any function that operates on handles.

Figure Properties

524

HitTest {on} | off

Selectable by mouse click. HitTest determines if the figure can become the
current object (as returned by the gco command and the figure CurrentObject
property) as a result of a mouse click on the figure. If HitTest is off, clicking
on the figure sets the CurrentObject to the empty matrix.

IntegerHandle {on} | off (GUIDE default off)

Figure handle mode. Figure object handles are integers by default. When
creating a new figure, MATLAB uses the lowest integer that is not used by an
existing figure. If you delete a figure, its integer handle can be reused.

If you set this property to off, MATLAB assigns nonreusable real-number
handles (e.g., 67.0001221) instead of integers. This feature is designed for
dialog boxes where removing the handle from integer values reduces the
likelihood of inadvertently drawing into the dialog box.

Interruptible {on} | off

Callback routine interruption mode. The Interruptible property controls
whether a figure callback routine can be interrupted by subsequently invoked
callback routines. Only callback routines defined for the ButtonDownFcn,
KeyPressFcn, WindowButtonDownFcn, WindowButtonMotionFcn, and
WindowButtonUpFcn are affected by the Interruptible property. MATLAB
checks for events that can interrupt a callback routine only when it encounters
a drawnow, figure, getframe, or pause command in the routine. See the
BusyAction property for related information.

InvertHardcopy {on} | off

Change hardcopy to black objects on white background. This property affects
only printed output. Printing a figure having a background color (Color
property) that is not white results in poor contrast between graphics objects
and the figure background and also consumes a lot of printer toner.

When InvertHardCopy is on, MATLAB eliminates this effect by changing the
color of the figure and axes to white and the axis lines, tick marks, axis labels,
etc., to black. lines, text, and the edges of patches and surfaces may be changed
depending on the print command options specified.

If you set InvertHardCopy to off, the printed output matches the colors
displayed on the screen.

See print for more information on printing MATLAB figures.

Figure Properties

525

KeyPressFcn string

Key press callback function. A callback routine invoked by a key press occurring
in the figure window. You can define KeyPressFcn as any legal MATLAB
expression or the name of an M-file.

The callback routine can query the figure’s CurrentCharacter property to
determine what particular key was pressed and thereby limit the callback
execution to specific keys.

The callback routine can also query the root PointerWindow property to
determine in which figure the key was pressed. Note that pressing a key while
the pointer is in a particular figure window does not make that figure the
current figure (i.e., the one referred by the gcf command).

MenuBar none | {figure} (GUIDE default none)

Enable-disable figure menu bar. This property enables you to display or hide
the menu bar placed at the top of a figure window. The default (figure) is to
display the menu bar.

This property affects only built in menus. Menus defined with the uimenu
command are not affected by this property.

MinColormap scalar (default = 64)

Minimum number of color table entries used. This property specifies the
minimum number of system color table entries used by MATLAB to store the
colormap defined for the figure (see the ColorMap property). In certain
situations, you may need to increase this value to ensure proper use of colors.

For example, suppose you are running color-intensive applications in addition
to MATLAB and have defined a large figure colormap (e.g., 150 to 200 colors).
MATLAB may select colors that are close but not exact from the existing colors
in the system color table because there are not enough slots available to define
all the colors you specified.

To ensure MATLAB uses exactly the colors you define in the figure colormap,
set MinColorMap equal to the length of the colormap.

set(gcf,'MinColormap',length(get(gcf,'ColorMap')))

Note that the larger the value of MinColorMap, the greater the likelihood other
windows (including other MATLAB figure windows) will display in false colors.

Figure Properties

526

Name string

Figure window title. This property specifies the title displayed in the figure
window. By default, Name is empty and the figure title is displayed as
Figure No. 1, Figure No. 2, and so on. When you set this parameter to a
string, the figure title becomes Figure No. 1: <string>. See the NumberTitle
property.

NextPlot {add} | replace | replacechildren

How to add next plot. NextPlot determines which figure MATLAB uses to
display graphics output. If the value of the current figure is:

• add — use the current figure to display graphics (the default).

• replace — reset all figure properties, except Position, to their defaults and
delete all figure children before displaying graphics (equivalent to clf
reset).

• replacechildren — remove all child objects, but do not reset figure
properties (equivalent to clf).

The newplot function provides an easy way to handle the NextPlot property.
Also see the NextPlot axes property and Controlling creating_plotsGraphics
Output for more information.

NumberTitle {on} | off (GUIDE default off)

Figure window title number. This property determines whether the string
Figure No. N (where N is the figure number) is prefixed to the figure window
title. See the Name property.

PaperOrientation {portrait} | landscape

Horizontal or vertical paper orientation. This property determines how printed
figures are oriented on the page. portrait orients the longest page dimension
vertically; landscape orients the longest page dimension horizontally. See the
orient command for more detail.

PaperPosition four-element rect vector

Location on printed page. A rectangle that determines the location of the figure
on the printed page. Specify this rectangle with a vector of the form

 rect = [left, bottom, width, height]

where left specifies the distance from the left side of the paper to the left side
of the rectangle and bottom specifies the distance from the bottom of the page

Figure Properties

527

to the bottom of the rectangle. Together these distances define the lower-left
corner of the rectangle. width and height define the dimensions of the
rectangle. The PaperUnits property specifies the units used to define this
rectangle.

PaperPositionMode auto | {manual}

WYSIWYG printing of figure. In manual mode, MATLAB honors the value
specified by the PaperPosition property. In auto mode, MATLAB prints the
figure the same size as it appears on the computer screen, centered on the page.

PaperSize [width height]

Paper size. This property contains the size of the current PaperType, measured
in PaperUnits. See PaperType to select standard paper sizes.

PaperType Select a value from the following table

Selection of standard paper size. This property sets the PaperSize to the one of
the following standard sizes.

Property Value Size (Width x Height)

usletter (default) 8.5-by-11 inches

uslegal 11-by-14 inches

tabloid 11-by-17 inches

A0 841-by-1189mm

A1 594-by-841mm

A2 420-by-594mm

A3 297-by-420mm

A4 210-by-297mm

A5 148-by-210mm

B0 1029-by-1456mm

B1 728-by-1028mm

B2 514-by-728mm

Figure Properties

528

Note that you may need to change the PaperPosition property in order to
position the printed figure on the new paper size. One solution is to use
normalized PaperUnits, which enables MATLAB to automatically size the
figure to occupy the same relative amount of the printed page, regardless of the
paper size.

PaperUnits normalized | {inches} | centimeters |
points

Hardcopy measurement units. This property specifies the units used to define
the PaperPosition and PaperSize properties. All units are measured from the
lower-left corner of the page. normalized units map the lower-left corner of the
page to (0, 0) and the upper-right corner to (1.0, 1.0). inches, centimeters, and
points are absolute units (one point equals 1/72 of an inch).

B3 364-by-514mm

B4 257-by-364mm

B5 182-by-257mm

arch-A 9-by-12 inches

arch-B 12-by-18 inches

arch-C 18-by-24 inches

arch-D 24-by-36 inches

arch-E 36-by-48 inches

A 8.5-by-11 inches

B 11-by-17 inches

C 17-by-22 inches

D 22-by-34 inches

E 34-by-43 inches

Property Value Size (Width x Height)

Figure Properties

529

If you change the value of PaperUnits, it is good practice to return it to its
default value after completing your computation so as not to affect other
functions that assume PaperUnits is set to the default value.

Parent handle

Handle of figure’s parent. The parent of a figure object is the root object. The
handle to the root is always 0.

Pointer crosshair | {arrow} | watch | topl |
topr | botl | botr | circle | cross |
fleur | left | right | top | bottom |
fullcrosshair | ibeam | custom

Pointer symbol selection. This property determines the symbol used to indicate
the pointer (cursor) position in the figure window. Setting Pointer to custom
allows you to define your own pointer symbol. See the PointerShapeCData
property for more information. See also the Using MATLAB Graphics manual.

PointerShapeCData 16-by-16 matrix

User-defined pointer. This property defines the pointer that is used when you
set the Pointer property to custom. It is a 16-by-16 element matrix defining the
16-by-16 pixel pointer using the following values:

• 1 – color pixel black

• 2 – color pixel white

• NaN – make pixel transparent (underlying screen shows through)

Element (1,1) of the PointerShapeCData matrix corresponds to the upper-left
corner of the pointer. Setting the Pointer property to one of the predefined
pointer symbols does not change the value of the PointerShapeCData.
Computer systems supporting 32-by-32 pixel pointers fill only one quarter of
the available pixmap.

PointerShapeHotSpot2-element vector

Pointer active area. A two-element vector specifying the row and column
indices in the PointerShapeCData matrix defining the pixel indicating the
pointer location. The location is contained in the CurrentPoint property and
the root object’s PointerLocation property. The default value is element (1,1),
which is the upper-left corner.

Figure Properties

530

Position four-element vector

Figure position. This property specifies the size and location on the screen of
the figure window. Specify the position rectangle with a four-element vector of
the form:

rect = [left, bottom, width, height]

where left and bottom define the distance from the lower-left corner of the
screen to the lower-left corner of the figure window. width and height define
the dimensions of the window. See the Units property for information on the
units used in this specification. The left and bottom elements can be negative
on systems that have more than one monitor.

You can use the get function to obtain this property and determine the position
of the figure and you can use the set function to resize and move the figure to
a new location.

Renderer painters | zbuffer | OpenGL

Rendering method used for screen and printing. This property enables you to
select the method used to render MATLAB graphics. The choices are:

• painters – MATLAB’s original rendering method is faster when the figure
contains only simple or small graphics objects.

• zbuffer – MATLAB draws graphics object faster and more accurately
because objects are colored on a per pixel basis and MATLAB renders only
those pixels that are visible in the scene (thus eliminating front-to-back
sorting errors). Note that this method can consume a lot of system memory
if MATLAB is displaying a complex scene.

• OpenGL – OpenGL is a renderer that is available on many computer systems.
This renderer is generally faster than painters or zbuffer and in some cases
enables MATLAB to access graphics hardware that is available on some
systems.

Using the
OpenGL
Renderer

Hardware vs. Software OpenGL Implementations
There are two kinds of OpenGL implementations – hardware and software.

The hardware implementation makes use of special graphics hardware to
increase performance and is therefore significantly faster than the software
version. Many computers have this special hardware available as an option or
may come with this hardware right out of the box.

Figure Properties

531

Software implementations of OpenGL are much like the ZBuffer renderer that
is available on MATLAB version 5.0, however, OpenGL generally provides
superior performance to ZBuffer.

OpenGL Availability
OpenGL is available on all computers that MATLAB runs on. MATLAB
automatically finds hardware versions of OpenGl if they are available. If the
hardware version is not available, then MATLAB uses the software version.

The software versions that are available on different platforms are:

• On UNIX systems, MATLAB uses the software version of OpenGL that is
included in the MATLAB distribution.

• On MS-Windows NT 4.0, OpenGL is available as part of the operating
system.

• On MS-Windows 95, OpenGL is included in the Windows 95 OSR 2 release.
If you do not have this release, the libraries are available on the Microsoft ftp
site.

Microsoft version is available at the URL:
ftp://ftp.microsoft.com/softlib/mslfiles/opengl95.exe

There is also a Silicon Graphics version of OpenGL for Windows 95 that is
available at the URL:

http://www.sgi.com

Tested Hardware Versions
On MS-Windows platforms, there are many graphics boards that accelerate
OpenGL. The MathWorks has tested MATLAB on the AccelECLIPSE board
from AccelGraphics.

On UNIX platforms, The MathWorks has tested MATLAB on Sparc Ultra with
the Creator 3D board and Silicon Graphics computers running IRIX 6.4 or
newer.

Determining What Version You Are Using
To determine the version and vendor of the OpenGL library that MATLAB is
using on your system, type the following command at the MATLAB prompt

opengl info

Figure Properties

532

This command also returns a string of extensions to the OpenGL specification
that are available with the particular library MATLAB is using. This
information is helpful to The MathWorks, so please include this information if
you need to report bugs.

OpenGL vs. Other MATLAB Renderers
There are some difference between drawings created with OpenGL and those
created with the other renderers. The OpenGL specific differences include:

• OpenGL does not do colormap interpolation. If you create a surface or patch
using indexed color and interpolated face or edge coloring, OpenGL will
interpolate the colors through the RGB color cube instead of through the
colormap.

• OpenGL does not support the phong value for the FaceLighting and
EdgeLighting properties of surfaces and patches.

MATLAB issues a warning if you request nonsupported behavior.

Implementations of OpenGL Tested by The MathWorks
The following hardware versions have been tested:

• AccelECLIPSE by AccelGraphics

• Sol2/Creator 3D

• SGI

The following software versions have been tested:

• Mesa

• CosmoGL

• Microsoft’s Windows 95 implementation

• NT 4.0

RendererMode {auto} | manual

Automatic, or user selection of Renderer. This property enables you to specify
whether MATLAB should choose the Renderer based on the contents of the
figure window, or whether the Renderer should remain unchanged.

Figure Properties

533

When the RendererMode property is set to auto, MATLAB selects the rendering
method for printing as well as for screen display based on the size and
complexity of the graphics objects in the figure.

For printing, MATLAB switches to zbuffer at a greater scene complexity than
for screen rendering because printing from a Z-buffered figure can be
considerably slower than one using the painters rendering method, and can
result in large PostScript files. However, the output does always match what is
on the screen. The same holds true for OpenGL: the output is the same as that
produced by the ZBuffer renderer – a bitmap with a resolution determined by
the print command’s −r option.

Criteria for Autoselection of OpenGL Renderer
When the RendererMode property is set to auto, MATLAB uses the following
criteria to determine whether to select the OpenGL renderer:

If the opengl autoselection mode is autoselect, MATLAB selects OpenGL if:

• The host computer has OpenGL installed and is in True Color mode

• The figure contains no logarithmic axes

• MATLAB would select zbuffer based on figure contents

• Patch objects faces have no more than three vertices

• The figure contains less than 10 uicontrols

• No line objects use markers

• Phong lighting is not specified

Or

• Figure objects use transparency

When the RendererMode property is set to manual, MATLAB does not change
the Renderer, regardless of changes to the figure contents.

Resize {on} | off

Window resize mode. This property determines if you can resize the figure
window with the mouse. on means you can resize the window, off means you
cannot. When Resize is off, the figure window does not display any resizing
controls (such as boxes at the corners) to indicate that it cannot be resized.

Figure Properties

534

ResizeFcn string

Window resize callback routine. MATLAB executes the specified callback
routine whenever you resize the figure window. You can query the figure’s
Position property to determine the new size and position of the figure window.
During execution of the callback routine, the handle to the figure being resized
is accessible only through the root CallbackObject property, which you can
query using gcbo.

You can use ResizeFcn to maintain a GUI layout that is not directly supported
by MATLAB’s Position/Units paradigm.

For example, consider a GUI layout that maintains an object at a constant
height in pixels and attached to the top of the figure, but always matches the
width of the figure. The following ResizeFcn accomplishes this; it keeps the
uicontrol whose Tag is 'StatusBar' 20 pixels high, as wide as the figure, and
attached to the top of the figure. Note the use of the Tag property to retrieve the
uicontrol handle, and the gcbo function to retrieve the figure handle. Also note
the defensive programming regarding figure Units, which the callback
requires to be in pixels in order to work correctly, but which the callback also
restores to their previous value afterwards.

u = findobj('Tag','StatusBar');
fig = gcbo;
old_units = get(fig,'Units');
set(fig,'Units','pixels');
figpos = get(fig,'Position');
upos = [0, figpos(4) - 20, figpos(3), 20];
set(u,'Position',upos);
set(fig,'Units',old_units);

You can change the figure Position from within the ResizeFcn callback;
however the ResizeFcn is not called again as a result.

Note that the print command can cause the ResizeFcn to be called if the
PaperPositionMode property is set to manual and you have defined a resize
function. If you do not want your resize function called by print, set the
PaperPositionMode to auto.

Figure Properties

535

Selected on | off

Is object selected. This property indicates whether the figure is selected. You
can, for example, define the ButtonDownFcn to set this property, allowing users
to select the object with the mouse.

SelectionHighlight {on} | off

figures do not indicate selection.

SelectionType {normal} | extend | alt | open

Mouse selection type. MATLAB maintains this property to provide information
about the last mouse button press that occurred within the figure window. This
information indicates the type of selection made. Selection types are actions
that are generally associated with particular responses from the user interface
software (e.g., single clicking on a graphics object places it in move or resize
mode; double-clicking on a filename opens it, etc.).

The physical action required to make these selections varies on different
platforms. However, all selection types exist on all platforms.

Note that the ListBox style of uicontrols set the figure SelectionType property
to normal to indicate a single mouse click or to open to indicate a double mouse
click. See uicontrol for information on how this property is set when you click
on a uicontrol object.

Selection Type MS-Windows X-Windows

Normal Click left mouse button Click left mouse button

Extend Shift - click left mouse
button or click both left
and right mouse buttons

Shift - click left mouse
button or click
middle mouse button

Alternate Control - click left mouse
button or click right
mouse button

Control - click left mouse
button or click
right mouse button

Open Double click any mouse
button

Double click any mouse
button

Figure Properties

536

ShareColors {on} | off

Share slots in system colortable with like colors. This property affects the way
MATLAB stores the figure colormap in the system color table. By default,
MATLAB looks at colors already defined and uses those slots to assign pixel
colors. This leads to an efficient use of color resources (which are limited on
systems capable of displaying 256 or less colors) and extends the number of
figure windows that can simultaneously display correct colors.

However, in situations where you want to change the figure colormap quickly
without causing MATLAB to re-render the displayed graphics objects, you
should disable color sharing (set ShareColors to off). In this case, MATLAB
can swap one colormap for another without changing pixel color assignments
because all the slots in the system color table used for the first colormap are
replaced with the corresponding color in the second colormap. (Note that this
applies only in cases where both colormaps are the same length and where the
computer hardware allows user modification of the system color table.)

Tag string (GUIDE sets this property)

User-specified object label. The Tag property provides a means to identify
graphics objects with a user-specified label. This is particularly useful when
constructing interactive graphics programs that would otherwise need to
define object handles as global variables or pass them as arguments between
callback routines.

For example, suppose you want to direct all graphics output from an M-file to
a particular figure, regardless of user actions that may have changed the
current figure. To do this, identify the figure with a Tag.

figure('Tag','Plotting Figure')

Then make that figure the current figure before drawing by searching for the
Tag with findobj.

figure(findobj('Tag','Plotting Figure'))

Type string (read only)

Object class. This property identifies the kind of graphics object. For figure
objects, Type is always the string 'figure'.

Figure Properties

537

UIContextMenu handle of a uicontextmenu object

Associate a context menu with the figure. Assign this property the handle of a
uicontextmenu object created in the figure. Use the uicontextmenu function to
create the context menu. MATLAB displays the context menu whenever you
right-click over the figure.

Units {pixels} | normalized | inches |
centimeters | points | characters

(Guide default characters)

Units of measurement. This property specifies the units MATLAB uses to
interpret size and location data. All units are measured from the lower-left
corner of the window.

• normalized units map the lower-left corner of the figure window to (0,0) and
the upper-right corner to (1.0,1.0).

• inches, centimeters, and points are absolute units (one point equals 1/72
of an inch).

• The size of a pixel depends on screen resolution.

• Characters units are defined by characters from the default system font; the
width of one character is the width of the letter x, the height of one character
is the distance between the baselines of two lines of text.

This property affects the CurrentPoint and Position properties. If you change
the value of Units, it is good practice to return it to its default value after
completing your computation so as not to affect other functions that assume
Units is set to the default value.

When specifying the units as property/value pairs during object creation, you
must set the Units property before specifying the properties that you want to
use these units.

UserData matrix

User specified data. You can specify UserData as any matrix you want to
associate with the figure object. The object does not use this data, but you can
access it using the set and get commands.

Visible {on} | off

Object visibility. The Visible property determines whether an object is
displayed on the screen. If the Visible property of a figure is off, the entire
figure window is invisible.

Figure Properties

538

WindowButtonDownFcnstring

Button press callback function. Use this property to define a callback routine
that MATLAB executes whenever you press a mouse button while the pointer
is in the figure window. Define this routine as a string that is a valid MATLAB
expression or the name of an M-file. The expression executes in the MATLAB
workspace.

See uicontrol for information on how this property is set when you click on a
uicontrol object.

WindowButtonMotionFcnstring

Mouse motion callback function. Use this property to define a callback routine
that MATLAB executes whenever you move the pointer within the figure
window. Define this routine as a string that is a valid MATLAB expression or
the name of an M-file. The expression executes in the MATLAB workspace.

WindowButtonUpFcn string

Button release callback function. Use this property to define a callback routine
that MATLAB executes whenever you release a mouse button. Define this
routine as a string that is a valid MATLAB expression or the name of an M-file.
The expression executes in the MATLAB workspace.

The button up event is associated with the figure window in which the
preceding button down event occurred. Therefore, the pointer need not be in
the figure window when you release the button to generate the button up event.

If the callback routines defined by WindowButtonDownFcn or
WindowButtonMotionFcn contain drawnow commands or call other functions
that contain drawnow commands and the Interruptible property is set to off,
the WindowButtonUpFcn may not be called. You can prevent this problem by
setting Interruptible to on.

WindowStyle {normal} | modal

Normal or modal window behavior. When WindowStyle is set to modal, the
figure window traps all keyboard and mouse events over all MATLAB windows
as long as they are visible. Windows belonging to applications other than
MATLAB are unaffected. Modal figures remain stacked above all normal
figures and the MATLAB command window. When multiple modal windows
exist, the most recently created window keeps focus and stays above all other

Figure Properties

539

windows until it becomes invisible, or is returned to WindowStyle normal, or is
deleted. At that time, focus reverts to the window that last had focus.

Figures with WindowStyle modal and Visible off do not behave modally until
they are made visible, so it is acceptable to hide a modal window instead of
destroying it when you want to reuse it.

You can change the WindowStyle of a figure at any time, including when the
figure is visible and contains children. However, on some systems this may
cause the figure to flash or disappear and reappear, depending on the
windowing-system’s implementation of normal and modal windows. For best
visual results, you should set WindowStyle at creation time or when the figure
is invisible.

Modal figures do not display uimenu children or built-in menus, but it is not an
error to create uimenus in a modal figure or to change WindowStyle to modal
on a figure with uimenu children. The uimenu objects exist and their handles
are retained by the figure. If you reset the figure’s WindowStyle to normal, the
uimenus are displayed.

Use modal figures to create dialog boxes that force the user to respond without
being able to interact with other windows. Typing Control C at the MATLAB
prompt causes all figures with WindowStyle modal to revert to WindowStyle
normal, allowing you to type at the command line.

XDisplay display identifier (UNIX only)

Specify display for MATLAB. You can display figure windows on different
displays using the XDisplay property. For example, to display the current
figure on a system called fred, use the command:

set(gcf,'XDisplay','fred:0.0')

XVisual visual identifier (UNIX only)

Select visual used by MATLAB. You can select the visual used by MATLAB by
setting the XVisual property to the desired visual ID. This can be useful if you
want to test your application on an 8-bit or grayscale visual. To see what
visuals are avail on your system, use the UNIX xdpyinfo command. From
MATLAB, type

!xdpyinfo

Figure Properties

540

The information returned will contain a line specifying the visual ID. For
example,

visual id: 0x21

To use this visual with the current figure, set the XVisual property to the ID.

set(gcf,'XVisual','0x21')

XVisualMode auto | manual

Auto or manual selection of visual. VisualMode can take on two values – auto
(the default) and manual. In auto mode, MATLAB selects the best visual to use
based on the number of colors, availability of the OpenGL extension, etc. In
manual mode, MATLAB does not change the visual from the one currently in
use. Setting the XVisual property sets this property to manual.

filebrowser

541

1filebrowserPurpose Display the Current Directory browser, a tool for viewing current directory files

Graphical
Interface

As an alternative to the filebrowser function, select Current Directory from
the View menu in the MATLAB desktop.

Syntax filebrowser

Description filebrowser displays the Current Directory browser.

See Also cd, pwd

Use the pathname edit box to view
directories and their contents

Click the find button to
search for content
within M-files

Double-click a file to
open it in an
appropriate tool

View the help portion of
the selected M-file

The + indicates this
directory is on the
MATLAB search path

fileparts

542

1filepartsPurpose Return filename parts

Syntax [path,name,ext,ver] = fileparts('filename')

Description [path,name,ext,ver] = fileparts('filename') returns the path, filename,
extension, and version for the specified file. The returned ext field contains a
dot (.) before the file extension.

The fileparts function is platform dependent.

You can reconstruct the file from the parts using

fullfile(path,[name ext ver])

Examples This example returns the parts of file to path, name, ext, and ver.

file = '\home\user4\matlab\classpath.txt';

[path,name,ext,ver] = fileparts(file)

path =
\home\user4\matlab

name =
classpath

ext =
.txt

ver =
 ''

See Also fullfile

fill

543

1fillPurpose Filled two-dimensional polygons

Syntax fill(X,Y,C)
fill(X,Y,ColorSpec)
fill(X1,Y1,C1,X2,Y2,C2,...)
fill(...,'PropertyName',PropertyValue)
h = fill(...)

Description The fill function creates colored polygons.

fill(X,Y,C) creates filled polygons from the data in X and Y with vertex color
specified by C. C is a vector or matrix used as an index into the colormap. If C is
a row vector, length(C) must equal size(X,2) and size(Y,2); if C is a column
vector, length(C) must equal size(X,1) and size(Y,1). If necessary, fill
closes the polygon by connecting the last vertex to the first.

fill(X,Y,ColorSpec) fills two-dimensional polygons specified by X and Y with
the color specified by ColorSpec.

fill(X1,Y1,C1,X2,Y2,C2,...) specifies multiple two-dimensional filled
areas.

fill(...,'PropertyName',PropertyValue) allows you to specify property
names and values for a patch graphics object.

h = fill(...) returns a vector of handles to patch graphics objects, one
handle per patch object.

Remarks If X or Y is a matrix, and the other is a column vector with the same number of
elements as rows in the matrix, fill replicates the column vector argument to
produce a matrix of the required size. fill forms a vertex from corresponding
elements in X and Y and creates one polygon from the data in each column.

The type of color shading depends on how you specify color in the argument list.
If you specify color using ColorSpec, fill generates flat-shaded polygons by
setting the patch object’s FaceColor property to the corresponding RGB triple.

If you specify color using C, fill scales the elements of C by the values specified
by the axes property CLim. After scaling C, C indexes the current colormap.

fill

544

If C is a row vector, fill generates flat-shaded polygons where each element
determines the color of the polygon defined by the respective column of the X
and Y matrices. Each patch object’s FaceColor property is set to 'flat'. Each
row element becomes the CData property value for the nth patch object, where
n is the corresponding column in X or Y.

If C is a column vector or a matrix, fill uses a linear interpolation of the vertex
colors to generate polygons with interpolated colors. It sets the patch graphics
object FaceColor property to 'interp' and the elements in one column become
the CData property value for the respective patch object. If C is a column vector,
fill replicates the column vector to produce the required sized matrix.

Examples Create a red octagon.

t = (1/16:1/8:1)'*2*pi;
x = sin(t);
y = cos(t);
fill(x,y,'r')
axis square

See Also axis, caxis, colormap, ColorSpec, fill3, patch

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

fill3

545

1fill3Purpose Filled three-dimensional polygons

Syntax fill3(X,Y,Z,C)
fill3(X,Y,Z,ColorSpec)
fill3(X1,Y1,Z1,C1,X2,Y2,Z2,C2,...)
fill3(...,'PropertyName',PropertyValue)
h = fill3(...)

Description The fill3 function creates flat-shaded and Gouraud-shaded polygons.

fill3(X,Y,Z,C) fills three-dimensional polygons. X, Y, and Z triplets specify
the polygon vertices. If X, Y, or Z is a matrix, fill3 creates n polygons, where n
is the number of columns in the matrix. fill3 closes the polygons by
connecting the last vertex to the first when necessary.

C specifies color, where C is a vector or matrix of indices into the current
colormap. If C is a row vector, length(C)must equal size(X,2) and size(Y,2);
if C is a column vector, length(C) must equal size(X,1) and size(Y,1).

fill3(X,Y,Z,ColorSpec) fills three-dimensional polygons defined by X, Y, and
Z with color specified by ColorSpec.

fill3(X1,Y1,Z1,C1,X2,Y2,Z2,C2,...) specifies multiple filled
three-dimensional areas.

fill3(...,'PropertyName',PropertyValue) allows you to set values for
specific patch properties.

h = fill3(...) returns a vector of handles to patch graphics objects, one
handle per patch.

Algorithm If X, Y, and Z are matrices of the same size, fill3 forms a vertex from the
corresponding elements of X, Y, and Z (all from the same matrix location), and
creates one polygon from the data in each column.

If X, Y, or Z is a matrix, fill3 replicates any column vector argument to produce
matrices of the required size.

If you specify color using ColorSpec, fill3 generates flat-shaded polygons and
sets the patch object FaceColor property to an RGB triple.

fill3

546

If you specify color using C, fill3 scales the elements of C by the axes property
CLim, which specifies the color axis scaling parameters, before indexing the
current colormap.

If C is a row vector, fill3 generates flat-shaded polygons and sets the
FaceColor property of the patch objects to 'flat'. Each element becomes the
CData property value for the respective patch object.

If C is a column vector or a matrix, fill3 generates polygons with interpolated
colors and sets the patch object FaceColor property to 'interp'. fill3 uses a
linear interpolation of the vertex colormap indices when generating polygons
with interpolated colors. The elements in one column become the CData
property value for the respective patch object. If C is a column vector, fill3
replicates the column vector to produce the required sized matrix.

Examples Create four triangles with interpolated colors.

X = [0 1 1 2;1 1 2 2;0 0 1 1];
Y = [1 1 1 1;1 0 1 0;0 0 0 0];
Z = [1 1 1 1;1 0 1 0;0 0 0 0];
C = [0.5000 1.0000 1.0000 0.5000;

1.0000 0.5000 0.5000 0.1667;
0.3330 0.3330 0.5000 0.5000];

fill3(X,Y,Z,C)

fill3

547

See Also axis, caxis, colormap, ColorSpec, fill, patch

filter

548

1filterPurpose Filter data with an infinite impulse response (IIR) or finite impulse response
(FIR) filter

Syntax y = filter(b,a,X)
[y,zf] = filter(b,a,X)
[y,zf] = filter(b,a,X,zi)
y = filter(b,a,X,zi,dim)
[...] = filter(b,a,X,[],dim)

Description The filter function filters a data sequence using a digital filter which works
for both real and complex inputs. The filter is a direct form II transposed
implementation of the standard difference equation (see “Algorithm”).

y = filter(b,a,X) filters the data in vector X with the filter described by
numerator coefficient vector b and denominator coefficient vector a. If a(1) is
not equal to 1, filter normalizes the filter coefficients by a(1). If a(1) equals
0, filter returns an error.

If X is a matrix, filter operates on the columns of X. If X is a multidimensional
array, filter operates on the first nonsingleton dimension.

[y,zf] = filter(b,a,X) returns the final conditions, zf, of the filter delays.
Output zf is a vector of max(size(a),size(b)) or an array of such vectors, one
for each column of X.

[y,zf] = filter(b,a,X,zi) accepts initial conditions and returns the final
conditions, zi and zf respectively, of the filter delays. Input zi is a vector (or
an array of vectors) of length max(length(a),length(b))-1.

y = filter(b,a,X,zi,dim) and

[...] = filter(b,a,X,[],dim) operate across the dimension dim.

filter

549

Algorithm The filter function is implemented as a direct form II transposed structure,

or

y(n) = b(1)∗x(n) + b(2)∗x(n-1) + ... + b(nb+1)∗x(n-nb)
- a(2)∗y(n-1) - ... - a(na+1)∗y(n-na)

where n-1 is the filter order, and which handles both FIR and IIR filters [1].

The operation of filter at sample m is given by the time domain difference
equations

The input-output description of this filtering operation in the z-transform
domain is a rational transfer function,

Σ Z–1

x(m)

–a(n)

Zn–1(m)

. . .

. . .

b(n)

. . . Σ Z–1

Z2(m)

Σ Z–1

Z1(m)

–a(3)

b(3)

–a(2)

b(2)

Σ

b(1)

y(m)

y m() b 1()x m() z1 m 1–()+=

z1 m() b 2()x m() z2 m 1–() a 2() y m()–+=

zn 2– m() b n 1–()x m() zn 1– m 1–() a n 1–() y m()–+=

zn 1– m() b n()x m() a n() y m()–=

...=

Y z() b 1() b 2()z 1– … b nb 1+()z nb–+ ++
1 a 2()z 1– … a na 1+()z na–+ + +

---X z()=

filter

550

See Also filter2

filtfilt in the Signal Processing Toolbox

References [1] Oppenheim, A. V. and R.W. Schafer. Discrete-Time Signal Processing,
Englewood Cliffs, NJ: Prentice-Hall, 1989, pp. 311-312.

filter2

551

1filter2Purpose Two-dimensional digital filtering

Syntax Y = filter2(h,X)
Y = filter2(h,X,shape)

Description Y = filter2(h,X) filters the data in X with the two-dimensional FIR filter in
the matrix h. It computes the result, Y, using two-dimensional correlation, and
returns the central part of the correlation that is the same size as X.

Y = filter2(h,X,shape) returns the part of Y specified by the shape
parameter. shape is a string with one of these values:

• 'full' returns the full two-dimensional correlation. In this case, Y is larger
than X.

• 'same' (the default) returns the central part of the correlation. In this case,
Y is the same size as X.

• 'valid' returns only those parts of the correlation that are computed
without zero-padded edges. In this case, Y is smaller than X.

Remarks Two-dimensional correlation is equivalent to two-dimensional convolution
with the filter matrix rotated 180 degrees. See the Algorithm section for more
information about how filter2 performs linear filtering.

Algorithm Given a matrix X and a two-dimensional FIR filter h, filter2 rotates your filter
matrix 180 degrees to create a convolution kernel. It then calls conv2, the
two-dimensional convolution function, to implement the filtering operation.

filter2 uses conv2 to compute the full two-dimensional convolution of the FIR
filter with the input matrix. By default, filter2 then extracts the central part
of the convolution that is the same size as the input matrix, and returns this as
the result. If the shape parameter specifies an alternate part of the convolution
for the result, filter2 returns the appropriate part.

See Also conv2, filter

find

552

1findPurpose Find indices and values of nonzero elements

Syntax k = find(x)
[i,j] = find(X)
[i,j,v] = find(X)

Description k = find(X) returns the indices of the array X that point to nonzero elements.
If none is found, find returns an empty matrix.

[i,j] = find(X) returns the row and column indices of the nonzero entries in
the matrix X. This is often used with sparse matrices.

[i,j,v] = find(X) returns a column vector v of the nonzero entries in X, as
well as row and column indices.

In general, find(X) regards X as X(:), which is the long column vector formed
by concatenating the columns of X.

Examples [i,j,v] = find(X~=0) produces a vector v with all 1s, and returns the row and
column indices.

Some operations on a vector

x = [11 0 33 0 55]';
find(x)

ans =

 1
 3
 5

find(x == 0)

ans =

 2
 4

find(0 < x & x < 10*pi)

find

553

ans =

 1

And on a matrix

M = magic(3)

M =

 8 1 6
 3 5 7
 4 9 2

[i,j,v] = find(M > 6)

i = j = v =

 1 1 1
 3 2 1
 2 3 1

See Also nonzeros, sparse, colon, logical operators, relational operators

findall

554

1findallPurpose Find handles of all graphics objects

Syntax object_handles = findall(handle_list)
object_handles = findall(handle_list,'property','value',...)

Description object_handles = findall(handle_list) returns the handles of all objects
in the hierarchy under the objects identified in handle_list.

object_handles = findall(handle_list,'property','value',...)
returns the handles of all objects in the hierarchy under the objects identified
in handle_list that have the specified properties set to the specified values.

Remarks findall is similar to findobj, except that it finds objects even if their
HandleVisibility is set to off.

Examples plot(1:10)
xlabel xlab
a = findall(gcf)
b = findobj(gcf)
c = findall(b,'Type','text') % return the xlabel handle twice
d = findobj(b,'Type','text') % can't find the xlabel handle

See Also allchild, findobj

findfigs

555

1findfigsPurpose Find visible off-screen figures

Syntax findfigs

Description findfigs finds all visible figure windows whose display area is off the screen
and positions them on the screen.

A window appears to MATLAB to be off-screen when its display area (the area
not covered by the window’s title bar, menu bar, and toolbar) does not appear
on the screen.

This function is useful when bringing an application from a larger monitor to
a smaller one (or one with lower resolution). Windows visible on the larger
monitor may appear off-screen on a smaller monitor. Using findfigs ensures
that all windows appear on the screen.

findobj

556

1findobjPurpose Locate graphics objects

Syntax h = findobj
h = findobj('PropertyName',PropertyValue,...)
h = findobj(objhandles,...)
h = findobj(objhandles,'flat','PropertyName',PropertyValue,...)

Description findobj locates graphics objects and returns their handles. You can limit the
search to objects with particular property values and along specific branches of
the hierarchy.

h = findobj returns the handles of the root object and all its descendants.

h = findobj('PropertyName',PropertyValue,...) returns the handles of
all graphics objects having the property PropertyName, set to the value
PropertyValue. You can specify more than one property/value pair, in which
case, findobj returns only those objects having all specified values.

h = findobj(objhandles,...) restricts the search to objects listed in
objhandles and their descendants.

h = findobj(objhandles,'flat','PropertyName',PropertyValue,...)
restricts the search to those objects listed in objhandles and does not search
descendants.

Remarks findobj returns an error if a handle refers to a non-existent graphics object.

Findobj correctly matches any legal property value. For example,

findobj('Color','r')

finds all objects having a Color property set to red, r, or [1 0 0].

When a graphics object is a descendant of more than one object identified in
objhandles, MATLAB searches the object each time findobj encounters its
handle. Therefore, implicit references to a graphics object can result in its
handle being returned multiple times.

Examples Find all line objects in the current axes:

h = findobj(gca,'Type','line')

findobj

557

See Also copyobj, gcf, gca, gcbo, gco, get, set

Graphics objects include:

axes, figure, image, light, line, patch, surface, text, uicontrol, uimenu

findstr

558

1findstrPurpose Find one string within another

Syntax k = findstr(str1,str2)

Description k = findstr(str1,str2) finds the starting indices of any occurrences of the
shorter string within the longer.

Examples str1 = 'Find the starting indices of the shorter string.';
str2 = 'the';
findstr(str1,str2)

ans =
 6 30

See Also strcmp, strmatch, strncmp

finish

559

1finishPurpose MATLAB termination M-file

Description When MATLAB quits, it runs a script called finish.m, if it exists and is on the
MATLAB search path. This is a file that you create yourself in order to have
MATLAB perform any final tasks just prior to terminating. For example, you
may want to save the data in your workspace to a MAT-file before MATLAB
exits.

finish.m is invoked whenever you do one of the following:

• Select the close box in the MATLAB Desktop

• Select Exit MATLAB from the desktop File menu

• Type quit or exit at the Command Window prompt

Remarks When using Handle Graphics in finish.m, use uiwait, waitfor, or drawnow so
that figures are visible. See the reference pages for these functions for more
information.

Examples Two sample finish.m files are provided with MATLAB in toolbox/local. Use
them to help you create your own finish.m, or rename one of the files to
finish.m to use it.

• finishsav.m - saves the workspace to a MAT-file when MATLAB quits.

• finishdlg.m - displays a dialog allowing you to cancel quitting; it uses quit
cancel and contains the following code.

button = questdlg('Ready to quit?', ...
 'Exit Dialog','Yes','No','No');
switch button
 case 'Yes',
 disp('Exiting MATLAB');
 %Save variables to matlab.mat
 save
 case 'No',
 quit cancel;
end

See Also quit, startup

fix

560

1fixPurpose Round towards zero

Syntax B = fix(A)

Description B = fix(A) rounds the elements of A toward zero, resulting in an array of
integers. For complex A, the imaginary and real parts are rounded
independently.

Examples a = [-1.9, -0.2, 3.4, 5.6, 7.0, 2.4+3.6i]

a =
 Columns 1 through 4
-1.9000 -0.2000 3.4000 5.6000

 Columns 5 through 6
 7.0000 2.4000 + 3.6000i

fix(a)

ans =
 Columns 1 through 4
-1.0000 0 3.0000 5.0000

 Columns 5 through 6
 7.0000 2.0000 + 3.0000i

See Also ceil, floor, round

flipdim

561

1flipdimPurpose Flip array along a specified dimension

Syntax B = flipdim(A,dim)

Description B = flipdim(A,dim) returns A with dimension dim flipped.

When the value of dim is 1, the array is flipped row-wise down. When dim is 2,
the array is flipped columnwise left to right. flipdim(A,1) is the same as
flipud(A), and flipdim(A,2) is the same as fliplr(A).

Examples flipdim(A,1) where

A =

 1 4
 2 5
 3 6

produces

 3 6
 2 5
 1 4

See Also fliplr, flipud, permute, rot90

fliplr

562

1fliplrPurpose Flip matrices left-right

Syntax B = fliplr(A)

Description B = fliplr(A) returns A with columns flipped in the left-right direction, that
is, about a vertical axis.

If A is a row vector, then fliplr(A) returns a vector of the same length with
the order of its elements reversed. If A is a column vector, then fliplr(A)
simply returns A.

Examples If A is the 3-by-2 matrix,

A =
 1 4

2 5
3 6

then fliplr(A) produces

4 1
5 2
6 3

If A is a row vector,

A =
 1 3 5 7 9

then fliplr(A) produces

 9 7 5 3 1

Limitations The array being operated on cannot have more than two dimensions. This
limitation exists because the axis upon which to flip a multidimensional array
would be undefined.

See Also flipdim, flipud, rot90

flipud

563

1flipudPurpose Flip matrices up-down

Syntax B = flipud(A)

Description B = flipud(A) returns A with rows flipped in the up-down direction, that is,
about a horizontal axis.

If A is a column vector, then flipud(A) returns a vector of the same length with
the order of its elements reversed. If A is a row vector, then flipud(A) simply
returns A.

Examples If A is the 3-by-2 matrix,

A =
 1 4
 2 5
 3 6

then flipud(A) produces

 3 6
 2 5
 1 4

If A is a column vector,

A =
 3
 5
 7

then flipud(A) produces

A =
 7
 5
 3

Limitations The array being operated on cannot have more than two dimensions. This
limitation exists because the axis upon which to flip a multidimensional array
would be undefined.

flipud

564

See Also flipdim, fliplr, rot90

floor

565

1floorPurpose Round towards minus infinity

Syntax B = floor(A)

Description B = floor(A) rounds the elements of A to the nearest integers less than or
equal to A. For complex A, the imaginary and real parts are rounded
independently.

Examples a = [-1.9, -0.2, 3.4, 5.6, 7.0, 2.4+3.6i]

a =
 Columns 1 through 4
-1.9000 -0.2000 3.4000 5.6000

 Columns 5 through 6
 7.0000 2.4000 + 3.6000i

floor(a)

ans =
 Columns 1 through 4
-2.0000 -1.0000 3.0000 5.0000

 Columns 5 through 6
 7.0000 2.0000 + 3.0000i

See Also ceil, fix, round

flops

566

1flopsPurpose Count floating-point operations

Description This is an obsolete function. With the incorporation of LAPACK in MATLAB
version 6, counting floating-point operations is no longer practical.

flow

567

1flowPurpose A simple function of three variables

Syntax v = flow
v = flow(n)
v = flow(x,y,z)
[x,y,z,v] = flow(...)

Description flow, a function of three variables, is the speed profile of a submerged jet
within a infinite tank. flow is useful for demonstrating slice, interp3, and for
generating scalar volume data.

v = flow produces a 50-by-25-by-25 array.

v = flow(n) produces a 2n-by-n-by-n array.

v = flow(x,y,z) evaluates the speed profile at the points x, y, and z.

[x,y,z,v] = flow(...) returns the coordinates as well as the volume data.

fmin

568

fminPurpose Minimize a function of one variable

Note The fmin function was replaced by fminbnd in Release 11 (MATLAB
5.3). In Release 12 (MATLAB 6.0), fmin displays a warning message and calls
fminbnd.

Syntax x = fmin('fun',x1,x2)
x = fmin('fun',x1,x2,options)
x = fmin('fun',x1,x2,options,P1,P2, ...)
[x,options] = fmin(...)

Description x = fmin('fun',x1,x2) returns a value of x which is a local minimizer of
fun(x) in the interval .

x = fmin('fun',x1,x2,options) does the same as the above, but uses
options control parameters.

x = fmin('fun',x1,x2,options,P1,P2,...) does the same as the above, but
passes arguments to the objective function, fun(x,P1,P2,...). Pass an empty
matrix for options to use the default value.

[x,options] = fmin(...) returns, in options(10), a count of the number of
steps taken.

Arguments

x1 x x2< <

x1,x2 Interval over which function is minimized.

P1,P2... Arguments to be passed to function.

fun A string containing the name of the function to be minimized.

fmin

569

Examples fmin('cos',3,4) computes π to a few decimal places.

fmin('cos',3,4,[1,1.e-12]) displays the steps taken to compute π to 12
decimal places.

To find the minimum of the function on the interval (0,2),
write an M-file called f.m.

function y = f(x)
y = x.^3-2∗x-5;

Then invoke fmin with

x = fmin('f', 0, 2)

The result is

x =
 0.8165

The value of the function at the minimum is

y = f(x)

y =
 -6.0887

Algorithm The algorithm is based on golden section search and parabolic interpolation. A
Fortran program implementing the same algorithms is given in [1].

options A vector of control parameters. Only three of the 18
components of options are referenced by fmin; Optimization
Toolbox functions use the others. The three control options
used by fmin are:

• options(1) — If this is nonzero, intermediate steps in the so-
lution are displayed. The default value of options(1) is 0.

• options(2) — This is the termination tolerance. The default
value is 1.e-4.

• options(14) — This is the maximum number of steps. The
default value is 500.

f x() x 3 2x– 5–=

fmin

570

See Also fmins Minimize a function of several variables
fzero Find zero of a function of one variable
foptions in the Optimization Toolbox (or type help optimset).

References [1] Forsythe, G. E., M. A. Malcolm, and C. B. Moler, Computer Methods for
Mathematical Computations, Prentice-Hall, 1976.

fminbnd

571

1fminbndPurpose Minimize a function of one variable on a fixed interval

Syntax x = fminbnd(fun,x1,x2)
x = fminbnd(fun,x1,x2,options)
x = fminbnd(fun,x1,x2,options,P1,P2,...)
[x,fval] = fminbnd(...)
[x,fval,exitflag] = fminbnd(...)
[x,fval,exitflag,output] = fminbnd(...)

Description fminbnd finds the minimum of a function of one variable within a fixed
interval.

x = fminbnd(fun,x1,x2) returns a value x that is a local minimizer of the
function that is described in fun in the interval x1 < x < x2.

x = fminbnd(fun,x1,x2,options) minimizes with the optimization
parameters specified in the structure options. You can define these
parameters using the optimset function. fminbnd uses these options
structure fields:

x = fminbnd(fun,x1,x2,options,P1,P2,...) provides for additional
arguments, P1, P2, etc., which are passed to the objective function,
fun(x,P1,P2,...). Use options=[] as a placeholder if no options are set.

[x,fval] = fminbnd(...) returns the value of the objective function
computed in fun at x.

Display Level of display. 'off' displays no output; 'iter'
displays output at each iteration; 'final' displays
just the final output; 'notify' (default) dislays
output only if the function does not converge.

MaxFunEvals Maximum number of function evaluations allowed.

MaxIter Maximum number of iterations allowed.

TolX Termination tolerance on x.

fminbnd

572

[x,fval,exitflag] = fminbnd(...) returns a value exitflag that describes
the exit condition of fminbnd:

[x,fval,exitflag,output] = fminbnd(...) returns a structure output that
contains information about the optimization:

Arguments fun is the function to be minimized. fun accepts a scalar x and returns a scalar
f, the objective function evaluated at x. The function fun can be specified as a
function handle.

x = fminbnd(@myfun,x0)

where myfun is a MATLAB function such as

function f = myfun(x)
f = ... % Compute function value at x.

fun can also be an inline object.

x = fminbnd(inline('sin(x*x)'),x0);

Other arguments are described in the syntax descriptions above.

Examples x = fminbnd(@cos,3,4) computes π to a few decimal places and gives a
message on termination.

[x,fval,exitflag] =
fminbnd(@cos,3,4,optimset('TolX',1e-12,'Display','off'))

computes π to about 12 decimal places, suppresses output, returns the function
value at x, and returns an exitflag of 1.

>0 Indicates that the function converged to a solution x.

 0 Indicates that the maximum number of function evaluations was
exceeded.

<0 Indicates that the function did not converge to a solution.

output.algorithm The algorithm used

output.funcCount The number of function evaluations

output.iterations The number of iterations taken

fminbnd

573

The argument fun can also be an inline function. To find the minimum of the
function on the interval (0,2), create an inline object f

f = inline('x.^3-2*x-5');

Then invoke fminbnd with

x = fminbnd(f, 0, 2)

The result is

x =
 0.8165

The value of the function at the minimum is

y = f(x)

y =
 -6.0887

Algorithm The algorithm is based on Golden Section search and parabolic interpolation.
A Fortran program implementing the same algorithm is given in [1].

Limitations The function to be minimized must be continuous. fminbnd may only give local
solutions.

fminbnd often exhibits slow convergence when the solution is on a boundary of
the interval.

fminbnd only handles real variables.

See Also fminsearch, fzero, optimset, function_handle (@), inline

References [1] Forsythe, G. E., M. A. Malcolm, and C. B. Moler, Computer Methods for
Mathematical Computations, Prentice-Hall, 1976.

f x() x 3 2x– 5–=

fmins

574

fminsPurpose Minimize a function of several variables

Note The fmins function was replaced by fminsearch in Release 11
(MATLAB 5.3). In Release 12 (MATLAB 6.0), fmins displays a warning
message and calls fminsearch.

Syntax x = fmins('fun',x0)
x = fmins('fun',x0,options)
x = fmins('fun',x0,options,[],P1,P2, ...)
[x,options] = fmins(...)

Description x = fmins('fun',x0) returns a vector x which is a local minimizer of
fun(x) near .

x = fmins('fun',x0,options) does the same as the above, but uses options
control parameters.

x = fmins('fun',x0,options,[],P1,P2,...) does the same as above, but
passes arguments to the objective function, fun(x,P1,P2, ...). Pass an empty
matrix for options to use the default value.

[x,options] = fmins(...) returns, in options(10), a count of the number of
steps taken.

Arguments

x0

x0 Starting vector.

P1,P2... Arguments to be passed to fun.

[] Argument needed to provide compatibility with fminu in the
Optimization Toolbox.

fmins

575

Examples A classic test example for multidimensional minimization is the Rosenbrock
banana function:

The minimum is at (1,1) and has the value 0. The traditional starting point is
(-1.2,1). The M-file banana.m defines the function.

function f = banana(x)
f = 100∗(x(2)-x(1)^2)^2+(1-x(1))^2;

The statements

[x,out] = fmins('banana',[-1.2, 1]);
x
out(10)

produce

x =

 1.0000 1.0000

fun A string containing the name of the objective function to be
minimized. fun(x) is a scalar valued function of a vector
variable.

options A vector of control parameters. Only four of the 18
components of options are referenced by fmins;
Optimization Toolbox functions use the others. The four
control options used by fmins are:

• options(1) — If this is nonzero, intermediate steps in the
solution are displayed. The default value of options(1) is
0.

• options(2) and options(3) — These are the termination
tolerances for x and function(x), respectively. The de-
fault values are 1.e-4.

• options(14) — This is the maximum number of steps.
The default value is 500.

f x() 100 x2 x1
2–()

2
1 x1–()2+=

fmins

576

ans =

 165

This indicates that the minimizer was found to at least four decimal places in
165 steps.

Move the location of the minimum to the point [a,a^2] by adding a second
parameter to banana.m.

function f = banana(x,a)
if nargin < 2, a = 1; end
f = 100∗(x(2)-x(1)^2)^2+(a-x(1))^2;

Then the statement

[x,out] = fmins('banana', [-1.2, 1], [0, 1.e-8], [], sqrt(2));

sets the new parameter to sqrt(2) and seeks the minimum to an accuracy
higher than the default.

Algorithm The algorithm is the Nelder-Mead simplex search described in the two refer-
ences. It is a direct search method that does not require gradients or other
derivative information. If n is the length of x, a simplex in n-dimensional space
is characterized by the n+1 distinct vectors which are its vertices. In two-space,
a simplex is a triangle; in three-space, it is a pyramid.

At each step of the search, a new point in or near the current simplex is gener-
ated. The function value at the new point is compared with the function’s
values at the vertices of the simplex and, usually, one of the vertices is replaced
by the new point, giving a new simplex. This step is repeated until the diameter
of the simplex is less than the specified tolerance.

See Also fmin Minimize a function of one variable
foptions in the Optimization Toolbox (or type help foptions).

References [1] Nelder, J. A. and R. Mead, “A Simplex Method for Function Minimization,”
Computer Journal, Vol. 7, p. 308-313.

[2] Dennis, J. E. Jr. and D. J. Woods, “New Computing Environments: Micro-
computers in Large-Scale Computing,” edited by A. Wouk, SIAM, 1987, pp.
116-122.

fminsearch

577

1fminsearchPurpose Minimize a function of several variables

Syntax x = fminsearch(fun,x0)
x = fminsearch(fun,x0,options)
x = fminsearch(fun,x0,options,P1,P2,...)
[x,fval] = fminsearch(...)
[x,fval,exitflag] = fminsearch(...)
[x,fval,exitflag,output] = fminsearch(...)

Description fminsearch finds the minimum of a scalar function of several variables,
starting at an initial estimate. This is generally referred to as unconstrained
nonlinear optimization.

x = fminsearch(fun,x0) starts at the point x0 and finds a local minimum x of
the function described in fun. x0 can be a scalar, vector, or matrix.

x = fminsearch(fun,x0,options) minimizes with the optimization
parameters specified in the structure options. You can define these
parameters using the optimset function. fminsearch uses these options
structure fields:

x = fminsearch(fun,x0,options,P1,P2,...) passes the problem-dependent
parameters P1, P2, etc., directly to the function fun. Use options = [] as a
placeholder if no options are set.

[x,fval] = fminsearch(...) returns in fval the value of the objective
function fun at the solution x.

Display Level of display. 'off' displays no output; 'iter'
displays output at each iteration; 'final' displays
just the final output; 'notify' (default) dislays
output only if the function does not converge.

MaxFunEvals Maximum number of function evaluations allowed.

MaxIter Maximum number of iterations allowed.

TolX Termination tolerance on x.

fminsearch

578

[x,fval,exitflag] = fminsearch(...) returns a value exitflag that
describes the exit condition of fminsearch:

[x,fval,exitflag,output] = fminsearch(...) returns a structure output
that contains information about the optimization:

Arguments fun is the function to be minimized. It accepts a scalar x and returns a scalar
f, the objective function evaluated at x. The function fun can be specified as a
function handle.

x = fminsearch(@myfun,x0,A,b)

where myfun is a MATLAB function such as

function f = myfun(x)
f = ... % Compute function value at x

fun can also be an inline object.

x = fminsearch(inline('sin(x*x)'),x0,A,b);

Other arguments are described in the syntax descriptions above.

Examples A classic test example for multidimensional minimization is the Rosenbrock
banana function

The minimum is at (1,1) and has the value 0. The traditional starting point is
(-1.2,1). The M-file banana.m defines the function.

>0 Indicates that the function converged to a solution x.

 0 Indicates that the maximum number of function evaluations was
exceeded.

<0 Indicates that the function did not converge to a solution.

output.algorithm The algorithm used

output.funcCount The number of function evaluations

output.iterations The number of iterations taken

f x() 100 x2 x1
2–()

2
1 x1–()2+=

fminsearch

579

function f = banana(x)
f = 100*(x(2)-x(1)^2)^2+(1-x(1))^2;

The statement

[x,fval] = fminsearch(@banana,[-1.2, 1])

produces

x =

 1.0000 1.0000

fval =

 8.1777e-010

This indicates that the minimizer was found to at least four decimal places
with a value near zero.

Move the location of the minimum to the point [a,a^2] by adding a second
parameter to banana.m.

function f = banana(x,a)
if nargin < 2, a = 1; end
f = 100*(x(2)-x(1)^2)^2+(a-x(1))^2;

Then the statement

[x,fval] = fminsearch(@banana, [-1.2, 1], ...
optimset('TolX',1e-8), sqrt(2));

sets the new parameter to sqrt(2) and seeks the minimum to an accuracy
higher than the default on x.

Algorithm fminsearch uses the simplex search method of [1]. This is a direct search
method that does not use numerical or analytic gradients.

If n is the length of x, a simplex in n-dimensional space is characterized by the
n+1 distinct vectors that are its vertices. In two-space, a simplex is a triangle;
in three-space, it is a pyramid. At each step of the search, a new point in or near
the current simplex is generated. The function value at the new point is
compared with the function’s values at the vertices of the simplex and, usually,

fminsearch

580

one of the vertices is replaced by the new point, giving a new simplex. This step
is repeated until the diameter of the simplex is less than the specified
tolerance.

Limitations fminsearch can often handle discontinuity, particularly if it does not occur
near the solution. fminsearch may only give local solutions.

fminsearch only minimizes over the real numbers, that is, x must only consist
of real numbers and f(x) must only return real numbers. When x has complex
variables, they must be split into real and imaginary parts.

See Also fminbnd, optimset, function_handle (@), inline

References [1] Lagarias, J.C., J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence
Properties of the Nelder-Mead Simplex Method in Low Dimensions,”
SIAM Journal of Optimization, Vol. 9 Number 1, pp. 112-147, 1998.

fopen

581

1fopenPurpose Open a file or obtain information about open files

Syntax fid = fopen(filename)
fid = fopen(filename,permission)
[fid,message] = fopen(filename,permission,machineformat)
fids = fopen('all')
[filename,permission, machineormat] = fopen(fid)

Description fid = fopen(filename) opens the file filename for read access. (On PCs,
fopen opens files for binary read access.)

fid is a scalar MATLAB integer, called a file identifier. You use the fid as the
first argument to other file input/output routines. If fopen cannot open the file,
it returns -1. Two file identifiers are automatically available and need not beopened.
They are fid=1 (standard output) and fid=2 (standard error).

fid = fopen(filename,permission) opens the file filename in the mode
specified by permission. permission can be:

filename can be a MATLABPATH relative partial pathname if the file is opened
for reading only. A relative path is always searched for first with respect to the

'r' Open file for reading (default).

'w' Open file, or create new file, for writing; discard existing
contents, if any.

'a' Open file, or create new file, for writing; append data to the
end of the file.

'r+' Open file for reading and writing.

'w+' Open file, or create a new file, for reading and writing;
discard existing contents, if any.

'a+' Open file, or create new file, for reading and writing; append
data to the end of the file.

'A' Append without automatic flushing; used with tape drives

'W' Write without automatic flushing; used with tape drives

fopen

582

current directory. If it is not found and reading only is specified or implied then
fopen does an additional search of the MATLABPATH

Files can be opened in binary mode (the default) or in text mode. In binary
mode, no characters are singled out for special treatment. In text mode on the
PC, , the carriage return character precedinga newline character is deleted on input
and added before the newline character on output. To open in text mode, add
“t” to the permission string, for example 'rt' and 'wt+'. (On Unix, text and
binary mode are the same so this has no effect. But on PC systems this is
critical.)

[fid,message] = fopen(filename,permission) opens a file as above. If it
cannot open the file, fid equals -1 and message contains a system-dependent
error message. If fopen successfully opens a file, the value of message is empty.

[fid,message] = fopen(filename,permission,machineformat) opens the
specified file with the specified permission and treats data read using fread
or data written using fwrite as having a format given by machineformat.
machineformat is one of the following strings:

'cray' or 'c' Cray floating point with big-endian byte
ordering

'ieee–be' or 'b' IEEE floating point with big-endian byte
ordering

'ieee–le' or 'l' IEEE floating point with little-endian byte
ordering

'ieee-be.l64' or 's' IEEE floating point with big-endian byte
ordering and 64-bit long data type

'ieee-le.l64' or 'a' IEEE floating point with little-endian byte
ordering and 64-bit long data type

'native' or 'n' Numeric format of the machine on which
MATLAB is running (the default).

'vaxd' or 'd' VAX D floating point and VAX ordering

'vaxg' or 'g' VAX G floating point and VAX ordering

fopen

583

fids = fopen('all') returns a row vector containing the file identifiers of all
open files, not including 1 and 2 (standard output and standard error). The
number of elements in the vector is equal to the number of open files.

[filename,permission,machineformat] = fopen(fid) returns the
filename, permission string, and machineformat string associated with the
specified file. An invalid fid returns empty strings for all output arguments.

The 'W' and 'A' permissions are designed for use with tape drives and do not
automatically perform a flush of the current output buffer after output
operations. For example, open a 1/4" cartridge tape on a SPARCstation for
writing with no auto-flush:

 fid = fopen('/dev/rst0','W')

Example The example uses fopen to open a file and then passes the fid, returned by
fopen, to other file I/O functions to read data from the file and then close the
file.

fid=fopen('fgetl.m');
while 1

tline = fgetl(fid);
if ~ischar(tline), break, end
disp(tline)

end
fclose(fid);

See Also fclose, ferror, fprintf, fread, fscanf, fseek, ftell, fwrite

fopen (serial)

584

1fopen (serial)Purpose Connect a serial port object to the device

Syntax fopen(obj)

Arguments

Description fopen(obj) connects obj to the device.

Remarks Before you can perform a read or write operation, obj must be connected to the
device with the fopen function. When obj is connected to the device:

• Data remaining in the input buffer or the output buffer is flushed.

• The Status property is set to open.

• The BytesAvailable, ValuesReceived, ValuesSent, and BytesToOutput
properties are set to 0.

An error is returned if you attempt to perform a read or write operation while
obj is not connected to the device. You can connect only one serial port object
to a given device.

Some properties are read-only while the serial port object is open (connected),
and must be configured before using fopen. Examples include
InputBufferSize and OutputBufferSize. Refer to the property reference
pages to determine which properties have this constraint.

The values for some properties are verified only after obj is connected to the
device. If any of these properties are incorrectly configured, then an error is
returned when fopen is issued and obj is not connected to the device.
Properties of this type include BaudRate, and are associated with device
settings.

If you use the help command to display help for fopen, then you need to supply
the pathname shown below.

help serial/fopen

Example This example creates the serial port object s, connects s to the device using
fopen, writes and reads text data, and then disconnects s from the device.

s = serial('COM1');

obj A serial port object or an array of serial port objects.

fopen (serial)

585

fopen(s)
fprintf(s,'*IDN?')
idn = fscanf(s);
fclose(s)

See Also Functions
fclose

Properties
BytesAvailable, BytesToOutput, Status, ValuesReceived, ValuesSent

for

586

1forPurpose Repeat statements a specific number of times

Syntax for variable = expression
statements

end

Description The general format is

for variable = expression
statement

 ...
statement

end

The columns of the expression are stored one at a time in the variable while
the following statements, up to the end, are executed.

In practice, the expression is almost always of the form scalar : scalar, in
which case its columns are simply scalars.

The scope of the for statement is always terminated with a matching end.

Examples Assume n has already been assigned a value. Create the Hilbert matrix, using
zeros to preallocate the matrix to conserve memory:

a = zeros(n,n) % Preallocate matrix
for i = 1:n
 for j = 1:n
 a(i,j) = 1/(i+j -1);
 end
end

Step s with increments of -0.1

for s = 1.0: -0.1: 0.0,..., end

Successively set e to the unit n-vectors:

for e = eye(n),..., end

The line

for V = A,..., end

for

587

has the same effect as

for j = 1:n, V = A(:,j);..., end

except j is also set here.

See Also break, end, if, return, switch, while

The colon operator :

format

588

1formatPurpose Control the display format for output

Graphical
Interface

As an alternative to format, use preferences. Select Preferences from the File
menu in the MATLAB desktop and use Command Window preferences.

Syntax format
format type
format('type')

Description MATLAB performs all computations in double precision. Use the format
function to control the output format of the numeric values displayed in the
Command Window. The format function affects only how numbers are
displayed, not how MATLAB computes or saves them. The specified format
applies only to the current session. To maintain a format across sessions, use
MATLAB preferences.

format by itself, changes the output format to the default type, short, which is
5-digit scaled, fixed-point values.

format type changes the format to the specified type. The table below
describes the allowable values for type. To see the current type file, use
get(0,'Format'), or for compact versus loose, use get(0,'FormatSpacing').

Value for type Result Example

+ +, -, blank +

bank Fixed dollars and cents 3.14

compact Suppresses excess line
feeds to show more output
in a single screen. Contrast
with loose.

theta = pi/2
theta=
 1.5708

hex Hexadecimal 400921fb54442d18

long 15-digit scaled fixed point 3.14159265358979

long e 15-digit floating point 3.141592653589793e+
00

format

589

format('type') is the function form of the syntax.

Examples Change the format for pi to long by typing.

format long

View the result by typing

pi

and MATLAB returns

ans =
 3.14159265358979

View the current format by typing

get(0,'Format')

MATLAB returns

ans =
long

Set the format to short e by typing

long g Best of 15-digit fixed or
floating point

3.14159265358979

loose Adds linefeeds to make
output more readable.
Contrast with compact.

theta = pi/2

theta=

 1.5708

rat Ratio of small integers 355/113

short 5-digit scaled fixed point 3.1416

short e 5-digit floating point 3.1416e+00

short g Best of 5-digit fixed or
floating point

3.1416

Value for type Result Example

format

590

format short e

or use the function form of the syntax

format('short','e')

Algorithms If the largest element of a matrix is larger than 103 or smaller than 10-3,
MATLAB applies a common scale factor for the short and long formats. The
function format + displays +, -, and blank characters for positive, negative, and
zero elements. format hex displays the hexadecimal representation of a binary
double-precision number. format rat uses a continued fraction algorithm to
approximate floating-point values by ratios of small integers. See rat.m for the
complete code.

See Also fprintf, num2str, rat, sprintf, spy

fplot

591

1fplotPurpose Plot a function between specified limits

Syntax fplot('function',limits)
fplot('function',limits,LineSpec)
fplot('function',limits,tol)
fplot('function',limits,tol,LineSpec)
fplot('function',limits,n)
[X,Y] = fplot('function',limits,...)
[...] = plot('function',limits,tol,n,LineSpec,P1,P2,...)

Description fplot plots a function between specified limits. The function must be of the
form y = f(x), where x is a vector whose range specifies the limits, and y is a
vector the same size as x and contains the function’s value at the points in x
(see the first example). If the function returns more than one value for a given
x, then y is a matrix whose columns contain each component of f(x) (see the
second example).

fplot('function',limits) plots 'function' between the limits specified by
limits. limits is a vector specifying the x-axis limits ([xmin xmax]), or the x-
and y-axis limits, ([xmin xmax ymin ymax]).

'function' must be the name of an M-file function or a string with variable x
that may be passed to eval, such as 'sin(x)', 'diric(x,10)' or
'[sin(x),cos(x)]'.

The function f(x) must return a row vector for each element of vector x. For
example, if f(x) returns [f1(x),f2(x),f3(x)] then for input [x1;x2] the
function should return the matrix

f1(x1) f2(x1) f3(x1)
f1(x2) f2(x2) f3(x2)

fplot('function',limits,LineSpec) plots 'function' using the line
specification LineSpec.

fplot('function',limits,tol) plots 'function' using the relative error
tolerance tol (The default is 2e–3, i.e., 0.2 percent accuracy).

fplot

592

fplot('function',limits,tol,LineSpec) plots 'function' using the
relative error tolerance tol and a line specification that determines line type,
marker symbol, and color.

fplot('function',limits,n) with n >= 1 plots the function with a minimum
of n+1 points. The default n is 1. The maximum step size is restricted to be (1/
n)*(xmax-xmin).

fplot(fun,lims,...) accepts combinations of the optional arguments tol, n,
and LineSpec, in any order.

[X,Y] = fplot('function',limits,...) returns the abscissas and ordinates
for 'function' in X and Y. No plot is drawn on the screen, however you can plot
the function using plot(X,Y).

[...] = plot('function',limits,tol,n,LineSpec,P1,P2,...) enablesyou
to pass parameters P1, P2, etc. directly to the function 'function':

Y = function(X,P1,P2,...)

To use default values for tol, n, or LineSpec, you can pass in the empty matrix
([]).

Remarks fplot uses adaptive step control to produce a representative graph,
concentrating its evaluation in regions where the function’s rate of change is
the greatest.

Examples Plot the hyperbolic tangent function from -2 to 2:

fplot

593

fplot('tanh',[-2 2])

Create an M-file, myfun, that returns a two column matrix:

function Y = myfun(x)
Y(:,1) = 200∗sin(x(:))./x(:);
Y(:,2) = x(:).^2;

Plot the function with the statement:

fplot('myfun',[–20 20]

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

fplot

594

Addition Examples
subplot(2,2,1);fplot('humps',[0 1])
subplot(2,2,2);fplot('abs(exp(-j*x*(0:9))*ones(10,1))',[0 2*pi])
subplot(2,2,3);fplot('[tan(x),sin(x),cos(x)]',2*pi*[-1 1 -1 1])
subplot(2,2,4);fplot('sin(1./x)',[0.01 0.1],1e-3)

See Also eval, feval, LineSpec, plot

−20 −15 −10 −5 0 5 10 15 20
−50

0

50

100

150

200

250

300

350

400

fprintf

595

1fprintfPurpose Write formatted data to file

Syntax count = fprintf(fid,format,A,...)

Description count = fprintf(fid,format,A,...) formats the data in the real part of
matrix A (and in any additional matrix arguments) under control of the
specified format string, and writes it to the file associated with file identifier
fid. fprintf returns a count of the number of bytes written.

Argument fid is an integer file identifier obtained from fopen. (It may also be
1 for standard output (the screen) or 2 for standard error. See fopen for more
information.) Omitting fid causes output to appear on the screen.

Format String
The format argument is a string containing C language conversion
specifications. A conversion specification controls the notation, alignment,
significant digits, field width, and other aspects of output format. The format
string can contain escape characters to represent non-printing characters such
as newline characters and tabs.

Conversion specifications begin with the % character and contain these optional
and required elements:

• Flags (optional)

• Width and precision fields (optional)

• A subtype specifier (optional)

• Conversion character (required)

You specify these elements in the following order:

%–12.5eStart of conversion specif ication

Field width

Conversion character

Flags

Precision

fprintf

596

Flags
You can control the alignment of the output using any of these optional flags.

Field Width and Precision Specifications
You can control the width and precision of the output by including these
options in the format string.

Conversion Characters
Conversion characters specify the notation of the output.

Character Description Example

A minus sign (–) Left-justifies the converted argument in
its field.

%–5.2d

A plus sign (+) Always prints a sign character (+ or –). %+5.2d

Zero (0) Pad with zeros rather than spaces. %05.2d

Character Description Example

Field width A digit string specifying the minimum
number of digits to be printed.

%6f

Precision A digit string including a period (.)
specifying the number of digits to be
printed to the right of the decimal point.

%6.2f

Specifier Description

%c Single character

%d Decimal notation (signed)

%e Exponential notation (using a lowercase e as in
3.1415e+00)

%E Exponential notation (using an uppercase E as in
3.1415E+00)

fprintf

597

Conversion characters %o, %u, %x, and %X support subtype specifiers. See
Remarks for more information.

Escape Characters

This table lists the escape character sequences you use to specify non-printing
characters in a format specification.

%f Fixed-point notation

%g The more compact of %e or %f, as defined in [2].
Insignificant zeros do not print.

%G Same as %g, but using an uppercase E

%o Octal notation (unsigned)

%s String of characters

%u Decimal notation (unsigned)

%x Hexadecimal notation (using lowercase letters a–f)

%X Hexadecimal notation (using uppercase letters A–F)

Character Description

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Horizontal tab

\\ Backslash

Specifier Description

fprintf

598

Remarks The fprintf function behaves like its ANSI C language namesake with these
exceptions and extensions.

• If you use fprintf to convert a MATLAB double into an integer, and the
double contains a value that cannot be represented as an integer (for
example, it contains a fraction), MATLAB ignores the specified conversion
and outputs the value in exponential format. To successfully perform this
conversion, use the fix, floor, ceil, or round functions to change the value
in the double into a value that can be represented as an integer before
passing it to sprintf.

• The following, non-standard subtype specifiers are supported for the
conversion characters %o, %u, %x, and %X.

For example, to print a double value in hexidecimal use the format '%bx'

• The fprintf function is vectorized for nonscalar arguments. The function
recycles the format string through the elements of A (columnwise) until all
the elements are used up. The function then continues in a similar manner
through any additional matrix arguments.

Examples The statements

x = 0:.1:1;
y = [x; exp(x)];

\'' or ''

(two single
quotes)

Single quotation mark

%% Percent character

Character Description

b The underlying C data type is a double rather than an unsigned
integer. For example, to print a double-precision value in
hexadecimal, use a format like '%bx'.

t The underlying C data type is a float rather than an unsigned
integer.

fprintf

599

fid = fopen('exp.txt','w');
fprintf(fid,'%6.2f %12.8f\n',y);
fclose(fid)

create a text file called exp.txt containing a short table of the exponential
function:

0.00 1.00000000
0.10 1.10517092
...
1.00 2.71828183

The command

fprintf('A unit circle has circumference %g.\n',2∗pi)

displays a line on the screen:

A unit circle has circumference 6.283186.

To insert a single quotation mark in a string, use two single quotation marks
together. For example,

fprintf(1,'It''s Friday.\n')

displays on the screen:

It's Friday.

The commands

B = [8.8 7.7; 8800 7700]
fprintf(1,'X is %6.2f meters or %8.3f mm\n',9.9,9900,B)

display the lines:

X is 9.90 meters or 9900.000 mm
X is 8.80 meters or 8800.000 mm
X is 7.70 meters or 7700.000 mm

Explicitly convert MATLAB double-precision variables to integral values for
use with an integral conversion specifier. For instance, to convert signed 32-bit
data to hexadecimal format:

a = [6 10 14 44];
fprintf('%9X\n',a + (a<0)∗2^32)

fprintf

600

 6
 A
 E
 2C

See Also fclose, ferror, fopen, fread, fscanf, fseek, ftell, fwrite, disp

References [1] Kernighan, B.W. and D.M. Ritchie, The C Programming Language, Second
Edition, Prentice-Hall, Inc., 1988.

[2] ANSI specification X3.159-1989: “Programming Language C,” ANSI, 1430
Broadway, New York, NY 10018.

fprintf (serial)

601

1fprintf (serial)Purpose Write text to the device

Syntax fprintf(obj,'cmd')
fprintf(obj,'format','cmd')
fprintf(obj,'cmd','mode')
fprintf(obj,'format','cmd','mode')

Arguments

Description fprintf(obj,'cmd') writes the string cmd to the device connected to obj. The
default format is %s\n. The write operation is synchronous and blocks the
command line until execution is complete.

fprintf(obj,'format','cmd') writes the string using the format specified by
format. format is a C language conversion specification. Conversion
specifications involve the % character and the conversion characters d, i, o, u, x,
X, f, e, E, g, G, c, and s. Refer to the sprintf file I/O format specifications or a
C manual for more information.

fprintf(obj,'cmd','mode') writes the string with command line access
specified by mode. If mode is sync, cmd is written synchronously and the
command line is blocked. If mode is async, cmd is written asynchronously and
the command line is not blocked. If mode is not specified, the write operation is
synchronous.

fprintf(obj,'format','cmd','mode') writes the string using the specified
format. If mode is sync, cmd is written synchronously. If mode is async, cmd is
written asynchronously.

Remarks Before you can write text to the device, it must be connected to obj with the
fopen function. A connected serial port object has a Status property value of

obj A serial port object.

'cmd' The string written to the device.

'format' C language conversion specification.

'mode' Specifies whether data is written synchronously or
asynchronously.

fprintf (serial)

602

open. An error is returned if you attempt to perform a write operation while obj
is not connected to the device.

The ValuesSent property value is increased by the number of values written
each time fprintf is issued.

An error occurs if the output buffer cannot hold all the data to be written. You
can specify the size of the output buffer with the OutputBufferSize property.

If you use the help command to display help for fprintf, then you need to
supply the pathname shown below.

help serial/fprintf

Synchronous Versus Asynchronous Write Operations
By default, text is written to the device synchronously and the command line
is blocked until the operation completes. You can perform an asynchronous
write by configuring the mode input argument to be async. For asynchronous
writes:

• The BytesToOutput property value is continuously updated to reflect the
number of bytes in the output buffer.

• The M-file action function specified for the OutputEmptyAction property is
executed when the output buffer is empty.

You can determine whether an asynchronous write operation is in progress
with the TransferStatus property.

Synchronous and asynchronous write operations are discussed in more detail
in Writing Data.

Rules for Completing a Write Operation with fprintf
A synchronous or asynchronous write operation using fprintf completes
when:

• The specified data is written.

• The time specified by the Timeout property passes.

Additionally, you can stop an asynchronous write operation with the
stopasync function.

fprintf (serial)

603

Rules for Writing the Terminator
All occurrences of \n in cmd are replaced with the Terminator property value.
Therefore, when using the default format %s\n, all commands written to the
device will end with this property value. The terminator required by your
device will be described in its documentation.

Example Create the serial port object s, connect s to a Tektronix TDS 210 oscilloscope,
and write the RS232? command with the fprintf function. RS232? instructs
the scope to return serial port communications settings.

s = serial('COM1');
fopen(s)
fprintf(s,'RS232?')

Since the default format for fprintf is %s\n, the terminator specified by the
Terminator property was automatically written. However, in some cases you
may want to suppress writing the terminator. To do so, you must explicitly
specify a format for the data that does not include the terminator.

fprintf(s,'%s','RS232?')

See Also Functions
fopen, fwrite, stopasync

Properties
BytesToOutput, OutputBufferSize, OutputEmptyAction, Status,
TransferStatus, ValuesSent

frame2im

604

1frame2imPurpose Convert movie frame to indexed image

Syntax [X,Map] = frame2im(F)

Description [X,Map] = frame2im(F) converts the single movie frame F into the indexed
image X and associated colormap Map. The functions getframe and im2frame
create a movie frame. If the frame contains truecolor data, then Map is empty.

See Also getframe, im2frame, movie

frameedit

605

1frameeditPurpose Create and edit print frames for Simulink and Stateflow block diagrams

Syntax frameedit
frameedit filename

Description frameedit starts the PrintFrame Editor, a graphical user interface you use to
create borders for Simulink and Stateflow block diagrams. With no argument,
frameedit opens the PrintFrame Editor window with a new file.

frameedit filename opens the PrintFrame Editor window with the specified
filename, where filename is a figure file (.fig) previously created and saved
using frameedit.

frameedit

606

Remarks This illustrates the main features of the PrintFrame Editor.

Closing the PrintFrame Editor
To close the PrintFrame Editor window, click the close box in the upper right
corner, or select Close from the File menu.

Use these buttons to create and edit borders.

Use the File menu for page setup, and saving and opening print frames. Change the information in a cell, and resize, add, and
remove cells.

Addand
remove
rows.

Zoom in or
out on
selected cell.

Use these
buttons to align
information
within a cell.

Get help for the PrintFrame Editor.

Use the list box and button to add
information in cells, such as text
or the date.

frameedit

607

Printing Simulink Block Diagrams with Print Frames
Select Print from the Simulink File menu. Check the Frame box and supply
the filename for the print frame you want to use. Click OK in the Print dialog
box.

Getting Help for the PrintFrame Editor
For further instructions on using the PrintFrame Editor, select PrintFrame
Editor Help from the Help menu in the PrintFrame Editor.

fread

608

1freadPurpose Read binary data from file

Syntax [A,count] = fread(fid,size,precision)
[A,count] = fread(fid,size,precision,skip)

Description [A,count] = fread(fid,size,precision) reads binary data from the
specified file and writes it into matrix A. Optional output argument count
returns the number of elements successfully read. fid is an integer file
identifier obtained from fopen.

size is an optional argument that determines how much data is read. If size
is not specified, fread reads to the end of the file and the file pointer is at the
end of the file (see feof for details). Valid options are:

precision is a string that specifies the format of the data to be read. It
commonly contains a datatype specifier such as int or float, followed by an
integer giving the size in bits. Any of the strings in the following table, either
the MATLAB version or their C or Fortran equivalent, may be used. If precision
is not specified, the default is 'uchar'..

n Reads n elements into a column vector.

inf Reads to the end of the file, resulting in a column vector containing
the same number of elements as are in the file.

[m,n] Reads enough elements to fill an m–by–n matrix, filling in elements
in column order, padding with zeros if the file is too small to fill the
matrix. n can be specified as inf, but m cannot.

MATLAB C or Fortran Interpretation

'schar' 'signed char' Signed character; 8 bits

'uchar' 'unsigned char' Unsigned character; 8 bits

'int8' 'integer*1' Integer; 8 bits

'int16' 'integer*2' Integer; 16 bits

'int32' 'integer*4' Integer; 32 bits

fread

609

The following platform dependent formats are also supported but they are not
guaranteed to be the same size on all platforms.

'int64' 'integer*8' Integer; 64 bits

'uint8' 'integer*1' Unsigned integer; 8 bits

'uint16' 'integer*2' Unsigned integer; 16 bits

'uint32' 'integer*4' Unsigned integer; 32 bits

'uint64' 'integer*8' Unsigned integer; 64 bits

'float32' 'real*4' Floating-point; 32 bits

'float64' 'real*8' Floating-point; 64 bits

'double' 'real*8' Floating-point; 64 bits

MATLAB C or Fortran Interpretation

'char' 'char*1' Character; 8 bits

'short' 'short' Integer; 16 bits

'int' 'int' Integer; 32 bits

'long' 'long' Integer; 32 or 64 bits

'ushort' 'unsigned short' Unsigned integer; 16 bits

'uint' 'unsigned int' Unsigned integer; 32 bits

'ulong' 'unsigned long' Unsigned integer; 32 or 64 bits

'float' 'float' Floating-point; 32 bits

MATLAB C or Fortran Interpretation

fread

610

The following formats map to an input stream of bits rather than bytes.

By default, numeric values are returned in class 'double' arrays. To return
numeric values stored in classes other thatn double, create your precision
argument by first specifying your source format, then following it with the
characters “=>”, and finally specifying your destination format. You are not
reuiqred to use the exact name of a MATLAB class type for destination. (See
class for details). fread translates the name to the most appropriate MATLAB
class type. If the source and destination formats are the same, the following
shorthand notation may be used:

*source

which means:

source=>source

This table shows some example precision format strings.

[A,count] = fread(fid,size,precision,skip) includes an optional skip
argument that specifies the number of bytes to skip after each precision value
is read. With skip is used, the precision string may contain a positive integer

MATLAB C or Fortran Interpretation

'bitN' - Signed integer; N bits (1 ≤ N ≤ 64)

'ubitN' - Unsigned integer; N bits (1 ≤ N ≤ 64)

'uint8=>uint8' Read in unsigned 8-bit integers and save them in
an unsigned 8-bit integer array.

'*uint8' Shorthand version of the above.

'bit4=>int8' Read in signed 4-bit integers packed in bytes and
save them in a signed 8-bit array. Each 4-bit
integer becomes an 8-bit integer

'double=>real*4' Read in doubles, convert and save as a 32-bit
floating point array.

fread

611

repetition factor of the form 'N*' which prepends the source format
specification, such as '40*uchar'.

Note Do not confuse the asterisk (*) used in the repetition factor with the
asterisk used as precision format shorthand. The format string '40*uchar' is
equivalent to '40*uchar=>double', not '40*uchar=>uchar'.

When skip is specified, fread reads in at most a repetition factor number of
values (default is 1), does a skip of input specified by the skip argument, reads
in another block of values, does a skip of input, and so on, until size number
of values have beenread. If precision is a bit format like 'bitN' or 'ubitN',
skip is specified in bits. Use the repetition factor with the skip argument to
extract data in noncontiguous fields from fixed length records.

If fread reaches the end of the file and the current input stream does not
contain enough bits to write out a complete matrix element of the specified
precision, fread pads the last byte or element with zero bits until the full value
is obtained. If an error occurs, reading is done up to the last full value.

Examples For example,

type fread.m

displays the complete M-file containing this fread help entry. To simulate this
command using fread, enter the following:

fid = fopen('fread.m','r');
F = fread(fid);
s = char(F')

In the example, the fread command assumes the default size, inf, and the
default precision, 'uchar'. fread reads the entire file, converting the unsigned
characters into a column vector of class 'double' (double precision floating
point). To display the result as readable text, the 'double' column vector is
transposed to a row vector and converted to class 'char' using the char
function.

As another example,

s = fread(fid,120,'40*uchar=>uchar',8);

fread

612

reads in 120 characters in blocks of 40, each separated by 8 characters. Note
that the class type of s is 'uint8' since it is the appropriate class
corresponding to the destination format, 'uchar'. Also, since 40 evenly divides
120, the last block read is a full block which means that a final skip will be done
before the command is finished. If the last block read is not a full block then
fread will not finish with a skip.

See fopen for informationabout reading Big and Little Endian files.

See Also fclose, ferror, fopen, fprintf, fread, fscanf, fseek, ftell, fwrite

fread (serial)

613

1fread (serial)Purpose Read binary data from the device

Syntax A = fread(obj,size)
A = fread(obj,size,'precision')
[A,count] = fread(...)
[A,count,msg] = fread(...)

Arguments

Description A = fread(obj,size) reads binary data from the device connected to obj, and
returns the data to A. The maximum number of values to read is specified by
size. Valid options for size are:

size cannot be inf, and an error is returned if the specified number of values
cannot be stored in the input buffer. You specify the size, in bytes, of the input
buffer with the InputBufferSize property. A value is defined as a byte
multiplied by the precision (see below).

A = fread(obj,size,'precision') reads binary data with precision
specified by precision.

precision controls the number of bits read for each value and the
interpretation of those bits as integer, floating-point, or character values. If
precision is not specified, uchar (an 8-bit unsigned character) is used. By

obj A serial port object.

size The number of values to read.

'precision' The number of bits read for each value, and the interpretation
of the bits as character, integer, or floating-point values.

A Binary data returned from the device.

count The number of values read.

msg A message indicating if the read operation was unsuccessful.

n Read at most n values into a column vector.

[m,n] Read at most m-by-n values filling an m–by–n matrix in column
order.

fread (serial)

614

default, numeric values are returned in double-precision arrays. The supported
values for precision are listed below in Remarks.

[A,count] = fread(...) returns the number of values read to count.

[A,count,msg] = fread(...) returns a warning message to msg if the read
operation was unsuccessful.

Remarks Before you can read data from the device, it must be connected to obj with the
fopen function. A connected serial port object has a Status property value of
open. An error is returned if you attempt to perform a read operation while obj
is not connected to the device.

If msg is not included as an output argument and the read operation was not
successful, then a warning message is returned to the command line.

The ValuesReceived property value is increased by the number of values read,
each time fread is issued.

If you use the help command to display help for fread, then you need to supply
the pathname shown below.

help serial/fread

Rules for Completing a Binary Read Operation
A read operation with fread blocks access to the MATLAB command line until:

• The specified number of values are read.

• The time specified by the Timeout property passes.

Note The Terminator property is not used for binary read operations.

fread (serial)

615

Supported Precisions
The supported values for precision are listed below.

Data Type Precision Interpretation

Character uchar 8-bit unsigned character

schar 8-bit signed character

char 8-bit signed or unsigned character

Integer int8 8-bit integer

int16 16-bit integer

int32 32-bit integer

uint8 8-bit unsigned integer

uint16 16-bit unsigned integer

uint32 32-bit unsigned integer

short 16-bit integer

int 32-bit integer

long 32- or 64-bit integer

ushort 16-bit unsigned integer

uint 32-bit unsigned integer

ulong 32- or 64-bit unsigned integer

Floating-point single 32-bit floating point

float32 32-bit floating point

float 32-bit floating point

double 64-bit floating point

float64 64-bit floating point

fread (serial)

616

See Also Functions
fgetl, fgets, fopen, fscanf

Properties
BytesAvailable, BytesAvailableAction, InputBufferSize, Status,
Terminator, ValuesReceived

freqspace

617

1freqspacePurpose Determine frequency spacing for frequency response

Syntax [f1,f2] = freqspace(n)
[f1,f2] = freqspace([m n])
[x1,y1] = freqspace(...,'meshgrid')
f = freqspace(N)
f = freqspace(N,'whole')

Description freqspace returns the implied frequency range for equally spaced frequency
responses. freqspace is useful when creating desired frequency responses for
various one- and two-dimensional applications.

[f1,f2] = freqspace(n) returns the two-dimensional frequency vectors f1
and f2 for an n-by-n matrix.

For n odd, both f1 and f2 are [-n+1:2:n-1]/n.

For n even, both f1 and f2 are [-n:2:n-2]/n.

[f1,f2] = freqspace([m n]) returns the two-dimensional frequency
vectors f1 and f2 for an m-by-n matrix.

[x1,y1] = freqspace(...,'meshgrid') is equivalent to

[f1,f2] = freqspace(...);
[x1,y1] = meshgrid(f1,f2);

f = freqspace(N) returns the one-dimensional frequency vector f assuming
N evenly spaced points around the unit circle. For N even or odd, f is (0:2/N:1).
For N even, freqspace therefore returns (N+2)/2 points. For N odd, it returns
(N+1)/2 points.

f = freqspace(N,'whole') returns N evenly spaced points around the whole
unit circle. In this case, f is 0:2/N:2*(N-1)/N.

See Also meshgrid

frewind

618

1frewindPurpose Move the file position indicator to the beginning of an open file

Syntax frewind(fid)

Description frewind(fid) sets the file position indicator to the beginning of the file
specified by fid, an integer file identifier obtained from fopen.

Remarks Rewinding a fid associated with a tape device may not work even though
frewind does not generate an error message.

See Also fclose, ferror, fopen, fprintf, fread, fscanf, fseek, ftell, fwrite

fscanf

619

1fscanfPurpose Read formatted data from file

Syntax A = fscanf(fid,format)
[A,count] = fscanf(fid,format,size)

Description A = fscanf(fid,format) reads all the data from the file specified by fid,
converts it according to the specified format string, and returns it in matrix A.
Argument fid is an integer file identifier obtained from fopen. format is a
string specifying the format of the data to be read. See “Remarks” for details.

[A,count] = fscanf(fid,format,size) reads the amount of data specified
by size, converts it according to the specified format string, and returns it
along with a count of elements successfully read. size is an argument that
determines how much data is read. Valid options are:

fscanf differs from its C language namesakes scanf() and fscanf() in an
important respect — it is vectorized in order to return a matrix argument. The
format string is cycled through the file until an end-of-file is reached or the
amount of data specified by size is read in.

Remarks When MATLAB reads a specified file, it attempts to match the data in the file
to the format string. If a match occurs, the data is written into the matrix in
column order. If a partial match occurs, only the matching data is written to
the matrix, and the read operation stops.

The format string consists of ordinary characters and/or conversion
specifications. Conversion specifications indicate the type of data to be

n Read n elements into a column vector.

inf Read to the end of the file, resulting in a column vector
containing the same number of elements as are in the file.

[m,n] Read enough elements to fill an m-by-n matrix, filling the matrix
in column order. n can be Inf, but not m.

fscanf

620

matched and involve the character %, optional width fields, and conversion
characters, organized as shown below:

Add one or more of these characters between the % and the conversion
character:

Valid conversion characters are:

If %s is used, an element read may use several MATLAB matrix elements, each
holding one character. Use %c to read space characters or %s to skip all white
space.

An asterisk (*) Skip over the matched value, if the value is matched but
not stored in the output matrix.

A digit string Maximum field width.

A letter The size of the receiving object; for example, h for short as
in %hd for a short integer, or l for long as in %ld for a long
integer or %lg for a double floating-point number.

%c Sequence of characters; number specified by field width

%d Decimal numbers

%e, %f, %g Floating-point numbers

%i Signed integer

%o Signed octal integer

%s A series of non-white-space characters

%u Signed decimal integer

%x Signed hexadecimal integer

[...] Sequence of characters (scanlist)

}%–12.5e

Initial % character
Field width
and precision

Conversion
characterFlag

fscanf

621

Mixing character and numeric conversion specifications cause the resulting
matrix to be numeric and any characters read to appear as their ASCII values,
one character per MATLAB matrix element.

For more information about format strings, refer to the scanf() and fscanf()
routines in a C language reference manual.

Examples The example in fprintf generates an ASCII text file called exp.txt that looks
like:

0.00 1.00000000
0.10 1.10517092
...
1.00 2.71828183

Read this ASCII file back into a two-column MATLAB matrix:

fid = fopen('exp.txt');
a = fscanf(fid,'%g %g',[2 inf]) % It has two rows now.
a = a';
fclose(fid)

See Also fgetl, fgets, fread, fprintf, fscanf, input, sscanf, textread

fscanf (serial)

622

1fscanf (serial)Purpose Read data from the device, and format as text

Syntax A = fscanf(obj)
A = fscanf(obj,'format')
A = fscanf(obj,'format',size)
[A,count] = fscanf(...)
[A,count,msg] = fscanf(...)

Arguments

Description A = fscanf(obj) reads data from the device connected to obj, and returns it
to A. The data is converted to text using the %c format.

A = fscanf(obj,'format') reads data and converts it according to format.
format is a C language conversion specification. Conversion specifications
involve the % character and the conversion characters d, i, o, u, x, X, f, e, E, g,
G, c, and s. Refer to the sscanf file I/O format specifications or a C manual for
more information.

A = fscanf(obj,'format',size) reads the number of values specified by
size. Valid options for size are:

size cannot be inf, and an error is returned if the specified number of values
cannot be stored in the input buffer. If size is not of the form [m,n], and a
character conversion is specified, then A is returned as a row vector. You specify

obj A serial port object.

'format' C language conversion specification.

size The number of values to read.

A Data read from the device and formatted as text.

count The number of values read.

msg A message indicating if the read operation was unsuccessful.

n Read at most n values into a column vector.

[m,n] Read at most m-by-n values filling an m–by–n matrix in column
order.

fscanf (serial)

623

the size, in bytes, of the input buffer with the InputBufferSize property. An
ASCII value is one byte.

[A,count] = fscanf(...) returns the number of values read to count.

[A,count,msg] = fscanf(...) returns a warning message to msg if the read
operation did not complete successfully.

Remarks Before you can read data from the device, it must be connected to obj with the
fopen function. A connected serial port object has a Status property value of
open. An error is returned if you attempt to perform a read operation while obj
is not connected to the device.

If msg is not included as an output argument and the read operation was not
successful, then a warning message is returned to the command line.

The ValuesReceived property value is increased by the number of values read
– including the terminator – each time fscanf is issued.

If you use the help command to display help for fscanf, then you need to
supply the pathname shown below.

help serial/fscanf

Rules for Completing a Read Operation with fscanf
A read operation with fscanf blocks access to the MATLAB command line
until:

• The terminator specified by the Terminator property is read.

• The time specified by the Timeout property passes.

• The number of values specified by size is read.

• The input buffer is filled (unless size is specified)

Example Create the serial port object s and connect s to a Tektronix TDS 210
oscilloscope, which is displaying sine wave.

s = serial('COM1');
fopen(s)

fscanf (serial)

624

Use the fprintf function to configure the scope to measure the peak-to-peak
voltage of the sine wave, return the measurement type, and return the
peak-to-peak voltage.

fprintf(s,'MEASUREMENT:IMMED:TYPE PK2PK')
fprintf(s,'MEASUREMENT:IMMED:TYPE?')
fprintf(s,'MEASUREMENT:IMMED:VALUE?')

Since the default value for the ReadAsyncMode property is continuous, data
associated with the two query commands is automatically returned to the input
buffer.

s.BytesAvailable
ans =
 21

Use fscanf to read the measurement type. The operation will complete when
the first terminator is read.

meas = fscanf(s)
meas =
PK2PK

Use fscanf to read the peak-to-peak voltage as a floating-point number, and
exclude the terminator.

pk2pk = fscanf(s,'%e',14)
pk2pk =
 2.0200

Disconnect s from the scope, and remove s from memory and the workspace.

fclose(s)
delete(s)
clear s

See Also Functions
fgetl, fgets, fopen, fread, strread

Properties
BytesAvailable, BytesAvailableAction, InputBufferSize, Status,
Terminator, Timeout

fseek

625

1fseekPurpose Set file position indicator

Syntax status = fseek(fid,offset,origin)

Description status = fseek(fid,offset,origin) repositions the file position indicator in
the file with the given fid to the byte with the specified offset relative to
origin.

Arguments

See Also fopen, ftell

fid An integer file identifier obtained from fopen.

offset A value that is interpreted as follows:

offset > 0 Move position indicator offset bytes toward the
end of the file.

offset = 0 Do not change position.

offset < 0 Move position indicator offset bytes toward the
beginning of the file.

origin A string whose legal values are:

'bof' –1: Beginning of file.

'cof' 0: Current position in file.

'eof' 1: End of file.

status A returned value that is 0 if the fseek operation is successful
and –1 if it fails. If an error occurs, use the function ferror to
get more information.

ftell

626

1ftellPurpose Get file position indicator

Syntax position = ftell(fid)

Description position = ftell(fid) returns the location of the file position indicator for
the file specified by fid, an integer file identifier obtained from fopen. The
position is a nonnegative integer specified in bytes from the beginning of the
file. A returned value of –1 for position indicates that the query was
unsuccessful; use ferror to determine the nature of the error.

See Also fclose, ferror, fopen, fprintf, fread, fscanf, fseek, fwrite

full

627

1fullPurpose Convert sparse matrix to full matrix

Syntax A = full(S)

Description A = full(S) converts a sparse matrix S to full storage organization. If S is a
full matrix, it is left unchanged. If A is full, issparse(A) is 0.

Remarks Let X be an m-by-n matrix with nz = nnz(X) nonzero entries. Then full(X)
requires space to store m∗n real numbers while sparse(X) requires space to
store nz real numbers and (nz+n) integers.

On most computers, a real number requires twice as much storage as an
integer. On such computers, sparse(X) requires less storage than full(X) if
the density, nnz/prod(size(X)), is less than one third. Operations on sparse
matrices, however, require more execution time per element than those on full
matrices, so density should be considerably less than two-thirds before sparse
storage is used.

Examples Here is an example of a sparse matrix with a density of about two-thirds.
sparse(S) and full(S) require about the same number of bytes of storage.

S = sparse(rand(200,200) < 2/3);
A = full(S);
whos
Name Size Bytes Class

A 200X200 320000 double array (logical)
 S 200X200 318432 sparse array (logical)

See Also sparse

fullfile

628

1fullfilePurpose Build a full filename from parts

Syntax fullfile('dir1','dir2',...,'filename')
f = fullfile('dir1','dir2',...,'filename')

Description fullfile(dir1,dir2,...,filename) builds a full filename from the
directories and filename specified. This is conceptually equivalent to

f = [dir1 dirsep dir2 dirsep ... dirsep filename]

except that care is taken to handle the cases when the directories begin or end
with a directory separator.

Examples To create the full filename from a disk name, directories, and filename,

f = fullfile('C:','Applications','matlab','myfun.m')
f =
C:\Applications\matlab\myfun.m

The following examples both produce the same result on UNIX, but only the
second one works on all platforms.

fullfile(matlabroot,'toolbox/matlab/general/Contents.m') and

fullfile(matlabroot,'toolbox','matlab','general','Contents.m')

See Also fileparts

func2str

629

1func2strPurpose Constructs a function name string from a function handle

Syntax s = func2str(fhandle)

Description func2str(fhandle) constructs a string, s, that holds the name of the function
to which the function handle, fhandle, belongs.

When you need to perform a string operation, such as compare or display, on a
function handle, you can use func2str to construct a string bearing the
function name.

The func2str command also operates on MATLAB data structures that hold
more than one function handle, (for example, arrays). It returns the names of
all function handles in the data structure. These names are contained in a cell
array of strings.

Examples To create a function name string from the function handle, @humps

funname = func2str(@humps)
funname =
humps

To create a cell array of function names from an array of function handles

func_array = func2str([@sin @cos @tan])
func_array =
 'sin' 'cos' 'tan'

See Also function_handle, str2func, functions

function

630

1functionPurpose Function M-files

Description You add new functions to MATLAB’s vocabulary by expressing them in terms
of existing functions. The existing commands and functions that compose the
new function reside in a text file called an M-file.

M-files can be either scripts or functions. Scripts are simply files containing a
sequence of MATLAB statements. Functions make use of their own local
variables and accept input arguments.

The name of an M-file begins with an alphabetic character, and has a filename
extension of .m . The M-file name, less its extension, is what MATLAB searches
for when you try to use the script or function.

A line at the top of a function M-file contains the syntax definition. The name
of a function, as defined in the first line of the M-file, should be the same as the
name of the file without the .m extension. For example, the existence of a file
on disk called stat.m with

function [mean,stdev] = stat(x)
n = length(x);
mean = sum(x)/n;
stdev = sqrt(sum((x-mean).^2/n));

defines a new function called stat that calculates the mean and standard
deviation of a vector. The variables within the body of the function are all local
variables.

A subfunction,visible only to the other functions in the same file, is created by
defining a new function with the function keyword after the body of the
preceding function or subfunction. For example, avg is a subfunction within the
file stat.m:

function [mean,stdev] = stat(x)
n = length(x);
mean = avg(x,n);
stdev = sqrt(sum((x-avg(x,n)).^2)/n);

function mean = avg(x,n)
mean = sum(x)/n;

function

631

Subfunctions are not visible outside the file where they are defined. Functions
normally return when the end of the function is reached. Use a return
statement to force an early return.

When MATLAB does not recognize a function by name, it searches for a file of
the same name on disk. If the function is found, MATLAB compiles it into
memory for subsequent use. In general, if you input the name of something to
MATLAB, the MATLAB interpreter:

1 Checks to see if the name is a variable.

2 Checks to see if the name is an internal function (eig, sin) that was not
overloaded.

3 Checks to see if the name is a local function (local in sense of multifunction
file).

4 Checks to see if the name is a function in a private directory.

5 Locates any and all occurrences of function in method directories and on the
path. Order is of no importance.

At execution, MATLAB:

6 Checks to see if the name is wired to a specific function (2, 3, & 4 above)

7 Uses precedence rules to determine which instance from 5 above to call (we
may default to an internal MATLAB function). Constructors have higher
precedence than anything else.

When you call an M-file function from the command line or from within
another M-file, MATLAB parses the function and stores it in memory. The
parsed function remains in memory until cleared with the clear command or
you quit MATLAB. The pcode command performs the parsing step and stores
the result on the disk as a P-file to be loaded later.

See Also nargin, nargout, pcode, varargin, varargout, what

function_handle (@)

632

1function_handle (@)Purpose MATLAB data type that is a handle to a function

Syntax handle = @function

Description @function returns a handle to the specified MATLAB function.

A function handle is a MATLAB data type that captures all the information
about a function that MATLAB needs to execute, or evaluate, it. A function
handle is typically passed in an argument list to other functions. These other
functions then use the handle as a means to call the function for whom the
handle was constructed.

Because many MATLAB functions are overloaded, a function handle often
maps to a number of code sources (e.g., built-in code, M-files), that implement
the function. A function handle stores the context of all of these overloaded
sources, or methods, if they are on the MATLAB path at the time the handle is
created.

You evaluate a function handle using the MATLAB feval command. If you
pass a function handle as an argument into another function, then the
receiving function must use feval to evaluate the function. When you evaluate
an overloaded function handle, MATLAB selects and executes one of the
overloaded methods whose context is stored in the handle.

As a standard MATLAB data type, a function handle can be manipulated and
operated on in the same manner as other MATLAB data types.

Function handles enable you to:

• Pass a function reference to another function within the handle

• Reduce the number of files that define your functions

• Improve performance in repeated operations

• Ensure reliability when evaluating functions

Examples The following example creates a function handle for the humps function and
assigns it to the variable, fhandle.

fhandle = @humps;

Pass the handle to another function in the same way you would pass any
argument. This example passes the function handle just created to fminbnd,
which then minimizes over the interval [0.3, 1].

function_handle (@)

633

x = fminbnd (@humps, 0.3, 1)
x =
 0.6370

See Also str2func, func2str, functions

functions

634

1functionsPurpose Return information about a function handle

Syntax f = functions(funhandle)
f = functions(@fun)

Description f = functions(funhandle) returns, in a MATLAB structure, the function
name, type, and filename for the function handle stored in the variable,
funhandle. For overloaded functions, it also returns a separate structure
identifying the classes and M-files that overload the function.

f = functions(@fun) returns the same information for the function, fun.

Examples To obtain information on a function handle for the display function,

f = functions(@deblank)
f =
 function: 'deblank'
 type: 'overloaded'
 file: 'matlabroot\toolbox\matlab\strfun\deblank.m'
 methods: [1x1 struct]

The methods field is a separate structure containing one fieldname for each
class that overloads the function. The value of each field is the path and name
of the file that defines the method.

f = functions(@display);
f.methods

ans =

 polynom: '\home\user4\@polynom\display.m'
inline: 'matlabroot\toolbox\matlab\funfun\@inline\display.m'

 serial: 'matlabroot\toolbox\matlab\iofun\@serial\display.m'
avifile: 'matlabroot\toolbox\matlab\iofun\@avifile\display.m'

See Also function_handle

funm

635

1funmPurpose Evaluate general matrix function

Syntax F = funm(A,fun)
[F,esterr] = funm(A,fun)

Description F = funm(A,fun) for a square matrix argument A, evaluates the matrix
version of the function fun. For matrix exponentials, logarithms and square
roots, use expm(A), logm(A) and sqrtm(A) instead.

[F,esterr] = funm(A,fun) does not print any message, but returns a very
rough estimate of the relative error in the computed result.

If A is symmetric or Hermitian, then its Schur form is diagonal and funm is able
to produce an accurate result.

L = logm(A) uses funm to do its computations, but it can get more reliable error
estimates by comparing expm(L) with A. S = sqrtm(A) and E = expm(A) use
completely different algorithms.

Examples Example 1. fun can be specified using @:

F = funm(magic(3),@sin)

is the matrix sine of the 3-by-3 magic matrix.

Example 2. The statements

S = funm(X,@sin);
C = funm(X,@cos);

produce the same results to within roundoff error as

E = expm(i∗X);
C = real(E);
S = imag(E);

In either case, the results satisfy S*S+C*C = I, where I = eye(size(X)).

Algorithm funm uses a potentially unstable algorithm. If A is close to a matrix with
multiple eigenvalues and poorly conditioned eigenvectors, funm may produce
inaccurate results. An attempt is made to detect this situation and print a

funm

636

warning message. The error detector is sometimes too sensitive and a message
is printed even though the the computed result is accurate.

The matrix functions are evaluated using Parlett’s algorithm, which is
described in [1].

See Also expm, logm, sqrtm, function_handle (@)

References [1] Golub, G. H. and C. F. Van Loan, Matrix Computation, Johns Hopkins
University Press, 1983, p. 384.

[2] Moler, C. B. and C. F. Van Loan, “Nineteen Dubious Ways to Compute the
Exponential of a Matrix,” SIAM Review 20, 1979, pp. 801-836.

fwrite

637

1fwritePurpose Write binary data to a file

Syntax count = fwrite(fid,A,precision)
count = fwrite(fid,A,precision,skip)

Description count = fwrite(fid,A,precision) writes the elements of matrix A to the
specified file, translating MATLAB values to the specified precision. The data
is written to the file in column order, and a count is kept of the number of
elements written successfully.

fid is an integer file identifier obtained from fopen, or 1 for standard output or
2 for standard error.

precision controls the form and size of the result. See fread for a list of
allowed precisions. For 'bitN' or 'ubitN' precisions, fwrite sets all bits in A
when the value is out-of-range.

count = fwrite(fid,A,precision,skip) includes an optional skip
argument that specifies the number of bytes to skip before each precision
value is written. With the skip argument present, fwrite skips and writes one
value, skips and writes another value, etc. until all of A is written. If precision
is a bit format like 'bitN' or 'ubitN', skip is specified in bits. This is useful
for inserting data into noncontiguous fields in fixed-length records.

Examples For example,

fid = fopen('magic5.bin','wb');
fwrite(fid,magic(5),'integer*4')

creates a 100-byte binary file, containing the 25 elements of the 5-by-5 magic
square, stored as 4-byte integers.

See Also fclose, ferror, fopen, fprintf, fread, fscanf, fseek, ftell

fwrite (serial)

638

1fwrite (serial)Purpose Write binary data to the device

Syntax fwrite(obj,A)
fwrite(obj,A,'precision')
fwrite(obj,A,’mode')
fwrite(obj,A,'precision',’mode')

Arguments

Description fwrite(obj,A) writes the binary data A to the device connected to obj.

fwrite(obj,A,'precision') writes binary data with precision specified by
precision.

precision controls the number of bits written for each value and the
interpretation of those bits as integer, floating-point, or character values. If
precision is not specified, uchar (an 8-bit unsigned character) is used. The
supported values for precision are listed below in Remarks.

fwrite(obj,A,'mode') writes binary data with command line access specified
by mode. If mode is sync, A is written synchronously and the command line is
blocked. If mode is async, A is written asynchronously and the command line is
not blocked. If mode is not specified, the write operation is synchronous.

fwrite(obj,A,'precision','mode') writes binary data with precision
specified by precision and command line access specified by mode.

Remarks Before you can write data to the device, it must be connected to obj with the
fopen function. A connected serial port object has a Status property value of
open. An error is returned if you attempt to perform a write operation while obj
is not connected to the device.

obj A serial port object.

A The binary data written to the device.

'precision' The number of bits written for each value, and the
interpretation of the bits as character, integer, or
floating-point values.

'mode' Specifies whether data is written synchronously or
asynchronously.

fwrite (serial)

639

The ValuesSent property value is increased by the number of values written
each time fwrite is issued.

An error occurs if the output buffer cannot hold all the data to be written. You
can specify the size of the output buffer with the OutputBufferSize property.

If you use the help command to display help for fwrite, then you need to
supply the pathname shown below.

help serial/fwrite

Synchronous Versus Asynchronous Write Operations
By default, data is written to the device synchronously and the command line
is blocked until the operation completes. You can perform an asynchronous
write by configuring the mode input argument to be async. For asynchronous
writes:

• The BytesToOutput property value is continuously updated to reflect the
number of bytes in the output buffer.

• The M-file action function specified for the OutputEmptyAction property is
executed when the output buffer is empty.

You can determine whether an asynchronous write operation is in progress
with the TransferStatus property.

Synchronous and asynchronous write operations are discussed in more detail
in Writing Data.

Rules for Completing a Write Operation with fwrite
A binary write operation using fwrite completes when:

• The specified data is written.

• The time specified by the Timeout property passes.

Note The Terminator property is not used with binary write operations.

fwrite (serial)

640

Supported Precisions
The supported values for precision are listed below.

Data Type Precision Interpretation

Character uchar 8-bit unsigned character

schar 8-bit signed character

char 8-bit signed or unsigned character

Integer int8 8-bit integer

int16 16-bit integer

int32 32-bit integer

uint8 8-bit unsigned integer

uint16 16-bit unsigned integer

uint32 32-bit unsigned integer

short 16-bit integer

int 32-bit integer

long 32- or 64-bit integer

ushort 16-bit unsigned integer

uint 32-bit unsigned integer

ulong 32- or 64-bit unsigned integer

Floating-point single 32-bit floating point

float32 32-bit floating point

float 32-bit floating point

double 64-bit floating point

float64 64-bit floating point

fwrite (serial)

641

See Also Functions
fopen, fprintf

Properties
BytesToOutput, OutputBufferSize, OutputEmptyAction, Status, Timeout,
TransferStatus, ValuesSent

fzero

642

1fzeroPurpose Find zero of a function of one variable

Syntax x = fzero(fun,x0)
x = fzero(fun,x0,options)
x = fzero(fun,x0,options,P1,P2,...)
[x,fval] = fzero(...)
[x,fval,exitflag] = fzero(...)
[x,fval,exitflag,output] = fzero(...)

Description x = fzero(fun,x0) tries to find a zero of fun near x0, if x0 is a scalar. The
value x returned by fzero is near a point where fun changes sign, or NaN if the
search fails. In this case, the search terminates when the search interval is
expanded until an Inf, NaN, or complex value is found.

If x0 is a vector of length two, fzero assumes x0 is an interval where the sign
of fun(x0(1)) differs from the sign of fun(x0(2)). An error occurs if this is not
true. Calling fzero with such an interval guarantees fzero will return a value
near a point where fun changes sign.

x = fzero(fun,x0,options) minimizes with the optimization parameters
specified in the structure options. You can define these parameters using the
optimset function. fzero uses these options structure fields:

x = fzero(fun,x0,options,P1,P2,...) provides for additional arguments
passed to the function, fun. Use options = [] as a placeholder if no options are
set.

[x,fval] = fzero(...) returns the value of the objective function fun at the
solution x.

Display Level of display. 'off' displays no output; 'iter'
displays output at each iteration; 'final' displays
just the final output; 'notify' (default) dislays
output only if the function does not converge.

TolX Termination tolerance on x.

fzero

643

[x,fval,exitflag] = fzero(...) returns a value exitflag that describes
the exit condition of fzero:

[x,fval,exitflag,output] = fzero(...) returns a structure output that
contains information about the optimization:

Note For the purposes of this command, zeros are considered to be points
where the function actually crosses, not just touches, the x-axis.

Arguments fun is the function whose zero is to be computed. It accepts a vector x and
returns a scalar f, the objective function evaluated at x. The function fun can
be specified as a function handle.

x = fzero(@myfun,x0)

where myfun is a MATLAB function such as

function f = myfun(x)
f = ... % Compute function value at x

fun can also be an inline object.

x = fzero(inline('sin(x*x)'),x0);

Other arguments are described in the syntax descriptions above.

>0 Indicates that the function found a zero x.

<0 No interval was found with a sign change, or a NaN or Inf
function value was encountered during search for an interval
containing a sign change, or a complex function value was
encountered during the search for an interval containing a sign
change.

output.algorithm The algorithm used

output.funcCount The number of function evaluations

output.iterations The number of iterations taken

fzero

644

Examples Calculate π by finding the zero of the sine function near 3.

x = fzero(@sin,3)
x =
 3.1416

To find the zero of cosine between 1 and 2

x = fzero(@cos,[1 2])
x =

1.5708

Note that cos(1) and cos(2) differ in sign.

To find a zero of the function

write an M-file called f.m.

function y = f(x)
y = x.^3-2*x-5;

To find the zero near 2

z = fzero(@f,2)
z =
 2.0946

Because this function is a polynomial, the statement roots([1 0 -2 -5]) finds
the same real zero, and a complex conjugate pair of zeros.

 2.0946
 -1.0473 + 1.1359i
 -1.0473 - 1.1359i

Algorithm The fzero command is an M-file. The algorithm, which was originated by
T. Dekker, uses a combination of bisection, secant, and inverse quadratic
interpolation methods. An Algol 60 version, with some improvements, is given
in [1]. A Fortran version, upon which the fzero M-file is based, is in [2].

Limitations The fzero command finds a point where the function changes sign. If the
function is continuous, this is also a point where the function has a value near
zero. If the function is not continuous, fzero may return values that are
discontinuous points instead of zeros. For example, fzero(@tan,1) returns
1.5708, a discontinuous point in tan.

f x() x3 2x– 5–=

fzero

645

Furthermore, the fzero command defines a zero as a point where the function
crosses the x-axis. Points where the function touches, but does not cross, the
x-axis are not valid zeros. For example, y = x.^2 is a parabola that touches the
x-axis at 0. Because the function never crosses the x-axis, however, no zero is
found. For functions with no valid zeros, fzero executes until Inf, NaN, or a
complex value is detected.

See Also roots, fminbnd, function_handle (@), inline, optimset

References [1] Brent, R., Algorithms for Minimization Without Derivatives,
Prentice-Hall, 1973.

 [2] Forsythe, G. E., M. A. Malcolm, and C. B. Moler, Computer Methods for
Mathematical Computations, Prentice-Hall, 1976.

gallery

646

1galleryPurpose Test matrices

Syntax [A,B,C,...] = gallery('tmfun',P1,P2,...)
gallery(3) a badly conditioned 3-by-3 matrix
gallery(5) an interesting eigenvalue problem

Description [A,B,C,...] = gallery('tmfun',P1,P2,...) returns the test matrices
specified by string tmfun. tmfun is the name of a matrix family selected from
the table below. P1, P2,... are input parameters required by the individual
matrix family. The number of optional parameters P1,P2,... used in the
calling syntax varies from matrix to matrix.The exact calling syntaxes are
detailed in the individual matrix descriptions below.

The gallery holds over fifty different test matrix functions useful for testing
algorithms and other purposes.

Test Matrices

cauchy chebspec chebvand chow

circul clement compar condex

cycol dorr dramadah fiedler

forsythe frank gearmat grcar

hanowa house invhess invol

ipjfact jordbloc kahan kms

krylov lauchli lehmer lesp

lotkin minij moler neumann

orthog parter pei poisson

prolate randcolu randcorr rando

randhess randsvd redheff riemann

ris rosser smoke toeppd

gallery

647

cauchy—Cauchy matrix

C = gallery('cauchy',x,y) returns an n-by-n matrix, C(i,j) = 1/
(x(i)+y(j)). Arguments x and y are vectors of length n. If you pass in scalars
for x and y, they are interpreted as vectors 1:x and 1:y.

C = gallery('cauchy',x) returns the same as above with y = x. That is, the
command returns C(i,j) = 1/(x(i)+x(j)).

Explicit formulas are known for the inverse and determinant of a Cauchy
matrix. The determinant det(C) is nonzero if x and y both have distinct
elements. C is totally positive if 0 < x(1) <... < x(n) and
0 < y(1) < ... < y(n).

chebspec—Chebyshev spectral differentiation matrix

C = gallery('chebspec',n,switch) returns a Chebyshev spectral
differentiation matrix of order n. Argument switch is a variable that
determines the character of the output matrix. By default, switch = 0.

For switch = 0 (“no boundary conditions”), C is nilpotent (Cn = 0) and has the
null vector ones(n,1). The matrix C is similar to a Jordan block of size n with
eigenvalue zero.

For switch = 1, C is nonsingular and well-conditioned, and its eigenvalues have
negative real parts.

The eigenvector matrix V of the Chebyshev spectral differentiation matrix is
ill-conditioned.

chebvand—Vandermonde-like matrix for the Chebyshev polynomials

C = gallery('chebvand',p) produces the (primal) Chebyshev Vandermonde
matrix based on the vector of points p, which define where the Chebyshev
polynomial is calculated.

tridiag triw vander wathen

wilk

Test Matrices (Continued)

gallery

648

C = gallery('chebvand',m,p) where m is scalar, produces a rectangular
version of the above, with m rows.

If p is a vector, then: where is the Chebyshev
polynomial of degree i-1. If p is a scalar, then p equally spaced points on the
interval [0,1] are used to calculate C.

chow—Singular Toeplitz lower Hessenberg matrix

A = gallery('chow',n,alpha,delta) returns A such that A = H(alpha) +
delta∗eye(n), where and argument n is the order of the
Chow matrix. alpha and delta are scalars with default values 1 and 0,
respectively.

H(alpha) has p = floor(n/2) eigenvalues that are equal to zero. The rest of the
eigenvalues are equal to 4∗alpha∗cos(k∗pi/(n+2))^2, k=1:n-p.

circul—Circulant matrix

C = gallery('circul',v) returns the circulant matrix whose first row is the
vector v.

A circulant matrix has the property that each row is obtained from the previous
one by cyclically permuting the entries one step forward. It is a special Toeplitz
matrix in which the diagonals “wrap around.”

If v is a scalar, then C = gallery('circul',1:v).

The eigensystem of C (n-by-n) is known explicitly: If t is an nth root of unity,
then the inner product of v with w = [1 t t2 ... t(n-1)] is an eigenvalue of C and
w(n:-1:1) is an eigenvector.

clement—Tridiagonal matrix with zero diagonal entries

A = gallery('clement',n,sym) returns an n by n tridiagonal matrix with
zeros on its main diagonal and known eigenvalues. It is singular if order n is
odd. About 64 percent of the entries of the inverse are zero. The eigenvalues
include plus and minus the numbers n-1, n-3, n-5, ..., as well as (for odd n) a
final eigenvalue of 1 or 0.

C i j,() Ti 1– p j()()= Ti 1–

Hi j, α() α i j– 1+()
=

gallery

649

Argument sym determines whether the Clement matrix is symmetric. For
sym = 0 (the default) the matrix is nonsymmetric, while for sym = 1, it is
symmetric.

compar—Comparison matrices

A = gallery('compar',A,1) returns A with each diagonal element replaced
by its absolute value, and each off-diagonal element replaced by minus the
absolute value of the largest element in absolute value in its row. However, if
A is triangular compar(A,1) is too.

gallery('compar',A) is diag(B) - tril(B,-1) - triu(B,1), where B = abs(A).
compar(A) is often denoted by M(A) in the literature.

gallery('compar',A,0) is the same as compar(A).

condex—Counter-examples to matrix condition number estimators

A = gallery('condex',n,k,theta) returns a “counter-example” matrix to a
condition estimator. It has order n and scalar parameter theta (default 100).

The matrix, its natural size, and the estimator to which it applies are specified
by k as follows:

If n is not equal to the natural size of the matrix, then the matrix is padded out
with an identity matrix to order n.

cycol—Matrix whose columns repeat cyclically

A = gallery('cycol',[m n],k) returns an m-by-n matrix with cyclically
repeating columns, where one “cycle” consists of randn(m,k). Thus, the rank of
matrix A cannot exceed k. k must be a scalar.

Argument k defaults to round(n/4), and need not evenly divide n.

k = 1 4-by-4 LINPACK (rcond)

k = 2 3-by-3 LINPACK (rcond)

k = 3 arbitrary LINPACK (rcond) (independent of theta)

k = 4 n ≥ 4 SONEST (Higham 1988) (default)

gallery

650

A = gallery('cycol',n,k), where n is a scalar, is the same as
gallery('cycol',[n n],k).

dorr—Diagonally dominant, ill-conditioned, tridiagonal matrix

[c,d,e] = gallery('dorr',n,theta) returns the vectors defining a row
diagonally dominant, tridiagonal order nmatrix that is ill-conditioned for small
nonnegative values of theta. The default value of theta is 0.01. The Dorr
matrix itself is the same as gallery('tridiag',c,d,e).

A = gallery('dorr',n,theta) returns the matrix itself, rather than the
defining vectors.

dramadah—Matrix of zeros and ones whose inverse has large integer entries

A = gallery('dramadah',n,k) returns an n-by-n matrix of 0’s and 1’s for
which mu(A) = norm(inv(A),'fro') is relatively large, although not necessarily
maximal. An anti-Hadamard matrix A is a matrix with elements 0 or 1 for
which mu(A) is maximal.

n and k must both be scalars. Argument k determines the character of the
output matrix:

k = 1 Default. A is Toeplitz, with abs(det(A)) = 1, and
mu(A) > c(1.75)^n, where c is a constant. The inverse of A has
integer entries.

k = 2 A is upper triangular and Toeplitz. The inverse of A has integer
entries.

k = 3 A has maximal determinant among lower Hessenberg (0,1)
matrices.
det(A) = the nth Fibonacci number. A is Toeplitz. The eigenvalues
have an interesting distribution in the complex plane.

gallery

651

fiedler—Symmetric matrix

A = gallery('fiedler',c), where c is a length n vector, returns the n-by-n
symmetric matrix with elements abs(n(i)-n(j)). For scalar c,
A = gallery('fiedler',1:c).

Matrix A has a dominant positive eigenvalue and all the other eigenvalues are
negative.

Explicit formulas for inv(A) and det(A) are given in [Todd, J., Basic Numerical
Mathematics, Vol. 2: Numerical Algebra, Birkhauser, Basel, and Academic
Press, New York, 1977, p. 159] and attributed to Fiedler. These indicate that
inv(A) is tridiagonal except for nonzero (1,n) and (n,1) elements.

forsythe—Perturbed Jordan block

A = gallery('forsythe',n,alpha,lambda) returns the n-by-n matrix equal
to the Jordan block with eigenvalue lambda, excepting that A(n,1) = alpha. The
default values of scalars alpha and lambda are sqrt(eps) and 0, respectively.

The characteristic polynomial of A is given by:

det(A-t∗I) = (lambda-t)^N - alpha∗(-1)^n.

frank—Matrix with ill-conditioned eigenvalues

F = gallery('frank',n,k) returns the Frank matrix of order n. It is upper
Hessenberg with determinant 1. If k = 1, the elements are reflected about the
anti-diagonal (1,n)—(n,1). The eigenvalues of F may be obtained in terms of
the zeros of the Hermite polynomials. They are positive and occur in reciprocal
pairs; thus if n is odd, 1 is an eigenvalue. F has floor(n/2) ill-conditioned
eigenvalues—the smaller ones.

gearmat—Gear matrix

A = gallery('gearmat',n,i,j) returns the n-by-n matrix with ones on the
sub- and super-diagonals, sign(i) in the (1,abs(i)) position, sign(j) in the
(n,n+1-abs(j)) position, and zeros everywhere else. Arguments i and j default
to n and -n, respectively.

gallery

652

Matrix A is singular, can have double and triple eigenvalues, and can be
defective.

All eigenvalues are of the form 2∗cos(a) and the eigenvectors are of the form
[sin(w+a), sin(w+2a), ..., sin(w+Na)], where a and w are given in Gear, C.
W., “A Simple Set of Test Matrices for Eigenvalue Programs”, Math. Comp.,
Vol. 23 (1969), pp. 119-125.

grcar—Toeplitz matrix with sensitive eigenvalues

A = gallery('grcar',n,k) returns an n-by-n Toeplitz matrix with -1s on the
subdiagonal, 1s on the diagonal, and k superdiagonals of 1s. The default is
k = 3. The eigenvalues are sensitive.

hanowa—Matrix whose eigenvalues lie on a vertical line in the complex plane

A = gallery('hanowa',n,d) returns an n-by-n block 2-by-2 matrix of the form:

[d∗eye(m) -diag(1:m)
diag(1:m) d∗eye(m)]

Argument n is an even integer n=2∗m. Matrix A has complex eigenvalues of the
form d ± k∗i, for 1 <= k <= m. The default value of d is -1.

house—Householder matrix

[v, beta] = gallery('house',x) takes x, a scalar or n-element column
vector, and returns v and beta such that eye(n,n) - beta∗v∗v' is a
Householder matrix. A Householder matrix H satisfies the relationship

H*x = -sign(x(1))*norm(x)*e1

where e1 is the first column of eye(n,n). Note that if x is complex, then
sign(x) = exp(i∗arg(x)) (which equals x./abs(x) when x is nonzero).

If x = 0, then v = 0 and beta = 1.

invhess—Inverse of an upper Hessenberg matrix

A = gallery('invhess',x,y), where x is a length n vector and y a length n-1
vector, returns the matrix whose lower triangle agrees with that of

gallery

653

ones(n,1)∗x' and whose strict upper triangle agrees with that of
[1 y]∗ones(1,n).

The matrix is nonsingular if x(1) ~= 0 and x(i+1) ~= y(i) for all i, and its
inverse is an upper Hessenberg matrix. Argument y defaults to -x(1:n-1).

If x is a scalar, invhess(x) is the same as invhess(1:x).

invol—Involutory matrix

A = gallery('invol',n) returns an n-by-n involutory (A∗A = eye(n)) and
ill-conditioned matrix. It is a diagonally scaled version of hilb(n).

B = (eye(n)-A)/2 and B = (eye(n)+A)/2 are idempotent (B∗B = B).

ipjfact—Hankel matrix with factorial elements

[A,d] = gallery('ipjfact',n,k) returns A, an n-by-n Hankel matrix, and d,
the determinant of A, which is known explicitly. If k = 0 (the default), then the
elements of A are A(i,j) = (i+j)! If k = 1, then the elements of A are
A(i,j) = 1/(i+j).

Note that the inverse of A is also known explicitly.

jordbloc—Jordan block

A = gallery('jordbloc',n,lambda) returns the n-by-n Jordan block with
eigenvalue lambda. The default value for lambda is 1.

kahan—Upper trapezoidal matrix

A = gallery('kahan',n,theta,pert) returns an upper trapezoidal matrix
that has interesting properties regarding estimation of condition and rank.

If n is a two-element vector, then A is n(1)-by-n(2); otherwise, A is n-by-n. The
useful range of theta is 0 < theta < pi, with a default value of 1.2.

To ensure that the QR factorization with column pivoting does not interchange
columns in the presence of rounding errors, the diagonal is perturbed by
pert∗eps∗diag([n:-1:1]). The default pert is 25, which ensures no
interchanges for gallery('kahan',n) up to at least n = 90 in IEEE arithmetic.

gallery

654

kms—Kac-Murdock-Szego Toeplitz matrix

A = gallery('kms',n,rho) returns the n-by-n Kac-Murdock-Szego Toeplitz
matrix such that A(i,j) = rho^(abs(i-j)), for real rho.

For complex rho, the same formula holds except that elements below the
diagonal are conjugated. rho defaults to 0.5.

The KMS matrix A has these properties:

• An LDL' factorization with L = inv(triw(n,-rho,1)'), and
D(i,i) = (1-abs(rho)^2)∗eye(n), except D(1,1) = 1.

• Positive definite if and only if 0 < abs(rho) < 1.

• The inverse inv(A) is tridiagonal.

krylov—Krylov matrix

B = gallery('krylov',A,x,j) returns the Krylov matrix

[x, Ax, A^2x, ..., A^(j-1)x]

where A is an n-by-n matrix and x is a length n vector. The defaults are
x = ones(n,1), and j = n.

B = gallery('krylov',n) is the same as gallery('krylov',(randn(n)).

lauchli—Rectangular matrix

A = gallery('lauchli',n,mu) returns the (n+1)-by-n matrix

[ones(1,n); mu*eye(n)]

The Lauchli matrix is a well-known example in least squares and other
problems that indicates the dangers of forming A'∗A. Argument mu defaults to
sqrt(eps).

lehmer—Symmetric positive definite matrix

A = gallery('lehmer',n) returns the symmetric positive definite n-by-n
matrix such that A(i,j) = i/j for j >= i.

The Lehmer matrix A has these properties:

gallery

655

• A is totally nonnegative.

• The inverse inv(A) is tridiagonal and explicitly known.

• The order n <= cond(A) <= 4∗n∗n.

lesp—Tridiagonal matrix with real, sensitive eigenvalues

A = gallery('lesp',n) returns an n-by-n matrix whose eigenvalues are real
and smoothly distributed in the interval approximately [-2∗N-3.5, -4.5].

The sensitivities of the eigenvalues increase exponentially as the eigenvalues
grow more negative. The matrix is similar to the symmetric tridiagonal matrix
with the same diagonal entries and with off-diagonal entries 1, via a similarity
transformation with D = diag(1!,2!,...,n!).

lotkin—Lotkin matrix

A = gallery('lotkin',n) returns the Hilbert matrix with its first row altered
to all ones. The Lotkin matrix A is nonsymmetric, ill-conditioned, and has many
negative eigenvalues of small magnitude. Its inverse has integer entries and is
known explicitly.

minij—Symmetric positive definite matrix

A = gallery('minij',n) returns the n-by-n symmetric positive definite
matrix with A(i,j) = min(i,j).

The minij matrix has these properties:

• The inverse inv(A) is tridiagonal and equal to -1 times the second difference
matrix, except its (n,n) element is 1.

• Givens’ matrix, 2∗A-ones(size(A)), has tridiagonal inverse and eigenvalues
0.5∗sec((2∗r-1)∗pi/(4∗n))^2, where r=1:n.

• (n+1)∗ones(size(A))-A has elements that are max(i,j) and a tridiagonal
inverse.

moler—Symmetric positive definite matrix

A = gallery('moler',n,alpha) returns the symmetric positive definite
n-by-n matrix U'∗U, where U = triw(n,alpha).

gallery

656

For the default alpha = -1, A(i,j) = min(i,j)-2, and A(i,i) = i. One of the
eigenvalues of A is small.

neumann—Singular matrix from the discrete Neumann problem (sparse)

C = gallery('neumann',n) returns the singular, row-diagonally dominant
matrix resulting from discretizing the Neumann problem with the usual
five-point operator on a regular mesh. Argument n is a perfect square integer
n = m2 or a two-element vector. C is sparse and has a one-dimensional null
space with null vector ones(n,1).

orthog—Orthogonal and nearly orthogonal matrices

Q = gallery('orthog',n,k) returns the kth type of matrix of order n, where
k > 0 selects exactly orthogonal matrices, and k < 0 selects diagonal scalings
of orthogonal matrices. Available types are:

k = 1 Q(i,j) = sqrt(2/(n+1)) ∗ sin(i∗j∗pi/(n+1))
Symmetric eigenvector matrix for second difference matrix. This
is the default.

k = 2 Q(i,j) = 2/(sqrt(2∗n+1)) ∗ sin(2∗i∗j∗pi/(2∗n+1))
Symmetric.

k = 3 Q(r,s) = exp(2∗pi∗i∗(r-1)∗(s-1)/n) / sqrt(n)
Unitary, the Fourier matrix. Q^4 is the identity. This is
essentially the same matrix as fft(eye(n))/sqrt(n)!

k = 4 Helmert matrix: a permutation of a lower Hessenberg matrix,
whose first row is ones(1:n)/sqrt(n).

k = 5 Q(i,j) = sin(2∗pi∗(i-1)∗(j-1)/n) +
cos(2∗pi∗(i-1)∗(j-1)/n)
Symmetric matrix arising in the Hartley transform.

k = -1 Q(i,j) = cos((i-1)∗(j-1)∗pi/(n-1))
Chebyshev Vandermonde-like matrix, based on extrema of
T(n-1).

gallery

657

parter—Toeplitz matrix with singular values near pi

C = gallery('parter',n) returns the matrix C such that
C(i,j) = 1/(i-j+0.5).

C is a Cauchy matrix and a Toeplitz matrix. Most of the singular values of C are
very close to pi.

pei—Pei matrix

A = gallery('pei',n,alpha), where alpha is a scalar, returns the symmetric
matrix alpha∗eye(n) + ones(n). The default for alpha is 1. The matrix is
singular for alpha equal to either 0 or -n.

poisson—Block tridiagonal matrix from Poisson's equation (sparse)

A = gallery('poisson',n) returns the block tridiagonal (sparse) matrix of
order n^2 resulting from discretizing Poisson's equation with the 5-point
operator on an n-by-n mesh.

prolate—Symmetric, ill-conditioned Toeplitz matrix

A = gallery('prolate',n,w) returns the n-by-n prolate matrix with
parameter w. It is a symmetric Toeplitz matrix.

If 0 < w < 0.5 then A is positive definite

• The eigenvalues of A are distinct, lie in (0,1), and tend to cluster around 0
and 1.

• The default value of w is 0.25.

k = -2 Q(i,j) = cos((i-1)∗(j-1/2)∗pi/n))
Chebyshev Vandermonde-like matrix, based on zeros of T(n).

gallery

658

randcolu – Random matrix with normalized cols and specified singular
values

A = gallery('randcolu',n) is a random n-by-n matrix with columns of unit
2-norm, with random singular values whose squares are from a uniform
distribution.

A'*A is a correlation matrix of the form produced by gallery('randcorr',n).

gallery('randcolu',x) where x is an n-vector (n > 1), produces a random
n-by-n matrix having singular values given by the vector x. The vector x must
have nonnegative elements whose sum of squares is n.

gallery('randcolu',x,m) where m >= n, produces an m-by-n matrix.

gallery('randcolu',x,m,k) provides a further option:

• For k = 0 (the default) diag(x) is initially subjected to a random two-sided
orthogonal transformation, and then a sequence of Givens rotations is
applied.

• For k = 1, the initial transformation is omitted. This is much faster, but the
resulting matrix may have zero entries.

For more information, see:

[1] Davies, P. I. and N. J. Higham, “Numerically Stable Generation of
Correlation Matrices and Their Factors,” BIT, Vol. 40, 2000, pp. 640-651.

randcorr – Random correlation matrix with specified eigenvalues

gallery('randcorr',n) is a random n-by-n correlation matrix with random
eigenvalues from a uniform distribution. A correlation matrix is a symmetric
positive semidefinite matrix with 1s on the diagonal (see corrcoef).

gallery('randcorr',x) produces a random correlation matrix having
eigenvalues given by the vector x, where length(x) > 1. The vector x must
have nonnegative elements summing to length(x).

gallery('randcorr',x,k) provides a further option:

gallery

659

• For k = 0 (the default) the diagonal matrix of eigenvalues is initially
subjected to a random orthogonal similarity transformation, and then a
sequence of Givens rotations is applied.

• For k = 1, the initial transformation is omitted. This is much faster, but the
resulting matrix may have some zero entries.

For more information, see:

[1] Bendel, R. B. and M. R. Mickey, “Population Correlation Matrices for
Sampling Experiments,” Commun. Statist. Simulation Comput., B7, 1978,
pp. 163-182.

[2] Davies, P. I. and N. J. Higham, “Numerically Stable Generation of
Correlation Matrices and Their Factors,” BIT, Vol. 40, 2000, pp. 640-651.

randhess—Random, orthogonal upper Hessenberg matrix

H = gallery('randhess',n) returns an n-by-n real, random, orthogonal
upper Hessenberg matrix.

H = gallery('randhess',x) if x is an arbitrary, real, length n vector with
n > 1, constructs H nonrandomly using the elements of x as parameters.

Matrix H is constructed via a product of n-1 Givens rotations.

rando—Random matrix composed of elements -1, 0 or 1

A = gallery('rando',n,k) returns a random n-by-n matrix with elements
from one of the following discrete distributions:

Argument n may be a two-element vector, in which case the matrix is
n(1)-by-n(2).

k = 1 A(i,j) = 0 or 1 with equal probability (default).

k = 2 A(i,j) = -1 or 1 with equal probability.

k = 3 A(i,j) = -1, 0 or 1 with equal probability.

gallery

660

randsvd—Random matrix with preassigned singular values

A = gallery('randsvd',n,kappa,mode,kl,ku) returns a banded
(multidiagonal) random matrix of order n with cond(A) = kappa and singular
values from the distribution mode. If n is a two-element vector, A is
n(1)-by-n(2).

Arguments kl and ku specify the number of lower and upper off-diagonals,
respectively, in A. If they are omitted, a full matrix is produced. If only kl is
present, ku defaults to kl.

Distribution mode may be:

Condition number kappa defaults to sqrt(1/eps). In the special case where
kappa < 0, A is a random, full, symmetric, positive definite matrix with
cond(A) = -kappa and eigenvalues distributed according to mode. Arguments kl
and ku, if present, are ignored.

redheff—Redheffer’s matrix of 1s and 0s

A = gallery('redheff',n) returns an n-by-n matrix of 0’s and 1’s defined by
A(i,j) = 1, if j = 1 or if i divides j, and A(i,j) = 0 otherwise.

The Redheffer matrix has these properties:

• (n-floor(log2(n)))-1 eigenvalues equal to 1

• A real eigenvalue (the spectral radius) approximately sqrt(n)

• A negative eigenvalue approximately -sqrt(n)

1 One large singular value.

2 One small singular value.

3 Geometrically distributed singular values (default).

4 Arithmetically distributed singular values.

5 Random singular values with uniformly distributed logarithm.

< 0 If mode is -1, -2, -3, -4, or -5, then randsvd treats mode as abs(mode),
except that in the original matrix of singular values the order of the
diagonal entries is reversed: small to large instead of large to small.

gallery

661

• The remaining eigenvalues are provably “small.”

• The Riemann hypothesis is true if and only if det(A) = O(n^(1/2+epsilon)) for
every epsilon > 0.

Barrett and Jarvis conjecture that “the small eigenvalues all lie inside the unit
circle abs(Z) = 1,” and a proof of this conjecture, together with a proof that
some eigenvalue tends to zero as n tends to infinity, would yield a new proof of
the prime number theorem.

riemann—Matrix associated with the Riemann hypothesis

A = gallery('riemann',n) returns an n-by-n matrix for which the Riemann
hypothesis is true if and only if det(A) = O(n! n^(-1/2+epsilon)) for every
epsilon > 0.

The Riemann matrix is defined by:

A = B(2:n+1,2:n+1)

where B(i,j) = i-1 if i divides j, and B(i,j) = -1 otherwise.

The Riemann matrix has these properties:

• Each eigenvalue e(i) satisfies abs(e(i)) <= m-1/m, where m = n+1.

• i <= e(i) <= i+1 with at most m-sqrt(m) exceptions.

• All integers in the interval (m/3, m/2] are eigenvalues.

ris—Symmetric Hankel matrix

A = gallery('ris',n) returns a symmetric n-by-n Hankel matrix with
elements

A(i,j) = 0.5/(n-i-j+1.5)

The eigenvalues of A cluster around and . This matrix was invented
by F.N. Ris.

rosser—Classic symmetric eigenvalue test matrix

A = rosser returns the Rosser matrix. This matrix was a challenge for many
matrix eigenvalue algorithms. But the Francis QR algorithm, as perfected by

π 2⁄ π 2⁄–

gallery

662

Wilkinson and implemented in MATLAB, has no trouble with it. The matrix is
8-by-8 with integer elements. It has:

• A double eigenvalue

• Three nearly equal eigenvalues

• Dominant eigenvalues of opposite sign

• A zero eigenvalue

• A small, nonzero eigenvalue

smoke—Complex matrix with a 'smoke ring' pseudospectrum

A = gallery('smoke',n) returns an n-by-n matrix with 1’s on the
superdiagonal, 1 in the (n,1) position, and powers of roots of unity along the
diagonal.

A = gallery('smoke',n,1) returns the same except that element A(n,1) is
zero.

The eigenvalues of smoke(n,1) are the nth roots of unity; those of smoke(n) are
the nth roots of unity times 2^(1/n).

toeppd—Symmetric positive definite Toeplitz matrix

A = gallery('toeppd',n,m,w,theta) returns an n-by-n symmetric, positive
semi-definite (SPD) Toeplitz matrix composed of the sum of m rank 2 (or, for
certain theta, rank 1) SPD Toeplitz matrices. Specifically,

T = w(1)∗T(theta(1)) + ... + w(m)∗T(theta(m))

where T(theta(k)) has (i,j) element cos(2∗pi∗theta(k)∗(i-j)).

By default: m = n, w = rand(m,1), and theta = rand(m,1).

toeppen—Pentadiagonal Toeplitz matrix (sparse)

P = gallery('toeppen',n,a,b,c,d,e) returns the n-by-n sparse,
pentadiagonal Toeplitz matrix with the diagonals: P(3,1) = a, P(2,1) = b,
P(1,1) = c, P(1,2) = d, and P(1,3) = e, where a, b, c, d, and e are scalars.

gallery

663

By default, (a,b,c,d,e) = (1,-10,0,10,1), yielding a matrix of Rutishauser.
This matrix has eigenvalues lying approximately on the line segment
2∗cos(2∗t) + 20∗i∗sin(t).

tridiag—Tridiagonal matrix (sparse)

A = gallery('tridiag',c,d,e) returns the tridiagonal matrix with
subdiagonal c, diagonal d, and superdiagonal e. Vectors c and e must have
length(d)-1.

A = gallery('tridiag',n,c,d,e), where c, d, and e are all scalars, yields the
Toeplitz tridiagonal matrix of order n with subdiagonal elements c, diagonal
elements d, and superdiagonal elements e. This matrix has eigenvalues

d + 2∗sqrt(c∗e)∗cos(k∗pi/(n+1))

where k = 1:n. (see [1].)

A = gallery('tridiag',n) is the same as
A = gallery('tridiag',n,-1,2,-1), which is a symmetric positive definite
M-matrix (the negative of the second difference matrix).

triw—Upper triangular matrix discussed by Wilkinson and others

A = gallery('triw',n,alpha,k) returns the upper triangular matrix with
ones on the diagonal and alphas on the first k >= 0 superdiagonals.

Order n may be a 2-vector, in which case the matrix is n(1)-by-n(2) and upper
trapezoidal.

Ostrowski [“On the Spectrum of a One-parametric Family of Matrices, J. Reine
Angew. Math., 1954] shows that

cond(gallery('triw',n,2)) = cot(pi/(4∗n))^2,

and, for large abs(alpha), cond(gallery('triw',n,alpha)) is approximately
abs(alpha)^n∗sin(pi/(4∗n-2)).

Adding -2^(2-n) to the (n,1) element makes triw(n) singular, as does adding
-2^(1-n) to all the elements in the first column.

gallery

664

vander—Vandermonde matrix

A = gallery('vander',c) returns the Vandermonde matrix whose second to
last column is c. The jth column of a Vandermonde matrix is given by
A(:,j) = C^(n-j).

wathen—Finite element matrix (sparse, random entries)

A = gallery('wathen',nx,ny) returns a sparse, random, n-by-n finite
element matrix where

 n = 3∗nx∗ny + 2∗nx + 2∗ny + 1.

Matrix A is precisely the “consistent mass matrix” for a regular nx-by-ny grid of
8-node (serendipity) elements in two dimensions. A is symmetric, positive
definite for any (positive) values of the “density,” rho(nx,ny), which is chosen
randomly in this routine.

A = gallery('wathen',nx,ny,1) returns a diagonally scaled matrix such
that

0.25 <= eig(inv(D)∗A) <= 4.5

where D = diag(diag(A)) for any positive integers nx and ny and any densities
rho(nx,ny).

wilk—Various matrices devised or discussed by Wilkinson

[A,b] = gallery('wilk',n) returns a different matrix or linear system
depending on the value of n:

 n MATLAB Code Result

n = 3 [A,b] =
gallery('wilk',3)

Upper triangular system Ux=b
illustrating inaccurate solution.

n = 4 [A,b] =
gallery('wilk',4)

Lower triangular system Lx=b,
ill-conditioned.

gallery

665

n = 5 A = gallery('wilk',5) hilb(6)(1:5,2:6)∗1.8144. A
symmetric positive definite
matrix.

n = 21 A = gallery('wilk',21) W21+, tridiagonal matrix.
Eigenvalue problem.

gallery

666

See Also hadamard, hilb, invhilb, magic, wilkinson

References The MATLAB gallery of test matrices is based upon the work of Nicholas J.
Higham at the Department of Mathematics, University of Manchester,
Manchester, England. Additional detail on these matrices is documented in
The Test Matrix Toolbox for MATLAB by N. J. Higham, September, 1995. This
report is available via anonymous ftp from The MathWorks at ftp://
ftp.mathworks.com/pub/contrib/linalg/testmatrix/testmatrix.ps or on
the Web at ftp://ftp.ma.man.ac.uk/pub/narep or http://
www.ma.man.ac.uk/MCCM/MCCM.html. Further background can be found in the
book Accuracy and Stability of Numerical Algorithms, Nicholas J. Higham,
SIAM, 1996.

gamma, gammainc, gammaln

667

1gamma, gammainc, gammalnPurpose Gamma functions

Syntax Y = gamma(A) Gamma function
Y = gammainc(X,A) Incomplete gamma function
Y = gammaln(A) Logarithm of gamma function

Definition The gamma function is defined by the integral:

The gamma function interpolates the factorial function. For integer n:

gamma(n+1) = n! = prod(1:n)

The incomplete gamma function is:

Description Y = gamma(A) returns the gamma function at the elements of A. A must be real.

Y = gammainc(X,A) returns the incomplete gamma function of corresponding
elements of X and A. Arguments X and A must be real and the same size (or
either can be scalar).

Y = gammaln(A) returns the logarithm of the gamma function,
gammaln(A) = log(gamma(A)). The gammaln command avoids the underflow
and overflow that may occur if it is computed directly using log(gamma(A)).

Algorithm The computations of gamma and gammaln are based on algorithms outlined in
[1]. Several different minimax rational approximations are used depending
upon the value of A. Computation of the incomplete gamma function is based
on the algorithm in [2].

Γ a() e t– ta 1– td
0

∞

∫=

P x a,() 1
Γ a()
------------ e t– ta 1– td

0

x

∫=

gamma, gammainc, gammaln

668

References [1] Cody, J., An Overview of Software Development for Special Functions,
Lecture Notes in Mathematics, 506, Numerical Analysis Dundee, G. A. Watson
(ed.), Springer Verlag, Berlin, 1976.

[2] Abramowitz, M. and I.A. Stegun, Handbook of Mathematical Functions,
National Bureau of Standards, Applied Math. Series #55, Dover Publications,
1965, sec. 6.5.

gca

669

1gcaPurpose Get current axes handle

Syntax h = gca

Description h = gca returns the handle to the current axes for the current figure. If no axes
exists, MATLAB creates one and returns its handle. You can use the statement

get(gcf,'CurrentAxes')

if you do not want MATLAB to create an axes if one does not already exist.

The current axes is the target for graphics output when you create axes
children. Graphics commands such as plot, text, and surf draw their results
in the current axes. Changing the current figure also changes the current axes.

See Also axes, cla, delete, gcf, gcbo, gco, hold, subplot, findobj
figure CurrentAxes property

gcbf

670

1gcbfPurpose Get handle of figure containing object whose callback is executing

Syntax fig = gcbf

Description fig = gcbf returns the handle of the figure that contains the object whose
callback is currently executing. This object can be the figure itself, in which
case, gcbf returns the figure’s handle.

When no callback is executing, gcbf returns the empty matrix, [].

The value returned by gcbf is identical to the figure output argument
returned by gcbo.

See Also gcbo, gco, gcf, gca

gcbo

671

1gcboPurpose Return the handle of the object whose callback is currently executing

Syntax h = gcbo

[h, figure] = gcbo

Description h = gcbo returns the handle of the graphics object whose callback is executing.

[h, figure] = gcbo returns the handle of the current callback object and the
handle of the figure containing this object.

Remarks MATLAB stores the handle of the object whose callback is executing in the
root’s CallbackObject property. If a callback interrupts another callback,
MATLAB replaces the CallbackObject value with the handle of the object
whose callback is interrupting. When that callback completes, MATLAB
restores the handle of the object whose callback was interrupted.

The root CallbackObject property is read-only, so its value is always valid at
any time during callback execution. The root CurrentFigure property, and the
figure CurrentAxes and CurrentObject properties (returned by gcf, gca, and
gco respectively) are user settable, so they can change during the execution of
a callback, especially if that callback is interrupted by another callback.
Therefore, those functions are not reliable indicators of which object’s callback
is executing.

When you write callback routines for the CreateFcn and DeleteFcn of any
object and the figure ResizeFcn, you must use gcbo since those callbacks do not
update the root’s CurrentFigure property, or the figure’s CurrentObject or
CurrentAxes properties; they only update the root’s CallbackObject property.

When no callbacks are executing, gcbo returns [] (an empty matrix).

See Also gca, gcf, gco, rootobject

gcd

672

1gcdPurpose Greatest common divisor

Syntax G = gcd(A,B)
[G,C,D] = gcd(A,B)

Description G = gcd(A,B) returns an array containing the greatest common divisors of the
corresponding elements of integer arrays A and B. By convention, gcd(0,0)
returns a value of 0; all other inputs return positive integers for G.

[G,C,D] = gcd(A,B) returns both the greatest common divisor array G, and
the arrays C and D, which satisfy the equation: A(i).∗C(i) + B(i).∗D(i) =
G(i). These are useful for solving Diophantine equations and computing
elementary Hermite transformations.

Examples The first example involves elementary Hermite transformations.

For any two integers a and b there is a 2-by-2 matrix E with integer entries and
determinant = 1 (a unimodular matrix) such that:

E ∗ [a;b] = [g,0],

where g is the greatest common divisor of a and b as returned by the command
[g,c,d] = gcd(a,b).

The matrix E equals:

c d
-b/g a/g

In the case where a = 2 and b = 4:

[g,c,d] = gcd(2,4)
g =
 2
c =
 1
d =
 0

So that:

E =
1 0

gcd

673

-2 1

In the next example, we solve for x and y in the Diophantine equation
30x + 56y = 8.

[g,c,d] = gcd(30,56)
g =
 2
c =

-13
d =
 7

By the definition, for scalars c and d:

30(-13) + 56(7) = 2,

Multiplying through by 8/2:

30(-13∗4) + 56(7∗4) = 8

Comparing this to the original equation, a solution can be read by inspection:

x = (-13∗4) = -52; y = (7∗4) = 28

See Also lcm

References [1] Knuth, Donald, The Art of Computer Programming, Vol. 2, Addison-Wesley:
Reading MA, 1973. Section 4.5.2, Algorithm X.

gcf

674

1gcfPurpose Get current figure handle

Syntax h = gcf

Description h = gcf returns the handle of the current figure. The current figure is the
figure window in which graphics commands such as plot, title, and surf
draw their results. If no figure exists, MATLAB creates one and returns its
handle. You can use the statement

get(0,'CurrentFigure')

if you do not want MATLAB to create a figure if one does not already exist.

See Also axes, clf, close, delete, figure, gca, gcbo, gco, subplot

root CurrentFigure property

gco

675

1gcoPurpose Return handle of current object

Syntax h = gco
h = gco(figure_handle)

Description h = gco returns the handle of the current object.

h = gco(figure_handle) returns the value of the current object for the figure
specified by figure_handle.

Remarks The current object is the last object clicked on, excluding uimenus. If the mouse
click did not occur over a figure child object, the figure becomes the current
object. MATLAB stores the handle of the current object in the figure’s
CurrentObject property.

The CurrentObject of the CurrentFigure does not always indicate the object
whose callback is being executed. Interruptions of callbacks by other callbacks
can change the CurrentObject or even the CurrentFigure. Some callbacks,
such as CreateFcn and DeleteFcn, and uimenu Callback intentionally do not
update CurrentFigure or CurrentObject.

gcbo provides the only completely reliable way to retrieve the handle to the
object whose callback is executing, at any point in the callback function,
regardless of the type of callback or of any previous interruptions.

Examples This statement returns the handle to the current object in figure window 2:

h = gco(2)

See Also gca, gcbo, gcf

The root object description

genpath

676

1genpathPurpose Generate a path string

Syntax genpath
genpath directory
p = genpath('directory')

Description genpath returns a path string formed by recursively adding all the directories
below matlabroot/toolbox.

genpath directory returns a path string formed by recursively adding all the
directories below directory.

p = genpath('directory') returns the path string to variable, p.

Examples You generate a path that includes matlabroot\toolbox\images and all
directories below that with the following command:

p = genpath(fullfile(matlabroot,'toolbox','images'))

p =

matlabroot\toolbox\images;matlabroot\toolbox\images\images;
matlabroot\toolbox\images\images\ja;matlabroot\toolbox\images\
imdemos;matlabroot\toolbox\images\imdemos\ja;

See Also path, addpath, rmpath

get

677

1getPurpose Get object properties

Syntax get(h)
get(h,'PropertyName')
<m-by-n value cell array> = get(H,<property cell array>)
a = get(h)
a = get(0,'Factory')
a = get(0,'FactoryObjectTypePropertyName')
a = get(h,'Default')
a = get(h,'DefaultObjectTypePropertyName')

Description get(h) returns all properties and their current values of the graphics object
identified by the handle h.

get(h,'PropertyName') returns the value of the property 'PropertyName' of
the graphics object identified by h.

<m-by-n value cell array> = get(H,pn) returns n property values for m
graphics objects in the m-by-n cell array, where m = length(H) and n is equal
to the number of property names contained in pn.

a = get(h) returns a structure whose field names are the object’s property
names and whose values are the current values of the corresponding
properties. h must be a scalar. If you do not specify an output argument,
MATLAB displays the information on the screen.

a = get(0,'Factory') returns the factory-defined values of all user-settable
properties. a is a structure array whose field names are the object property
names and whose field values are the values of the corresponding properties. If
you do not specify an output argument, MATLAB displays the information on
the screen.

a = get(0,'FactoryObjectTypePropertyName') returns the factory-defined
value of the named property for the specified object type. The argument,
FactoryObjectTypePropertyName, is the word Factory concatenated with the
object type (e.g., Figure) and the property name (e.g., Color).

FactoryFigureColor

get

678

a = get(h,'Default') returns all default values currently defined on object h.
a is a structure array whose field names are the object property names and
whose field values are the values of the corresponding properties. If you do not
specify an output argument, MATLAB displays the information on the screen.

a = get(h,'DefaultObjectTypePropertyName') returns the factory-defined
value of the named property for the specified object type. The argument,
DefaultObjectTypePropertyName, is the word Default concatenated with the
object type (e.g., Figure) and the property name (e.g., Color).

DefaultFigureColor

Examples You can obtain the default value of the LineWidth property for line graphics
objects defined on the root level with the statement:

get(0,'DefaultLineLineWidth')

ans =
 0.5000

To query a set of properties on all axes children define a cell array of property
names:

props = {'HandleVisibility', 'Interruptible';
'SelectionHighlight', 'Type'};

output = get(get(gca,'Children'),props);

The variable output is a cell array of dimension
length(get(gca,'Children')−by−4.

For example, type

patch;surface;text;line
output = get(get(gca,'Children'),props)
output =

'on' 'on' 'on' 'line'
'on’ 'off' 'on' 'text'
'on' 'on' 'on' 'surface'
'on' 'on' 'on' 'patch'

See Also findobj, gca, gcf, gco, set

Handle Graphics Properties

get (serial)

679

1get (serial)Purpose Return serial port object properties

Syntax get(obj)
out = get(obj)
out = get(obj,'PropertyName')

Arguments

Description get(obj) returns all property names and their current values to the command
line for obj.

out = get(obj) returns the structure out where each field name is the name
of a property of obj, and each field contains the value of that property.

out = get(obj,'PropertyName') returns the value out of the property
specified by PropertyName for obj. If PropertyName is replaced by a 1-by-n or
n-by-1 cell array of strings containing property names, then get returns a
1-by-n cell array of values to out. If obj is an array of serial port objects, then
out will be a m-by-n cell array of property values where m is equal to the length
of obj and n is equal to the number of properties specified.

Remarks Refer to “Displaying Property Names and Property Values” for a list of serial
port object properties that you can return with get.

When you specify a property name, you can do so without regard to case, and
you can make use of property name completion. For example, if s is a serial port
object, then these commands are all valid.

out = get(s,'BaudRate');
out = get(s,'baudrate');
out = get(s,'BAUD');

If you use the help command to display help for get, then you need to supply
the pathname shown below.

help serial/get

obj A serial port object or an array of serial port objects.

'PropertyName' A property name or a cell array of property names.

out A single property value, a structure of property values, or
a cell array of property values.

get (serial)

680

Example This example illustrates some of the ways you can use get to return property
values for the serial port object s.

s = serial('COM1');
out1 = get(s);
out2 = get(s,{'BaudRate','DataBits'});
get(s,'Parity')
ans =
none

See Also Functions
set

getappdata

681

1getappdataPurpose Get value of application-defined data

Syntax value = getappdata(h,name)
values = getappdata(h)

Description value = getappdata(h,name) gets the value of the application-defined data
with the name specified by name, in the object with the handle h. If the
application-defined data does not exist, MATLAB returns an empty matrix in
value.

value = getappdata(h) returns all application-defined data for the object
with handle h.

See Also setappdata, rmappdata, isappdata

getenv

682

1getenvPurpose Get field of structure array

Syntax getenv 'name'
N = getenv('name')

Description getenv 'name' searches the underlying operating system's environment list
for a string of the form name=value, where name is the input string. If found,
MATLAB returns the string, value. If the specified name cannot be found, an
empty matrix is returned.

N = getenv('name') returns value to the variable, N.

Examples os = getenv('OS')

os =
Windows_NT

See Also computer, pwd, ver, path

getfield

683

1getfieldPurpose Get field of structure array

Syntax f = getfield(s,'field')
f = getfield(s,{i,j},'field',{k})

Description f = getfield(s,'field'), where s is a 1-by-1 structure, returns the contents
of the specified field. This is equivalent to the syntax f = s.field.

If s is a structure having dimensions greater than 1-by-1, getfield returns the
first of all output values requested in the call. That is, for structure array
s(m,n), getfield returns f = s(1,1).field.

f = getfield(s,{i,j},'field',{k}) returns the contents of the specified
field. This is equivalent to the syntax f = s(i,j).field(k). All subscripts
must be passed as cell arrays—that is, they must be enclosed in curly braces
(similar to{i,j} and {k} above). Pass field references as strings.

Examples Given the structure:

mystr(1,1).name = 'alice';
mystr(1,1).ID = 0;
mystr(2,1).name = 'gertrude';
mystr(2,1).ID = 1

Then the command f = getfield(mystr,{2,1},'name') yields

f =

gertrude

To list the contents of all name (or other) fields, embed getfield in a loop:

for i = 1:2
 name{i} = getfield(mystr,{i,1},'name');
end
name

name =

 'alice' 'gertrude'

getfield

684

See Also setfield, rmfield, fieldnames

getframe

685

1getframePurpose Get movie frame

Syntax F = getframe
F = getframe(h)
F = getframe(h,rect)
[X,Map] = getframe(...)

Description getframe returns a movie frame. The frame is a snapshot (pixmap) of the
current axes or figure.

F = getframe gets a frame from the current axes.

F = getframe(h) gets a frame from the figure or axes identified by the handle
h.

F = getframe(h,rect) specifies a rectangular area from which to copy the
pixmap. rect is relative to the lower-left corner of the figure or axes h, in pixel
units. rect is a four-element vector in the form [left bottom width height],
where width and height define the dimensions of the rectangle.

F = getframe(...) returns a movie frame, which is a structure having two
fields:

• cdata – The image data stored as a matrix of uint8 values. The dimensions
of F.cdata are height-by-width-by-3.

• colormap – The colormap stored as an n-by-3 matrix of doubles. F.colormap
is empty on true color systems.

To capture an image, use this approach:

F = getframe(gcf);
image(F.cdata)
colormap(F.colormap)

[X,Map] = getframe(...) returns the frame as an indexed image matrix X
and a colormap Map. This version is obsolete and is supported only for
compatibility with earlier version of MATLAB. Since indexed images cannot
always capture true color displays, you should use the single output argument
form of getframe. To write code that is compatible with earlier version of

getframe

686

MATLAB and that can take advantage of true color support, use the following
approach:

F = getframe(gcf);
[X,Map] = frame2im(f);
imshow(X,Map)

Remarks Usually, getframe is used in a for loop to assemble an array of movie frames
for playback using movie. For example,

for j = 1:n
plotting commands
F(j) = getframe;

end
movie(F)

To create movies that are compatible with earlier versions of MATLAB (before
Release 11/MATLAB 5.3) use this approach:

M = moviein(n);
for j = 1:n

plotting commands
M(:,j) = getframe;

end
movie(M)

Capture Regions
Note that F = getframe; returns the contents of the current axes, exclusive of
the axis labels, title, or tick labels. F = getframe(gcf); captures the entire
interior of the current figure window. To capture the figure window menu, use
the form F = getframe(h,rect) with a rectangle sized to include the menu.

Examples Make the peaks function vibrate.

Z = peaks; surf(Z)
axis tight
set(gca,'nextplot','replacechildren');
for j = 1:20

surf(sin(2*pi*j/20)*Z,Z)
F(j) = getframe;

end

getframe

687

movie(F,20) % Play the movie twenty times

See Also getframe, frame2im, image, im2frame, movie, moviein

ginput

688

1ginputPurpose Input data using the mouse

Syntax [x,y] = ginput(n)
[x,y] = ginput
[x,y,button] = ginput(...)

Description ginput enables you to select points from the figure using the mouse or arrow
keys for cursor positioning. The figure must have focus before ginput receives
input.

[x,y] = ginput(n) enables you to select n points from the current axes and
returns the x- and y-coordinates in the column vectors x and y, respectively.
You can press the Return key to terminate the input before entering n points.

[x,y] = ginput gathers an unlimited number of points until you press the
Return key.

[x,y,button] = ginput(...) returns the x-coordinates, the y-coordinates,
and the button or key designation. button is a vector of integers indicating
which mouse buttons you pressed (1 for left, 2 for middle, 3 for right), or ASCII
numbers indicating which keys on the keyboard you pressed.

Remarks If you select points from multiple axes, the results you get are relative to those
axes coordinates systems.

Examples Pick 10 two-dimensional points from the figure window.

[x,y] = ginput(10)

Position the cursor with the mouse (or the arrow keys on terminals without a
mouse, such as Tektronix emulators). Enter data points by pressing a mouse
button or a key on the keyboard. To terminate input before entering 10 points,
press the Return key.

See Also gtext

global

689

1globalPurpose Define a global variable

Syntax global X Y Z

Description global X Y Z defines X, Y, and Z as global in scope.

Ordinarily, each MATLAB function, defined by an M-file, has its own local
variables, which are separate from those of other functions, and from those of
the base workspace. However, if several functions, and possibly the base
workspace, all declare a particular name as global, they all share a single copy
of that variable. Any assignment to that variable, in any function, is available
to all the functions declaring it global.

If the global variable does not exist the first time you issue the global
statement, it is initialized to the empty matrix.

If a variable with the same name as the global variable already exists in the
current workspace, MATLAB issues a warning and changes the value of that
variable to match the global.

Remarks Use clear global variable to clear a global variable from the global
workspace. Use clear variable to clear the global link from the current
workspace without affecting the value of the global.

To use a global within a callback, declare the global, use it, then clear the global
link from the workspace. This avoids declaring the global after it has been
referenced. For example,

uicontrol('style','pushbutton','CallBack',...

'global MY_GLOBAL,disp(MY_GLOBAL),MY_GLOBAL = MY_GLOBAL+1,clear MY_GLOBAL',...

'string','count')

There is no function form of the global command (i.e., you cannot use
parentheses and quote the variable names).

Examples Here is the code for the functions tic and toc (some comments abridged).
These functions manipulate a stopwatch-like timer. The global variable TICTOC
is shared by the two functions, but it is invisible in the base workspace or in
any other functions that do not declare it.

function tic

global

690

% TIC Start a stopwatch timer.
% TIC; any stuff; TOC
% prints the time required.
% See also: TOC, CLOCK.
global TICTOC
TICTOC = clock;

function t = toc
% TOC Read the stopwatch timer.
% TOC prints the elapsed time since TIC was used.
% t = TOC; saves elapsed time in t, does not print.
% See also: TIC, ETIME.
global TICTOC
if nargout < 1
 elapsed_time = etime(clock,TICTOC)
else
 t = etime(clock,TICTOC);
end

See Also clear, isglobal, who

gmres

691

1gmresPurpose Generalized Minimum Residual method (with restarts)

Syntax x = gmres(A,b)
gmres(A,b,restart)
gmres(A,b,restart,tol)
gmres(A,b,restart,tol,maxit)
gmres(A,b,restart,tol,maxit,M)
gmres(A,b,restart,tol,maxit,M1,M2)
gmres(A,b,restart,tol,maxit,M1,M2,x0)
gmres(afun,b,restart,tol,maxit,m1fun,m2fun,x0,p1,p2,...)
[x,flag] = gmres(A,b,...)
[x,flag,relres] = gmres(A,b,...)
[x,flag,relres,iter] = gmres(A,b,...)
[x,flag,relres,iter,resvec] = gmres(A,b,...)

Description x = gmres(A,b) attempts to solve the system of linear equations A*x = b for
x. The n-by-n coefficient matrix A must be square and the column vector b must
have length n. A can be a function afun such that afun(x) returns A*x.

If gmres converges, a message to that effect is displayed. If gmres fails to
converge after the maximum number of iterations or halts for any reason, a
warning message is printed displaying the relative residual norm(b-A*x)/
norm(b) and the iteration number at which the method stopped or failed.

gmres(A,b,restart) restarts the method every restart iterations. If restart
is [], then gmres uses the default, n, which does not actually restart.

gmres(A,b,restart,tol) specifies the tolerance of the method. If tol is [],
then gmres uses the default, 1e-6.

gmres(A,b,restart,tol,maxit) specifies the maximum number of iterations.
If maxit is [], then gmres uses the default, min(n/restart,10).

gmres(A,b,restart,tol,maxit,M) and gmres(A,b,restart,tol,maxit,
M1,M2) use preconditioner M or M = M1*M2 and effectively solve the system
inv(M)*A*x = inv(M)*b for x. If M is [] then gmres applies no preconditioner.
M can be a function that returns M\x.

gmres

692

gmres(A,b,restart,tol,maxit,M1,M2,x0) specifies the first initial guess. If
x0 is [], then gmres uses the default, an all-zero vector.

gmres(afun,b,restart,tol,maxit,m1fun,m2fun,x0,p1,p2,...) passes
parameters to functions afun(x,p1,p2,...), m1fun(x,p1,p2,...), and
m2fun(x,p1,p2,...).

[x,flag] = gmres(A,b,...) also returns a convergence flag.

Whenever flag is not 0, the solution x returned is that with minimal norm
residual computed over all the iterations. No messages are displayed if the
flag output is specified.

[x,flag,relres] = gmres(A,b,...) also returns the relative residual
norm(b-A*x)/norm(b). If flag is 0, relres <= tol.

[x,flag,relres,iter] = gmres(A,b,...) also returns both the outer and
inner iteration numbers at which x was computed, where 0 <= iter(1) <=
maxit and 0 <= iter(2) <= restart.

[x,flag,relres,iter,resvec] = gmres(A,b,...) also returns a vector of
the residual norms at each inner iteration, including norm(b-A*x0).

Examples Example 1.

A = gallery('wilk',21);
b = sum(A,2);
tol = 1e-12;
maxit = 15;
M1 = diag([10:-1:1 1 1:10]);

Flag Convergence

0 gmres converged to the desired tolerance tol within maxit
iterations.

1 gmres iterated maxit times but did not converge.

2 Preconditioner M was ill-conditioned.

3 gmres stagnated. (Two consecutive iterates were the same.)

gmres

693

x = gmres(A,b,10,tol,maxit,M1,[],[]);
gmres(10) converged at iteration 2(10) to a solution with relative
residual 1.9e-013

Alternatively, use this matrix-vector product function

function y = afun(x,n)
y = [0;
 x(1:n-1)] + [((n-1)/2:-1:0)';
 (1:(n-1)/2)'] .*x + [x(2:n);
 0];

and this preconditioner backsolve function

function y = mfun(r,n)
y = r ./ [((n-1)/2:-1:1)'; 1; (1:(n-1)/2)'];

as inputs to gmres

x1 = gmres(@afun,b,10,tol,maxit,@mfun,[],[],21);

Note that both afun and mfun must accept gmres’s extra input n=21.

Example 2.

load west0479
A = west0479
b = sum(A,2)
[x,flag] = gmres(A,b,5)

flag is 1 because gmres does not converge to the default tolerance 1e-6 within
the default 10 outer iterations.

[L1,U1] = luinc(A,1e-5);
[x1,flag1] = gmres(A,b,5,1e-6,5,L1,U1);

flag1 is 2 because the upper triangular U1 has a zero on its diagonal, and
gmres fails in the first iteration when it tries to solve a system such as U1*y = r
for y using backslash.

[L2,U2] = luinc(A,1e-6);
tol = 1e-15;
[x4,flag4,relres4,iter4,resvec4] = gmres(A,b,4,tol,5,L2,U2);
[x6,flag6,relres6,iter6,resvec6] = gmres(A,b,6,tol,3,L2,U2);

gmres

694

[x8,flag8,relres8,iter8,resvec8] = gmres(A,b,8,tol,3,L2,U2);

flag4, flag6, and flag8 are all 0 because gmres converged when restarted at
iterations 4, 6, and 8 while preconditioned by the incomplete LU factorization
with a drop tolerance of 1e-6. This is verified by the plots of outer iteration
number against relative residual. A combined plot of all three clearly shows the
restarting at iterations 4 and 6. The total number of iterations computed may
be more for lower values of restart, but the number of length n vectors stored
is fewer, and the amount of work done in the method decreases proportionally.

See Also bicg, bicgstab, cgs, lsqr, luinc, minres, pcg, qmr, symmlq

@ (function handle), \ (backslash)

References [1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.

[2] Saad, Youcef and Martin H. Schultz, “GMRES: A generalized minimal
residual algorithm for solving nonsymmetric linear systems”, SIAM J. Sci.
Stat. Comput., July 1986, Vol. 7, No. 3, pp. 856-869.

0 1 2 3 4

10
−10

10
0

gmres(4)

number of outer iterations
0 1 2

10
−10

10
0

gmres(6)

number of outer iterations

0 1

10
−10

10
0

gmres(8)

number of outer iterations
0 4 8 12 16 20

10
−10

10
0

number of inner iterations

gplot

695

1gplotPurpose Plot set of nodes using an adjacency matrix

Synopsis gplot(A,Coordinates)
gplot(A,Coordinates,LineSpec)

Description The gplot function graphs a set of coordinates using an adjacency matrix.

gplot(A,Coordinates) plots a graph of the nodes defined in Coordinates
according to the n-by-n adjacency matrix A, where n is the number of nodes.
Coordinates is an n-by-2 or an n-by-3 matrix, where n is the number of nodes
and each coordinate pair or triple represents one node.

gplot(A,Coordinates,LineSpec) plots the nodes using the line type, marker
symbol, and color specified by LineSpec.

Remarks For two-dimensional data, Coordinates(i,:) = [x(i) y(i)] denotes node i,
and Coordinates(j,:) = [x(j) y(j)] denotes node j. If node i and node j are
joined, A(i,j) or A(j,i) are nonzero; otherwise, A(i,j) and A(j,i) are zero.

Examples To draw half of a Bucky ball with asterisks at each node:

k = 1:30;
[B,XY] = bucky;
gplot(B(k,k),XY(k,:),'-*')

gplot

696

axis square

See Also LineSpec, sparse, spy

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

gradient

697

1gradientPurpose Numerical gradient

Syntax FX = gradient(F)
[FX,FY] = gradient(F)
[Fx,Fy,Fz,...] = gradient(F)
[...] = gradient(F,h)
[...] = gradient(F,h1,h2,...)

Definition The gradient of a function of two variables, F(x,y), is defined as:

and can be thought of as a collection of vectors pointing in the direction of
increasing values of In MATLAB, numerical gradients (differences) can be
computed for functions with any number of variables. For a function of N
variables, F(x,y,z,...),

Description FX = gradient(F) where F is a vector returns the one-dimensional numerical
gradient of F. FX corresponds to , the differences in the x direction.

[FX,FY] = gradient(F) where F is a matrix returns the x and y components
of the two-dimensional numerical gradient. FX corresponds to , the
differences in the x (column) direction. FY corresponds to , the
differences in the y (row) direction. The spacing between points in each
direction is assumed to be one.

[FX,FY,FZ,...] = gradient(F) where F has N dimensions returns the N
components of the gradient of F. There are two ways to control the spacing
between values in F:

F∇
x∂

∂Fî
y∂

∂F ĵ+=

F .

F∇
x∂

∂Fî
y∂

∂F ĵ
z∂

∂Fk̂ …+ + +=

F∂ x∂⁄

F∂ x∂⁄
F∂ y∂⁄

gradient

698

• A single spacing value, h, specifies the spacing between points in every
direction.

• N spacing values (h1,h2,...) specifies the spacing for each dimension of F.
Scalar spacing parameters specify a constant spacing for each dimension.
Vector parameters specify the coordinates of the values along corresponding
dimensions of F. In this case, the length of the vector must match the size of
the corresponding dimension.

[...] = gradient(F,h) where h is a scalar uses h as the spacing between
points in each direction.

[...] = gradient(F,h1,h2,...) with N spacing parameters specifies the
spacing for each dimension of F.

Examples The statements

v = -2:0.2:2;
[x,y] = meshgrid(v);
z = x .∗ exp(-x.^2 - y.^2);
[px,py] = gradient(z,.2,.2);
contour(v,v,z), hold on, quiver(px,py), hold off

produce

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

gradient

699

Given,

F(:,:,1) = magic(3); F(:,:,2) = pascal(3);
gradient(F) takes dx = dy = dz = 1.
[PX,PY,PZ] = gradient(F,0.2,0.1,0.2) takes dx = 0.2, dy = 0.1, and
dz = 0.2.

See Also del2, diff

graymon

700

1graymonPurpose Set default figure properties for grayscale monitors

Syntax graymon

Description graymon sets defaults for graphics properties to produce more legible displays
for grayscale monitors.

See Also axes, figure

grid

701

1gridPurpose Grid lines for two- and three-dimensional plots

Syntax grid on
grid off
grid
grid(axes_handle,...)

Description The grid function turns the current axes’ grid lines on and off.

grid on adds grid lines to the current axes.

grid off removes grid lines from the current axes.

grid toggles the grid visibility state.

grid(axes_handle,...) uses the axes specified by axes_handle instead of the
current axes.

Algorithm grid sets the XGrid, YGrid, and ZGrid properties of the current axes.

See Also axes, plot

The XGrid, YGrid, and ZGrid properties of axes objects.

griddata

702

1griddataPurpose Data gridding

Syntax ZI = griddata(x,y,z,XI,YI)
[XI,YI,ZI] = griddata(x,y,z,xi,yi)
[...] = griddata(...,method)

Description ZI = griddata(x,y,z,XI,YI) fits a surface of the form z = f(x,y) to the data
in the (usually) nonuniformly spaced vectors (x,y,z). griddata interpolates
this surface at the points specified by (XI,YI) to produce ZI. The surface
always passes through the data points. XI and YI usually form a uniform grid
(as produced by meshgrid).

XI can be a row vector, in which case it specifies a matrix with constant
columns. Similarly, YI can be a column vector, and it specifies a matrix with
constant rows.

[XI,YI,ZI] = griddata(x,y,z,xi,yi) returns the interpolated matrix ZI as
above, and also returns the matrices XI and YI formed from row vector xi and
column vector yi. These latter are the same as the matrices returned by
meshgrid.

[...] = griddata(...,method) uses the specified interpolation method:

The method defines the type of surface fit to the data. The 'cubic' and 'v4'
methods produce smooth surfaces while 'linear' and 'nearest' have
discontinuities in the first and zero’th derivatives, respectively. All the
methods except 'v4' are based on a Delaunay triangulation of the data.

Remarks XI and YI can be matrices, in which case griddata returns the values for the
corresponding points (XI(i,j),YI(i,j)). Alternatively, you can pass in the
row and column vectors xi and yi, respectively. In this case, griddata

'linear' Triangle-based linear interpolation
(default)

'cubic' Triangle-based cubic interpolation

'nearest' Nearest neighbor interpolation

'v4' MATLAB 4 griddata method

griddata

703

interprets these vectors as if they were matrices produced by the command
meshgrid(xi,yi).

Algorithm The griddata(...,'v4') command uses the method documented in [1]. The
other methods are based on Delaunay triangulation (see delaunay).

Examples Sample a function at 100 random points between ±2.0:

rand('seed',0)
x = rand(100,1)∗4-2; y = rand(100,1)∗4-2;
z = x.∗exp(-x.^2-y.^2);

x, y, and z are now vectors containing nonuniformly sampled data. Define a
regular grid, and grid the data to it:

ti = -2:.25:2;
[XI,YI] = meshgrid(ti,ti);
ZI = griddata(x,y,z,XI,YI);

Plot the gridded data along with the nonuniform data points used to generate
it:

mesh(XI,YI,ZI), hold
plot3(x,y,z,'o'), hold off

-2
-1

0
1

2

-2

-1

0

1

2
-0.5

0

0.5

griddata

704

See Also delaunay, griddata3, griddatan, interp2, meshgrid

References [1] Sandwell, David T., “Biharmonic Spline Interpolation of GEOS-3 and
SEASAT Altimeter Data”, Geophysical Research Letters, 2, 139-142,1987.

[2] Watson, David E., Contouring: A Guide to the Analysis and Display of
Spatial Data, Tarrytown, NY: Pergamon (Elsevier Science, Inc.): 1992.

griddata3

705

1griddata3Purpose Data gridding and hypersurface fitting for 3-D data

Syntax w = griddata3(x,y,z,v,xi,yi,zi)
w = griddata3(...,'method')

Description w = griddata3(x, y, z, v, xi, yi, zi) fits a hypersurface of the form
w = f(x,y,z) to the data in the (usually) nonuniformly spaced vectors (x, y, z, v).
griddata3 interpolates this hypersurface at the points specified by (xi,yi,zi)
to produce w. w is the same size as xi, yi, and zi.

(xi,yi,zi) is usually a uniform grid (as produced by meshgrid) and is where
griddata3 gets its name.

w = griddata3(...,'method') defines the type of surface that is fit to the
data, where 'method' is either:

Note All the methods are based on a Delaunay triangulation of the data that
uses qhull [1]. For information about qhull, see http://www.geom.umn.edu/
software/qhull/. For copyright information, see http://www.geom.umn.edu/
software/download/COPYING.html.

See Also delaunayn, griddata, griddatan, meshgrid

Reference [1] National Science and Technology Research Center for Computation and
Visualization of Geometric Structures (The Geometry Center), University of
Minnesota. 1993.

'linear' Tesselation-based linear interpolation (default)

'nearest' Nearest neighbor interpolation

griddatan

706

1griddatanPurpose Data gridding and hypersurface fitting (dimension >= 2)

Syntax yi = griddatan(X,y,xi)
yi = griddatan(...,'method')

Description yi = griddatan(X, y, xi) fits a hyper-surface of the form y = f(X) to the data
in the (usually) nonuniformly-spaced vectors (X, y). griddatan interpolates
this hyper-surface at the points specified by xi to produce yi. xi can be
nonuniform.

X is of dimension m-by-n, representing m points in n-D space. y is of dimension
m-by-1, representing m values of the hyper-surface f(X). xi is a vector of size
p-by-n, representing p points in the n-D space whose surface value is to be
fitted. yi is a vector of length p approximating the values f(xi). The
hypersurface always goes through the data points (X,y). xi is usually a uniform
grid (as produced by meshgrid).

[...] = griddatan(...,'method') defines the type of surface fit to the data,
where 'method' is one of:

All the methods are based on a Delaunay tessellation of the data.

Note griddatan calls delaunayn, which is based on qhull [1]. For
information about qhull, see http://www.geom.umn.edu/software/qhull/.
For copyright information, see http://www.geom.umn.edu/software/
download/COPYING.html.

See Also delaunayn, griddata, griddata3, meshgrid

Reference [1] National Science and Technology Research Center for Computation and
Visualization of Geometric Structures (The Geometry Center), University of
Minnesota. 1993.

'linear' Tessellation-based linear interpolation (default)

'nearest' Nearest neighbor interpolation

gsvd

707

1gsvdPurpose Generalized singular value decomposition

Syntax [U,V,X,C,S] = gsvd(A,B)
[U,V,X,C,S] = gsvd(A,B,0)
sigma = gsvd(A,B)

Description [U,V,X,C,S] = gsvd(A,B) returns unitary matrices U and V, a (usually)
square matrix X, and nonnegative diagonal matrices C and S so that

A = U*C*X'
B = V*S*X'
C'*C + S'*S = I

A and B must have the same number of columns, but may have different
numbers of rows. If A is m-by-p and B is n-by-p, then U is m-by-m, V is n-by-n and
X is p-by-q where q = min(m+n,p).

sigma = gsvd(A,B) returns the vector of generalized singular values,
sqrt(diag(C'*C)./diag(S'*S)).

The nonzero elements of S are always on its main diagonal. If m >= p the
nonzero elements of C are also on its main diagonal. But if m < p, the nonzero
diagonal of C is diag(C,p-m). This allows the diagonal elements to be ordered
so that the generalized singular values are nondecreasing.

gsvd(A,B,0), with three input arguments and either m or n >= p, produces the
“economy-sized” decomposition where the resulting U and V have at most p
columns, and C and S have at most p rows. The generalized singular values are
diag(C)./diag(S).

When B is square and nonsingular, the generalized singular values, gsvd(A,B),
are equal to the ordinary singular values, svd(A/B), but they are sorted in the
opposite order. Their reciprocals are gsvd(B,A).

In this formulation of the gsvd, no assumptions are made about the individual
ranks of A or B. The matrix X has full rank if and only if the matrix [A;B] has
full rank. In fact, svd(X) and cond(X) are are equal to svd([A;B]) and
cond([A;B]). Other formulations, eg. G. Golub and C. Van Loan [1], require
that null(A) and null(B) do not overlap and replace X by inv(X) or inv(X').

Note, however, that when null(A) and null(B) do overlap, the nonzero
elements of C and S are not uniquely determined.

gsvd

708

Examples Example 1. The matrices have at least as many rows as columns.

A = reshape(1:15,5,3)
B = magic(3)

A =
 1 6 11
 2 7 12
 3 8 13
 4 9 14
 5 10 15

B =
 8 1 6
 3 5 7
 4 9 2

The statement

[U,V,X,C,S] = gsvd(A,B)

produces a 5-by-5 orthogonal U, a 3-by-3 orthogonal V, a 3-by-3 nonsingular X,

X =
 2.8284 -9.3761 -6.9346
 -5.6569 -8.3071 -18.3301
 2.8284 -7.2381 -29.7256

and

C =
 0.0000 0 0
 0 0.3155 0
 0 0 0.9807
 0 0 0
 0 0 0

S =
 1.0000 0 0
 0 0.9489 0
 0 0 0.1957

Since A is rank deficient, the first diagonal element of C is zero.

gsvd

709

The economy sized decomposition,

[U,V,X,C,S] = gsvd(A,B,0)

produces a 5-by-3 matrix U and a 3-by-3 matrix C.

U =
 0.5700 -0.6457 -0.4279
 -0.7455 -0.3296 -0.4375
 -0.1702 -0.0135 -0.4470
 0.2966 0.3026 -0.4566
 0.0490 0.6187 -0.4661

C =
 0.0000 0 0
 0 0.3155 0
 0 0 0.9807

The other three matrices, V, X, and S are the same as those obtained with the
full decomposition.

The generalized singular values are the ratios of the diagonal elements of C and
S.

sigma = gsvd(A,B)

sigma =
 0.0000
 0.3325
 5.0123

These values are a reordering of the ordinary singular values

svd(A/B)

ans =
 5.0123
 0.3325
 0.0000

Example 2. The matrices have at least as many columns as rows.

A = reshape(1:15,3,5)
B = magic(5)

gsvd

710

A =

1 4 7 10 13
 2 5 8 11 14
 3 6 9 12 15

B =

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

The statement

[U,V,X,C,S] = gsvd(A,B)

produces a 3-by-3 orthogonal U, a 5-by-5 orthogonal V, a 5-by-5 nonsingular X
and

C =
 0 0 0.0000 0 0
 0 0 0 0.0439 0
 0 0 0 0 0.7432

S =
 1.0000 0 0 0 0
 0 1.0000 0 0 0
 0 0 1.0000 0 0
 0 0 0 0.9990 0
 0 0 0 0 0.6690

In this situation, the nonzero diagonal of C is diag(C,2). The generalized
singular values include three zeros.

sigma = gsvd(A,B)

gsvd

711

sigma =
 0
 0
 0.0000
 0.0439
 1.1109

Reversing the roles of A and B reciprocates these values, producing two
infinities.

gsvd(B,A)

ans =
 1.0e+016 *

 0.0000
 0.0000
 4.4126
 Inf
 Inf

Algorithm The generalized singular value decomposition uses the C-S decomposition
described in [1], as well as the built-in svd and qr functions. The C-S
decomposition is implemented in a subfunction in the gsvd M-file.

Diagnostics The only warning or error message produced by gsvd itself occurs when the two
input arguments do not have the same number of columns.

Reference [1] Golub, Gene H. and Charles Van Loan, Matrix Computations, Third
Edition, Johns Hopkins University Press, Baltimore, 1996

See Also svd

gtext

712

1gtextPurpose Mouse placement of text in two-dimensional view

Syntax gtext('string')
h = gtext('string')

Description gtext displays a text string in the current figure window after you select a
location with the mouse.

gtext('string') waits for you to press a mouse button or keyboard key while
the pointer is within a figure window. Pressing a mouse button or any key
places 'string' on the plot at the selected location.

h = gtext('string') returns the handle to a text graphics object after you
place 'string' on the plot at the selected location.

Remarks As you move the pointer into a figure window, the pointer becomes a crosshair
to indicate that gtext is waiting for you to select a location. gtext uses the
functions ginput and text.

Examples Place a label on the current plot:

gtext('Note this divergence!')

See Also ginput, text

guidata

713

1guidataPurpose Store or retrieve application data

Syntax guidata(object_handle,data)
data = guidata(object_handle)

Description guidata(object_handle,data) stores the specified data in the figure's
application data. If object_handle is not a figure handle, then the object’s
parent figure is used.

data = guidata(object_handle) returns previously stored data, or an empty
matrix if nothing has been stored.

guidata provides application developers with a convenient interface to a
figure's application data:

• You do not need to create and maintain a hard-coded property name for the
application data throughout your source code.

• You can access the data from within a subfunction callback routine using the
component's handle (which is returned by gcbo), without needing to find the
figure's handle.

guidata is particularly useful in conjunction with guihandles, which creates a
structure in the figure’s application data containing the handles of all the
components in a GUI.

Examples In this example, guidata is used to save a structure on a GUI figure’s
application data from within the initialization section of the application M-file.
This structure is initially created by guihandles and then used to save
additional data as well.

data = guihandles(figure_handle); % create structure of handles
data.numberOfErrors = 0; % add some additional data
guidata(figure_handle,data) % save the structure

You can recall the data from within a subfunction callback routine and then
save the structure again:

data = guidata(gcbo); % get the structure in the subfunction
data.numberOfErrors = data.numberOfErrors + 1;
guidata(gcbo,data) % save the changes to the structure

guidata

714

See Also guide, guihandles, getappdata, setappdata

guide

715

1guidePurpose Start the GUI Layout Editor

Syntax guide
guide('filename.fig')
guide(figure_handles)

Description guide displays the GUI Layout Editor open to a new untitled FIG-file.

guide('filename.fig') opens the FIG-file named filename.fig. You can
specify the path to a file not on your MATLAB path.

guide('figure_handles') opens FIG-files in the Layout Editor for each
existing figure listed in figure_handles. MATLAB copies the contents of each
figure into the FIG-file, with the exception of axes children (image, light, line,
patch, rectangle, surface, and text objects), which are not copied.

See Also inspect

Creating GUIs

guihandles

716

1guihandlesPurpose Create a structure of handles

Syntax handles = guihandles(object_handle)
handles = guihandles

Description handles = guihandles(object_handle) returns a structure containing the
handles of the objects in a figure, using the value of their Tag properties as the
fieldnames, with the following caveats:

• Objects are excluded if their Tag properties are empty, or are not legal
variable names.

• If several objects have the same Tag, that field in the structure contains a
vector of handles.

• Objects with hidden handles are included in the structure.

handles = guihandles returns a structure of handles for the current figure.

See Also guidata, guide, getappdata, setappdata

hadamard

717

1hadamardPurpose Hadamard matrix

Syntax H = hadamard(n)

Description H = hadamard(n) returns the Hadamard matrix of order n.

Definition Hadamard matrices are matrices of 1’s and -1’s whose columns are orthogonal,

H'∗H = n∗I

where [n n] = size(H) and I = eye(n,n).

They have applications in several different areas, including combinatorics,
signal processing, and numerical analysis, [1], [2].

An n-by-n Hadamard matrix with n > 2 exists only if rem(n,4) = 0. This
function handles only the cases where n, n/12, or n/20 is a power of 2.

Examples The command hadamard(4) produces the 4-by-4 matrix:

1 1 1 1
1 -1 1 -1
1 1 -1 -1
1 -1 -1 1

See Also compan, hankel, toeplitz

References [1] Ryser, H. J., Combinatorial Mathematics, John Wiley and Sons, 1963.

[2] Pratt, W. K., Digital Signal Processing, John Wiley and Sons, 1978.

hankel

718

1hankelPurpose Hankel matrix

Syntax H = hankel(c)
H = hankel(c,r)

Description H = hankel(c) returns the square Hankel matrix whose first column is c and
whose elements are zero below the first anti-diagonal.

H = hankel(c,r) returns a Hankel matrix whose first column is c and whose
last row is r. If the last element of c differs from the first element of r, the last
element of c prevails.

Definition A Hankel matrix is a matrix that is symmetric and constant across the
anti-diagonals, and has elements h(i,j) = p(i+j-1), where vector
p = [c r(2:end)] completely determines the Hankel matrix.

Examples A Hankel matrix with anti-diagonal disagreement is

c = 1:3; r = 7:10;
h = hankel(c,r)
h =
 1 2 3 8
 2 3 8 9
 3 8 9 10

p = [1 2 3 8 9 10]

See Also hadamard, toeplitz

hdf

719

1hdfPurpose HDF interface

Syntax hdf*(functstr,param1,param2,...)

Description MATLAB provides a set of functions that enable you to access the HDF library
developed and supported by the National Center for Supercomputing
Applications (NCSA). MATLAB supports all or a portion of these HDF
interfaces: SD, V, VS, AN, DRF8, DF24, H, HE, and HD.

To use these functions you must be familiar with the HDF library.
Documentation for the library is available on the NCSA HDF Web page at
http://hdf.ncsa.uiuc.edu. MATLAB additionally provides extensive
command line help for each of the provided functions.

This table lists the interface-specific HDF functions in MATLAB.

Function Interface

hdfan Multifile annotation

hdfdf24 24-bit raster image

hdfdfr8 8-bit raster image

hdfgd HDF-EOS GD interface

hdfh HDF H interface

hdfhd HDF HD interface

hdfhe HDF HE interface

hdfml Gateway utilities

hdfpt HDF-EOS PT interface

hdfsd Multifile scientific data set

hdfsw HDF-EOS SW interface

hdfv Vgroup

hdfvf Vdata VF functions

hdf

720

See Also imfinfo, imread, imwrite, int8, int16, int32, single, uint8, uint16, uint32

Function Interface

hdfvh Vdata VH functions

hdfvs Vdata VS functions

help

721

1helpPurpose Display help for MATLAB functions in the Command Window

Syntax help
help /
help function
help toolbox/
help toolbox/function

Description help lists all primary help topics in the Command Window. Each main help
topic corresponds to a directory name on MATLAB’s search path.

help / lists all of the operators and special characters, along with their
descriptions.

help function displays M-file help, a brief description and the syntax, for
function in the Command Window. If function is overloaded, help displays
the M-file help for the first function found on the search path, and lists the
overloaded functions.

help toolbox/ displays the contents file for the specified directory, toolbox.
It is not necessary to give the full pathname of the directory; the last
component, or the last several components, is sufficient.

help toolbox/function displays the M-file help for function that belongs to
the specified toolbox.

Note M-file help displayed in the Command Window uses uppercase
characters for the function and variable names to make them stand out from
the rest of the text. When typing function names, however, always use the
corresponding lowercase characters since MATLAB is case sensitive and all
function names are actually in lowercase.

Remarks Creating Online Help for Your Own M-Files
MATLAB’s help system, like MATLAB itself, is highly extensible. You can
write help descriptions for your own M-files and toolboxes using the same
self-documenting method that MATLAB’s M-files and toolboxes use.

help

722

The help function lists all help topics by displaying the first line (the H1 line)
of the contents files in each directory on MATLAB’s search path. The contents
files are the M-files named Contents.m within each directory.

Typing help topic, where topic is a directory name, displays the comment
lines in the Contents.m file located in that directory. If a contents file does not
exist, help displays the H1 lines of all the files in the directory.

Typing help topic, where topic is a function name, displays help for the
function by listing the first contiguous comment lines in the M-file topic.m.

Create self-documenting online help for your own M-files by entering text on
one or more contiguous comment lines, beginning with the second line of the
file (first line if it is a script). For example, an abridged version of the M-file
angle.m provided with MATLAB could contain

function p = angle(h)
% ANGLE Polar angle.
% ANGLE(H) returns the phase angles, in radians, of a matrix
% with complex elements. Use ABS for the magnitudes.
p = atan2(imag(h),real(h));

When you execute help angle, lines 2, 3, and 4 display. These lines are the first
block of contiguous comment lines. The help system ignores comment lines that
appear later in an M-file, after any executable statements or after a blank line.

The first comment line in any M-file (the H1 line) is special. It should contain
the function name and a brief description of the function. The lookfor function
searches and displays this line, and help displays these lines in directories that
do not contain a Contents.m file.

Creating Contents Files for Your Own M-File Directories
A Contents.m file is provided for each M-file directory included with the
MATLAB software. If you create directories in which to store your own M-files,
you should create Contents.m files for them too. To do so, simply follow the
format used in an existing Contents.m file.

Examples Typing

help datafun

displays help for the datafun directory.

help

723

Typing

help fft

displays help for the fft function.

To prevent long descriptions from scrolling off the screen before you have time
to read them, enter more on, and then enter the help function.

See Also doc, helpbrowser, helpwin, lookfor, more, partialpath, path, what, which

helpbrowser

724

1helpbrowserPurpose Display the MATLAB Help browser, providing access to extensive online help

Graphical
Interface

As an alternative to the helpbrowser function, select Help from the View
menu or click the help button on the toolbar in the MATLAB desktop.

Syntax helpbrowser

Description helpbrowser displays the Help browser, providing direct access to a
comprehensive library of online help, including reference pages and manuals.
If the Help browser was previously opened in the current session, it shows the
last page viewed; otherwise it shows the “Begin Here” page. See “Using the
Help Browser” for details.

Tabs in Help Navigator pane provide different ways to find documentation.

Drag the separator bar to adjust the width of the panes.

View documentation in the display pane.

Use the close box to hide the pane.

helpbrowser

725

See Also doc, docopt, help, helpdesk, helpwin, lookfor, web

helpdesk

726

1helpdeskPurpose Display the Help browser

Syntax helpdesk

Description helpdesk displays the Help browser and shows the “Begin Here” page. In
previous releases, helpdesk displayed the Help Desk, which was the precursor
to the Help browser. In a future release, the helpdesk function will be phased
out.

See Also helpbrowser

helpdlg

727

1helpdlgPurpose Create a help dialog box

Syntax helpdlg
helpdlg('helpstring')
helpdlg('helpstring','dlgname')
h = helpdlg(...)

Description helpdlg creates a help dialog box or brings the named help dialog box to the
front.

helpdlg displays a dialog box named 'Help Dialog' containing the string
'This is the default help string.'

helpdlg('helpstring') displays a dialog box named 'Help Dialog' containing
the string specified by 'helpstring'.

helpdlg('helpstring','dlgname') displays a dialog box named 'dlgname'
containing the string 'helpstring'.

h = helpdlg(...) returns the handle of the dialog box.

Remarks MATLAB wraps the text in 'helpstring' to fit the width of the dialog box. The
dialog box remains on your screen until you press the OK button or the Return
key. After pressing the button, the help dialog box disappears.

Examples The statement,

helpdlg('Choose 10 points from the figure','Point Selection');

displays this dialog box:

helpdlg

728

See Also dialog, errordlg, questdlg, warndlg

helpwin

729

1helpwinPurpose Display M-file help and provide access to M-file help for all functions

Syntax helpwin
helpwin topic

Description helpwin lists topics for groups of functions in the Help browser. It shows brief
descriptions of the topics and provides links to access M-file help for the
functions. You cannot follow links in the helpwin list of functions if MATLAB
is busy.

helpwin topic displays help information for the topic in the Help browser. If
topic is a directory, it displays all functions in the directory. If topic is a
function, it displays M-file help for that function. From the page, you can access
a list of directories (the Default Topics link) as well as the reference page help
for the function (the Go to online doc link). You cannot follow links in the
helpwin list of functions if MATLAB is busy.

Examples Typing

helpwin datafun

displays the functions in the datafun directory and a brief description of each.

Typing

helpwin fft

displays the M-file help for the fft function in the Help browser.

See Also doc, docopt, help, helpbrowser, lookfor, web

hess

730

1hessPurpose Hessenberg form of a matrix

Syntax [P,H] = hess(A)
H = hess(A)

Description H = hess(A) finds H, the Hessenberg form of matrix A.

[P,H] = hess(A) produces a Hessenberg matrix H and a unitary matrix P so
that A = P∗H∗P' and P'∗P = eye(size(A)).

Definition A Hessenberg matrix is zero below the first subdiagonal. If the matrix is
symmetric or Hermitian, the form is tridiagonal. This matrix has the same
eigenvalues as the original, but less computation is needed to reveal them.

Examples H is a 3-by-3 eigenvalue test matrix:

H =
 -149 -50 -154
 537 180 546
 -27 -9 -25

Its Hessenberg form introduces a single zero in the (3,1) position:

hess(H) =
 -149.0000 42.2037 -156.3165
 -537.6783 152.5511 -554.9272
 0 0.0728 2.4489

Algorithm hess uses LAPACK routines to compute the Hessenberg form of a matrix:

Matrix A Routine

Real symmetric DSYTRD
DSYTRD, DORGTR, (with output P)

Real nonsymmetric DGEHRD
DGEHRD, DORGHR (with output P)

hess

731

See Also eig, qz, schur

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
LAPACK User’s Guide, Third Edition, SIAM, Philadelphia, 1999.

Complex Hermitian ZHETRD
ZHETRD, ZUNGTR (with output P)

Complex non-Hermitian ZGEHRD
ZGEHRD, ZUNGHR (with output P)

Matrix A Routine

hex2dec

732

1hex2decPurpose Hexadecimal to decimal number conversion

Syntax d = hex2dec('hex_value')

Description d = hex2dec('hex_value') converts hex_value to its floating-point integer
representation. The argument hex_value is a hexadecimal integer stored in a
MATLAB string. The value of hex_value must be smaller than hexadecimal
10,000,000,000,000.

If hex_value is a character array, each row is interpreted as a hexadecimal
string.

Examples hex2dec('3ff')

ans =

 1023

For a character array S

S =
0FF
2DE
123

hex2dec(S)

ans =

255
734
291

See Also dec2hex, format, hex2num, sprintf

hex2num

733

1hex2numPurpose Hexadecimal to double number conversion

Syntax f = hex2num('hex_value')

Description f = hex2num('hex_value') converts hex_value to the IEEE
double-precision floating-point number it represents. NaN, Inf, and
denormalized numbers are all handled correctly. Fewer than 16 characters are
padded on the right with zeros.

Examples f = hex2num('400921fb54442d18')

f =

 3.14159265358979

See Also format, hex2dec, sprintf

hgload

734

1hgloadPurpose Loads Handle Graphics object from a file

Syntax h = hgload('filename')
h = hgload('filename','all')

Description h = hgload('filename') loads a handle graphics object and its children if any
from the file specified by filename. If filename contains no extension, then
MATLAB adds the ".fig" extension.

h = hgload('filename','all') overrides the default behavior, which does
not reload non-serializable objects saved in the file. These objects include the
default toolbars and default menus.

Non-serializable objects are normally not reloaded because they are loaded
from different files at figure creation time. This allows revisions of the default
menus and toolbars to occur without affecting existing fig-files. Passing the
string all to hgload insures that any non-serializable objects contained in the
file are also reloaded.

Note that by default, hgsave excludes non- serializable objects from the fig-file
unless you use the all flag.

See Also hgsave, open

hgsave

735

1hgsavePurpose Saves a Handle Graphics object hierarchy to a file

Syntax hgsave('filename')
hgsave(h,'filename')
hgsave('filename','all')

Description hgsave('filename') saves the current figure to a file named filename.

hgsave(h,'filename') saves the objects identified by the array of handles h to
a file named filename. If you do not specify an extension for filename, then
MATLAB adds the extension ".fig". If h is a vector, none of the handles in h
may be ancestors or descendents of any other handles in h.

hgsave('filename','all') overrides the default behavior, which does not
save non-serializable objects. Non-serializable objects include the default
toolbars and default menus. This allows revisions of the default menus and
toolbars to occur without affecting existing FIG-files and also reduces the size
of FIG-files. Passing the string all to hgsave insures that non-serializable
objects are also saved.

Note: the default behavior of hgload is to ignore non- serializable objects in the
file at load time. This behavior can be overwritten using the all argument with
hgload.

See Also hgload, open

hidden

736

1hiddenPurpose Remove hidden lines from a mesh plot

Syntax hidden on
hidden off
hidden

Description Hidden line removal draws only those lines that are not obscured by other
objects in the field of view.

hidden on turns on hidden line removal for the current graph so lines in the
back of a mesh are hidden by those in front. This is the default behavior.

hidden off turns off hidden line removal for the current graph.

hidden toggles the hidden line removal state.

Algorithm hidden on sets the FaceColor property of a surface graphics object to the
background Color of the axes (or of the figure if axes Color is none).

Examples Set hidden line removal off and on while displaying the peaks function.

mesh(peaks)
hidden off
hidden on

See Also shading, mesh

The surface properties FaceColor and EdgeColor

hilb

737

1hilbPurpose Hilbert matrix

Syntax H = hilb(n)

Description H = hilb(n) returns the Hilbert matrix of order n.

Definition The Hilbert matrix is a notable example of a poorly conditioned matrix [1]. The
elements of the Hilbert matrices are: H(i, j) = 1/(i+j-1).

Examples Even the fourth-order Hilbert matrix shows signs of poor conditioning.

cond(hilb(4)) =
1.5514e+04

Algorithm See the M-file for a good example of efficient MATLAB programming where
conventional for loops are replaced by vectorized statements.

See Also invhilb

References [1] Forsythe, G. E. and C. B. Moler, Computer Solution of Linear Algebraic
Systems, Prentice-Hall, 1967, Chapter 19.

hist

738

1histPurpose Histogram plot

Syntax n = hist(Y)
n = hist(Y,x)
n = hist(Y,nbins)
[n,xout] = hist(...)

Description A histogram shows the distribution of data values.

n = hist(Y) bins the elements in Y into 10 equally spaced containers and
returns the number of elements in each container. If Y is a matrix, hist works
down the columns.

n = hist(Y,x) where x is a vector, returns the distribution of Y among
length(x) bins with centers specified by x. For example, if x is a 5-element
vector, hist distributes the elements of Y into five bins centered on the x-axis
at the elements in x. Note: use histc if it is more natural to specify bin edges
instead of centers.

n = hist(Y,nbins) where nbins is a scalar, uses nbins number of bins.

[n,xout] = hist(...) returns vectors n and xout containing the frequency
counts and the bin locations. You can use bar(xout,n) to plot the histogram.

hist(...) without output arguments, hist produces a histogram plot of the
output described above. hist distributes the bins along the x-axis between the
minimum and maximum values of Y.

Remarks All elements in vector Y or in one column of matrix Y are grouped according to
their numeric range. Each group is shown as one bin.

The histogram’s x-axis reflects the range of values in Y. The histogram’s y-axis
shows the number of elements that fall within the groups; therefore, the y-axis
ranges from 0 to the greatest number of elements deposited in any bin.

The histogram is created with a patch graphics object. If you want to change
the color of the graph, you can set patch properties. See the “Example” section
for more information. By default, the graph color is controlled by the current
colormap, which maps the bin color to the first color in the colormap.

hist

739

Examples Generate a bell-curve histogram from Gaussian data.

x = –2.9:0.1:2.9;
y = randn(10000,1);
hist(y,x)

Change the color of the graph so that the bins are red and the edges of the bins
are white.

h = findobj(gca,'Type','patch');

−3 −2 −1 0 1 2 3
0

50

100

150

200

250

300

350

400

hist

740

set(h,'FaceColor','r','EdgeColor','w')

See Also bar,ColorSpec,histc,patch,stairs

−3 −2 −1 0 1 2 3
0

50

100

150

200

250

300

350

400

histc

741

1histcPurpose Histogram count

Syntax n = histc(x,edges)
n = histc(x,edges,dim)
[n,bin] = histc(...)

Description n = histc(x,edges) counts the number of values in vector x that fall between
the elements in the edges vector (which must contain monotonically
non-decreasing values). n is a length(edges) vector containing these counts.

n(k) counts the value x(i) if edges(k) > x(i) >= edges(k+1). The last bin
counts any values of x that match edges(end). Values outside the values in
edges are not counted. Use -inf and inf in edges to include all non-NaN values.

For matrices, histc(x,edges) returns a matrix of column histogram counts.
For N-D arrays, histc(x,edges) operates along the first non-singleton
dimension.

n = histc(x,edges,dim) operates along the dimension dim.

[n,bin] = histc(...) also returns an index matrix bin. If x is a vector,
n(k) = sum(bin==k). bin is zero for out of range values. If x is an M-by-Nmatrix,
then,

for j=1:N, n(k,j) = sum(bin(:,j)==k); end

To plot the histogram, use the bar command.

See Also hist

hold

742

1holdPurpose Hold current graph in the figure

Syntax hold on
hold off
hold

Description The hold function determines whether new graphics objects are added to the
graph or replace objects in the graph.

hold on retains the current plot and certain axes properties so that
subsequent graphing commands add to the existing graph.

hold off resets axes properties to their defaults before drawing new plots.
hold off is the default.

hold toggles the hold state between adding to the graph and replacing the
graph.

Remarks Test the hold state using the ishold function.

Although the hold state is on, some axes properties change to accommodate
additional graphics objects. For example, the axes’ limits increase when the
data requires them to do so.

The hold function sets the NextPlot property of the current figure and the
current axes. If several axes objects exist in a figure window, each axes has its
own hold state. hold also creates an axes if one does not exist.

hold on sets the NextPlot property of the current figure and axes to add.

hold off sets the NextPlot property of the current axes to replace.

hold toggles the NextPlot property between the add and replace states.

See Also axis, cla, ishold, newplot

The NextPlot property of axes and figure graphics objects.

home

743

1homePurpose Move the cursor to the upper left corner of the Command Window

Syntax home

Description home moves the cursor to the upper-left corner of the Command Window and
clears the screen. You can use the scroll bar to see the history of previous
functions.

Examples Use home in an M-file to return the cursor to the upper-left corner of the screen.

See Also clc

hsv2rgb

744

1hsv2rgbPurpose Convert HSV colormap to RGB colormap

Syntax M = hsv2rgb(H)

Description M = hsv2rgb(H) converts a hue-saturation-value (HSV) colormap to a
red-green-blue (RGB) colormap. H is an m-by-3 matrix, where m is the number
of colors in the colormap. The columns of H represent hue, saturation, and
value, respectively. M is an m-by-3 matrix. Its columns are intensities of red,
green, and blue, respectively.

Remarks As H(:,1) varies from 0 to 1, the resulting color varies from red through yellow,
green, cyan, blue, and magenta, and returns to red. When H(:,2) is 0, the
colors are unsaturated (i.e., shades of gray). When H(:,2) is 1, the colors are
fully saturated (i.e., they contain no white component). As H(:,3) varies from
0 to 1, the brightness increases.

The MATLAB hsv colormap uses hsv2rgb([hue saturation value]) where
hue is a linear ramp from 0 to 1, and saturation and value are all 1’s.

See Also brighten, colormap, rgb2hsv

i

745

1iPurpose Imaginary unit

Syntax i
a+bi
x+i∗y

Description As the basic imaginary unit sqrt(-1), i is used to enter complex numbers.
Since i is a function, it can be overridden and used as a variable. This permits
you to use i as an index in for loops, etc.

If desired, use the character i without a multiplication sign as a suffix in
forming a complex numerical constant.

You can also use the character j as the imaginary unit.

Examples Z = 2+3i
Z = x+i*y
Z = r*exp(i*theta)

See Also conj, imag, j, real

if

746

1ifPurpose Conditionally execute statements

Syntax if expression
statements

end
if expression1

statements
elseif expression2

statements
else

statements
end

Description if conditionally executes statements.

The simple form is:

if expression
statements

end

More complicated forms use else or elseif. Each if must be paired with a
matching end.

Arguments

Examples Here is an example showing if, else, and elseif:

expression A MATLAB expression, usually consisting of smaller
expressions or variables joined by relational operators (==, <,
>, <=, >=, or ~=). Two examples are: count < limit and
(height - offset) >= 0.
Expressions may also include logical functions, as in:
isreal(A).
Simple expressions can be combined by logical operators
(&,|,~) into compound expressions such as: (count < limit) &
((height - offset) >= 0).

statements One or more MATLAB statements to be executed only if the
expression is true (or nonzero). See Examples for information
about how nonscalar variables are evaluated.

if

747

for i = 1:n
 for j = 1:n
 if i == j
 a(i,j) = 2;
 elseif abs([i j]) == 1
 a(i,j) = 1;
 else
 a(i,j) = 0;
 end
 end
end

Such expressions are evaluated as false unless every element-wise comparison
evaluates as true. Thus, given matrices A and B:

A = B =
 1 0 1 1
 2 3 3 4

The expression:

See Also break, else, end, for, return, switch, while

A < B Evaluates as false Since A(1,1) is not less than B(1,1).

A < (B+1) Evaluates as true Since no element of A is greater than
the corresponding element of B.

A & B Evaluates as false Since A(1,2) | B(1,2) is false.

5 > B Evaluates as true Since every element of B is less than
5.

ifft

748

1ifftPurpose Inverse one-dimensional fast Fourier transform

Syntax y = ifft(X)
y = ifft(X,n)
y = ifft(X,[],dim)
y = ifft(X,n,dim)

Description y = ifft(X) returns the inverse discrete Fourier transform (DFT) of vector X,
computed with a fast Fourier transform (FFT) algorithm.

If X is a matrix, ifft returns the inverse DFT of each column of the matrix.

If X is a multidimensional array, ifft operates on the first non-singleton
dimension.

y = ifft(X,n) returns the n-point inverse DFT of vector X.

y = ifft(X,[],dim) and y = ifft(X,n,dim) return the inverse DFT of X
across the dimension dim.

For any X, ifft(fft(X)) equals X to within roundoff error. If X is real,
ifft(fft(X)) may have small imaginary parts.

Algorithm The algorithm for ifft(X) is the same as the algorithm for fft(X), except for
a sign change and a scale factor of n = length(X). As for fft, the execution
time for ifft depends on the length of the transform. It is fastest for powers of
two. It is almost as fast for lengths that have only small prime factors. It is
typically several times slower for lengths that are prime or which have large
prime factors.

See Also dftmtx and freqz, in the Signal Processing Toolbox, and:

fft, ifft2, ifftn, ifftshift

ifft2

749

1ifft2Purpose Inverse two-dimensional fast Fourier transform

Syntax Y = ifft2(X)
Y = ifft2(X,m,n)

Description Y = ifft2(X) returns the two-dimensional inverse discrete Fourier transform
(DFT) of X, computed with a fast Fourier transform (FFT) algorithm. The
result Y is the same size as X.

Y = ifft2(X,m,n) returns the m-by-n inverse fast Fourier transform of
matrix X.

For any X, ifft2(fft2(X)) equals X to within roundoff error. If X is real,
ifft2(fft2(X)) may have small imaginary parts.

Algorithm The algorithm for ifft2(X) is the same as the algorithm for fft2(X), except
for a sign change and scale factors of [m,n] = size(X). The execution time for
ifft2 depends on the length of the transform. It is fastest for powers of two. It
is almost as fast for lengths that have only small prime factors. It is typically
several times slower for lengths that are prime or which have large prime
factors.

See Also dftmtx and freqz in the Signal Processing Toolbox, and:

fft2, fftshift, ifft, ifftn, ifftshift

ifftn

750

1ifftnPurpose Inverse multidimensional fast Fourier transform

Syntax Y = ifftn(X)
Y = ifftn(X,siz)

Description Y = ifftn(X) returns the n-dimensional inverse discrete Fourier transform
(DFT) of X, computed with a multidimensional fast Fourier transform (FFT)
algorithm. The result Y is the same size as X.

Y = ifftn(X,siz) pads X with zeros, or truncates X, to create a
multidimensional array of size siz before performing the inverse transform.
The size of the result Y is siz.

Remarks For any X, ifftn(fftn(X)) equals X within roundoff error. If X is real,
ifftn(fftn(X)) may have small imaginary parts.

Algorithm ifftn(X) is equivalent to

Y = X;
for p = 1:length(size(X))
 Y = ifft(Y,[],p);
end

This computes in-place the one-dimensional inverse DFT along each dimension
of X.

The execution time for ifftn depends on the length of the transform. It is
fastest for powers of two. It is almost as fast for lengths that have only small
prime factors. It is typically several times slower for lengths that are prime or
which have large prime factors.

See Also fftn, ifft, ifft2, ifftshift

ifftshift

751

1ifftshiftPurpose Inverse FFT shift

Syntax ifftshift(X)
ifftshift(X,dim)

Description ifftshift(X) undoes the results of fftshift.

If X is a vector, iffshift(X) swaps the left and right halves of X. For matrices,
ifftshift(X) swaps the first quadrant with the third and the second quadrant
with the fourth. If X is a multidimensional array, ifftshift(X) swaps
“half-spaces” of X along each dimension.

ifftshift(X,dim) applies theifftshift operation along the dimension
dim.

See Also fft, fft2, fftn, fftshift

im2frame

752

1im2framePurpose Convert indexed or truecolor image into movie format

Syntax F = im2frame(X,Map)
F = im2frame(truecolor_array)

Description F = im2frame(X,Map) converts the indexed image X and associated colormap
Map into a movie frame F. X can be of type double or uint8 and must be
specified with a colormap (Map). The colormap must have three columns, and
must contain double-precision values between 0 and 1 (no NaNs or Infs). The
values in X must contain legal indices into that colormap.

uint8 images must have 0-based indices (so if the colormap is 7 rows long, X
must contain values between 0 and 6). If it is double, it must contain 1-based
indices into the colormap (so if the colormap is 7 rows long, X must contain
values between 1 and 7). NaNs and Infs are illegal, as are negative

values or 0.

F = im2frame(truecolor_array) converts the truecolor image into a movie
frame F. truecolor_array must be an m-by-n-by-3 array of RGB values. It can
be of type double or uint8 with values in the range:

• 0 <= double <= 1

• 0 <= uint8 <= 255

Example Use im2frame to convert a sequence of images into a movie.

F(1) = im2frame(X1,map);
F(2) = im2frame(X2,map);
...
F(n) = im2frame(Xn,map);
movie(F)

See Also getframe, frame2im, movie

imag

753

1imagPurpose Imaginary part of a complex number

Syntax Y = imag(Z)

Description Y = imag(Z) returns the imaginary part of the elements of array Z.

Examples imag(2+3i)

ans =

 3

See Also conj, i, j, real

image

754

1imagePurpose Display image object

Syntax image(C)
image(x,y,C)
image(...,'PropertyName',PropertyValue,...)
image('PropertyName',PropertyValue,...) Formal synatx – PN/PV only
handle = image(...)

Description image creates an image graphics object by interpreting each element in a
matrix as an index into the figure’s colormap or directly as RGB values,
depending on the data specified.

The image function has two forms:

• A high-level function that calls newplot to determine where to draw the
graphics objects and sets the following axes properties:

XLim and YLim to enclose the image

Layer to top to place the image in front of the tick marks and grid lines

YDir to reverse

View to [0 90]

• A low-level function that adds the image to the current axes without calling
newplot. The low-level function argument list can contain only property
name/property value pairs.

You can specify properties as property name/property value pairs, structure
arrays, and cell arrays (see set and get for examples of how to specify these
data types).

image(C) displays matrix C as an image. Each element of C specifies the color
of a rectangular segment in the image.

image(x,y,C) where x and y are two-element vectors, specifies the range of the
x- and y-axis labels, but produces the same image as image(C). This can be
useful, for example, if you want the axis tick labels to correspond to real
physical dimensions represented by the image.

image

755

image(x,y,C,'PropertyName',PropertyValue,...) is a high-level function
that also specifies property name/property value pairs. This syntax calls
newplot before drawing the image.

image('PropertyName',PropertyValue,...) is the low-level syntax of the
image function. It specifies only property name/property value pairs as input
arguments.

handle = image(...) returns the handle of the image object it creates. You
can obtain the handle with all forms of the image function.

Remarks image data can be either indexed or true color. An indexed image stores colors
as an array of indices into the figure colormap. A true color image does not use
a colormap; instead, the color values for each pixel are stored directly as RGB
triplets. In MATLAB , the CData property of a truecolor image object is a
three-dimensional (m-by-n-by-3) array. This array consists of three m-by-n
matrices (representing the red, green, and blue color planes) concatenated
along the third dimension.

The imread function reads image data into MATLAB arrays from graphics files
in various standard formats, such as TIFF. You can write MATLAB image data
to graphics files using the imwrite function. imread and imwrite both support
a variety of graphics file formats and compression schemes.

When you read image data into MATLAB using imread, the data is usually
stored as an array of 8-bit integers. However, imread also supports reading
16-bit-per-pixel data from TIFF and PNG files. These are more efficient storage
method than the double-precision (64-bit) floating-point numbers that
MATLAB typically uses. However, it is necessary for MATLAB to interpret

image

756

8-bit and 16-bit image data differently from 64-bit data. This table summarizes
these differences.

Indexed Images
In an indexed image of class double, the value 1 points to the first row in the
colormap, the value 2 points to the second row, and so on. In a uint8 or uint16
indexed image, there is an offset; the value 0 points to the first row in the
colormap, the value 1 points to the second row, and so on.

If you want to convert a uint8 or uint16 indexed image to double, you need to
add 1 to the result. For example,

X64 = double(X8) + 1;

or

X64 = double(X16) + 1;

To convert from double to uint8 or unit16, you need to first subtract 1, and
then use round to ensure all the values are integers.

X8 = uint8(round(X64 – 1));

or

X16 = uint16(round(X64 – 1));

Image Type Double-precision Data
(double array)

8-bit Data (uint8 array)
16-bit Data (uint16 array)

indexed
(colormap)

Image is stored as a two-dimensional
(m-by-n) array of integers in the range
[1, length(colormap)]; colormap is an
m-by-3 array of floating-point values in
the range [0, 1]

Image is stored as a two-dimensional
(m-by-n) array of integers in the range
[0, 255] (unit8) or [0, 65535]
(uint16); colormap is an m-by-3 array
of floating-point values in the range
[0, 1]

truecolor
(RGB)

Image is stored as a three-dimensional
(m-by-n-by-3) array of floating-point
values in the range [0, 1]

Image is stored as a
three-dimensional (m-by-n-by-3) array
of integers in the range [0, 255]
(unit8) or [0, 65535] (uint16)

image

757

The order of the operations must be as shown in these examples, because you
cannot perform mathematical operations on uint8 or uint16 arrays.

When you write an indexed image using imwrite, MATLAB automatically
converts the values if necessary.

Colormaps
Colormaps in MATLAB are alway m-by-3 arrays of double-precision
floating-point numbers in the range [0, 1]. In most graphics file formats,
colormaps are stored as integers, but MATLAB does not support colormaps
with integer values. imread and imwrite automatically convert colormap
values when reading and writing files.

True Color Images
In a truecolor image of class double, the data values are floating-point numbers
in the range [0, 1]. In a truecolor image of class uint8, the data values are
integers in the range [0, 255] and for truecolor image of class uint16 the data
values are integers in the range [0, 65535]

If you want to convert a truecolor image from one data type to the other, you
must rescale the data. For example, this statement converts a uint8 truecolor
image to double,

RGB64 = double(RGB8)/255;

or for uint16 images,

RGB64 = double(RGB16)/65535;

This statement converts a double truecolor image to uint8.

RGB8 = uint8(round(RGB64*255));

or for uint16 images,

RGB16 = uint16(round(RGB64*65535));

The order of the operations must be as shown in these examples, because you
cannot perform mathematical operations on uint8 or uint16 arrays.

When you write a truecolor image using imwrite, MATLAB automatically
converts the values if necessary.

image

758

Object
Hierarchy

Setting Default Properties
You can set default image properties on the axes, figure, and root levels.

set(0,'DefaultImageProperty',PropertyValue...)
set(gcf,'DefaultImageProperty',PropertyValue...)
set(gca,'DefaultImageProperty',PropertyValue...)

Where Property is the name of the image property and PropertyValue is the
value you are specifying. Use set and get to access image properties.

The following table lists all image properties and provides a brief description
of each. The property name links take you to an expanded description of the
properties.

Uimenu

Line

Axes Uicontrol

Image

Figure

Uicontextmenu

Light SurfacePatch Text

Root

Rectangle

Property Name Property Description Property Value

Data Defining the Object

CData The image data Values: matrix or
m-by-n-by-3 array
Default: enter
image;axis image ij
and see

CDataMapping Specify the mapping of data to
colormap

Values: scaled, direct
Default: direct

image

759

XData Control placement of image along
x-axis

Values: [min max]
Default: [1 size(CData,2)]

YData Control placement of image along
y-axis

Values: [min max]
Default: [1 size(CData,1)]

Specifying Transparency

alphadata Transparency data m-by-n matrix of double or
uint8
Default: 1 (opaque)

alphadatamapping Transparency mapping method none, direct, scaled
Default: none

Controlling the Appearance

Clipping Clipping to axes rectangle Values: on, off
Default: on

EraseMode Method of drawing and erasing the
image (useful for animation)

Values: normal, none, xor,
background
Default: normal

SelectionHighlight Highlight image when selected
(Selected property set to on)

Values: on, off
Default: on

Visible Make the image visible or invisible Values: on, off
Default: on

Controlling Access to Objects

HandleVisibility Determines if and when the the line’s
handle is visible to other functions

Values: on, callback, off
Default: on

HitTest Determine if image can become the
current object (see the figure
CurrentObject property)

Values: on, off
Default: on

General Information About the Image

Children Image objects have no children Values: [] (empty matrix)

Property Name Property Description Property Value

image

760

Parent The parent of an image object is
always an axes object

Value: axes handle

Selected Indicate whether image is in a
“selected” state.

Values: on, off
Default: on

Tag User-specified label Value: any string
Default: '' (empty string)

Type The type of graphics object (read
only)

Value: the string 'image'

UserData User-specified data Value: any matrix
Default: [] (empty matrix)

Properties Related to Callback Routine Execution

BusyAction Specify how to handle callback
routine interruption

Values: cancel, queue
Default: queue

ButtonDownFcn Define a callback routine that
executes when a mouse button is
pressed on over the image

Values: string
Default: empty string

CreateFcn Define a callback routine that
executes when an image is created

Values: string
Default: empty string

DeleteFcn Define a callback routine that
executes when the image is deleted
(via close or delete)

Values: string
Default: empty string

Interruptible Determine if callback routine can be
interrupted

Values: on, off
Default: on (can be
interrupted)

UIContextMenu Associate a context menu with the
image

Values: handle of a
uicontextmenu

Property Name Property Description Property Value

Image Properties

761

1Image PropertiesImage
Properties

This section lists property names along with the types of values each property
accepts.

AlphaData m-by-n matrix of double or uint8

The transparency data. A matrix of non-NaN values specifying the
transparency of each element in the image data. The AlphaData can be of class
double or uint8.

MATLAB determines the transparency in one of three ways:

• Using the elements of AlphaData as transparency values (AlphaDataMapping
set to none, the default).

• Using the elements of AlphaData as indices into the current alphamap
(AlphaDataMapping set to direct).

• Scaling the elements of AlphaData to range between the minimum and
maximum values of the axes ALim property (AlphaDataMapping set to
scaled).

AlphaDataMapping {none} | direct | scaled

Transparency mapping method. This property determines how MATLAB
interprets indexed alpha data. It can be any of the following:

• none - The transparency values of AlphaData are between 0 and 1 or are
clamped to this range (the default).

• scaled - Transform the AlphaData to span the portion of the alphamap
indicated by the axes ALim property, linearly mapping data values to alpha
values.

• direct - Use the AlphaData as indices directly into the alphamap. When not
scaled, the data are usually integer values ranging from 1 to
length(alphamap). MATLAB maps values less than 1 to the first alpha value
in the alphamap, and values greater than length(alphamap) to the last
alpha value in the alphamap. Values with a decimal portion are fixed to the
nearest, lower integer. If AlphaData is an array unit8 integers, then the
indexing begins at 0 (i.e., MATLAB maps a value of 0 to the first alpha value
in the alphamap).

BusyAction cancel | {queue}

Callback routine interruption. The BusyAction property enables you to control
how MATLAB handles events that potentially interrupt executing callback

Image Properties

762

routines. If there is a callback routine executing, subsequently invoked
callback routes always attempt to interrupt it. If the Interruptible property
of the object whose callback is executing is set to on (the default), then
interruption occurs at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the object owning
the executing callback) determines how MATLAB handles the event. The
choices are:

• cancel – discard the event that attempted to execute a second callback
routine.

• queue – queue the event that attempted to execute a second callback routine
until the current callback finishes.

ButtonDownFcn string

Button press callback routine. A callback routine that executes whenever you
press a mouse button while the pointer is over the image object. Define this
routine as a string that is a valid MATLAB expression or the name of an M-file.
The expression executes in the MATLAB workspace.

CData matrix or m-by-n-by-3 array

The image data. A matrix of values specifying the color of each rectangular
area defining the image. image(C) assigns the values of C to CData. MATLAB
determines the coloring of the image in one of three ways:

• Using the elements of CData as indices into the current colormap (the
default)

• Scaling the elements of CData to range between the values
min(get(gca,'CLim')) and max(get(gca,'CLim')) (CDataMapping set to
scaled)

• Interpreting the elements of CData directly as RGB values (true color
specification)

Note that the behavior of NaNs in image CData is not defined. See the image
AlphaData property for information on using transparency with images.

A true color specification for CData requires an m-by-n-by-3 array of RGB
values. The first page contains the red component, the second page the green
component, and the third page the blue component of each element in the

Image Properties

763

image. RGB values range from 0 to 1. The following picture illustrates the
relative dimensions of CData for the two color models.

If CData has only one row or column, the height or width respectively is always
one data unit and is centered about the first YData or XData element
respectively. For example, using a 4-by-1 matrix of random data,

C = rand(4,1);
image(C,'CDataMapping','scaled')
axis image

Red

Green
Blue

CData

CData

Indexed Colors True Colors

Image Properties

764

produces:

CDataMapping scaled | {direct}

Direct or scaled indexed colors. This property determines whether MATLAB
interprets the values in CData as indices into the figure colormap (the default)
or scales the values according to the values of the axes CLim property.

When CDataMapping is direct, the values of CData should be in the range 1 to
length(get(gcf,'Colormap')). If you use true color specification for CData,
this property has no effect.

Children handles

The empty matrix; image objects have no children.

Clipping on | off

Clipping mode. By default, MATLAB clips images to the axes rectangle. If you
set Clipping to off, the image can display outside the axes rectangle. For
example, if you create an image, set hold to on, freeze axis scaling (axis
manual), and then create a larger image, it extends beyond the axis limits.

0.5 1 1.5

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Image Properties

765

CreateFcn string

Callback routine executed during object creation. This property defines a
callback routine that executes when MATLAB creates an image object. You
must define this property as a default value for images. For example, the
statement,

set(0,'DefaultImageCreateFcn','axis image')

defines a default value on the root level that sets the aspect ratio and the axis
limits so the image has square pixels. MATLAB executes this routine after
setting all image properties. Setting this property on an existing image object
has no effect.

The handle of the object whose CreateFcn is being executed is accessible only
through the root CallbackObject property, which you can query using gcbo.

DeleteFcn string

Delete image callback routine. A callback routine that executes when you delete
the image object (i.e., when you issue a delete command or clear the axes or
figure containing the image). MATLAB executes the routine before destroying
the object’s properties so these values are available to the callback routine.

The handle of the object whose DeleteFcn is being executed is accessible only
through the root CallbackObject property, which you can query using gcbo.

EraseMode {normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses to draw and
erase image objects. Alternative erase modes are useful for creating animated
sequences, where control of the way individual objects redraw is necessary to
improve performance and obtain the desired effect.

• normal (the default) — Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all objects are
rendered correctly. This mode produces the most accurate picture, but is the
slowest. The other modes are faster, but do not perform a complete redraw
and are therefore less accurate.

• none – Do not erase the image when it is moved or changed. While the object
is still visible on the screen after erasing with EraseMode none, you cannot
print it because MATLAB stores no information about its former location.

Image Properties

766

• xor – Draw and erase the image by performing an exclusive OR (XOR) with
the color of the screen beneath it. This mode does not damage the color of the
objects beneath the image. However, the image’s color depends on the color
of whatever is beneath it on the display.

• background – Erase the image by drawing it in the axes’ background Color,
or the figure background Color if the axes Color is set to none. This damages
objects that are behind the erased image, but images are always properly
colored.

Printing with Non-normal Erase Modes. MATLAB always prints figures as if the
EraseMode of all objects is normal. This means graphics objects created with
EraseMode set to none, xor, or background can look different on screen than on
paper. On screen, MATLAB may mathematically combine layers of colors (e.g.,
XORing a pixel color with that of the pixel behind it) and ignore
three-dimensional sorting to obtain greater rendering speed. However, these
techniques are not applied to the printed output.

You can use the MATLAB getframe command or other screen capture
application to create an image of a figure containing non-normal mode objects.

HandleVisibility {on} | callback | off

Control access to object’s handle by command-line users and GUIs. This
property determines when an object’s handle is visible in its parent’s list of
children. HandleVisibility is useful for preventing command-line users from
accidentally drawing into or deleting a figure that contains only user interface
devices (such as a dialog box).

Handles are always visible when HandleVisibility is on.

Setting HandleVisibility to callback causes handles to be visible from
within callback routines or functions invoked by callback routines, but not from
within functions invoked from the command line. This provide a means to
protect GUIs from command-line users, while allowing callback routines to
have complete access to object handles.

Setting HandleVisibility to off makes handles invisible at all times. This
may be necessary when a callback routine invokes a function that might
potentially damage the GUI (such as evaling a user-typed string), and so
temporarily hides its own handles during the execution of that function.

Image Properties

767

When a handle is not visible in its parent’s list of children, it cannot be returned
by functions that obtain handles by searching the object hierarchy or querying
handle properties. This includes get, findobj, gca, gcf, gco, newplot, cla, clf,
and close.

When a handle’s visibility is restricted using callback or off, the object’s
handle does not appear in its parent’s Children property, figures do not appear
in the root’s CurrentFigure property, objects do not appear in the root’s
CallbackObject property or in the figure’s CurrentObject property, and axes
do not appear in their parent’s CurrentAxes property.

You can set the root ShowHiddenHandles property to on to make all handles
visible, regardless of their HandleVisibility settings (this does not affect the
values of the HandleVisibility properties).

Handles that are hidden are still valid. If you know an object’s handle, you can
set and get its properties, and pass it to any function that operates on handles.

HitTest {on} | off

Selectable by mouse click. HitTest determines if the image can become the
current object (as returned by the gco command and the figure CurrentObject
property) as a result of a mouse click on the image. If HitTest is off, clicking
on the image selects the object below it (which maybe the axes containing it).

Interruptible {on} | off

Callback routine interruption mode. The Interruptible property controls
whether an image callback routine can be interrupted by subsequently invoked
callback routines. Only callback routines defined for the ButtonDownFcn are
affected by the Interruptible property. MATLAB checks for events that can
interrupt a callback routine only when it encounters a drawnow, figure,
getframe, or pause command in the routine.

Parent handle of parent axes

Image’s parent. The handle of the image object’s parent axes. You can move an
image object to another axes by changing this property to the new axes handle.

Selected on | {off}

Is object selected? When this property is on, MATLAB displays selection
handles if the SelectionHighlight property is also on. You can, for example,

Image Properties

768

define the ButtonDownFcn to set this property, allowing users to select the
object with the mouse.

SelectionHighlight {on} | off

Objects highlight when selected. When the Selected property is on, MATLAB
indicates the selected state by drawing four edge handles and four corner
handles. When SelectionHighlight is off, MATLAB does not draw the
handles.

Tag string

User-specified object label. The Tag property provides a means to identify
graphics objects with a user-specified label. This is particularly useful when
constructing interactive graphics programs that would otherwise need to
define object handles as global variables or pass them as arguments between
callback routines. You can define Tag as any string.

Type string (read only)

Type of graphics object. This property contains a string that identifies the class
of graphics object. For image objects, Type is always 'image'.

UIContextMenu handle of a uicontextmenu object

Associate a context menu with the image. Assign this property the handle of a
uicontextmenu object created in the same figure as the image. Use the
uicontextmenu function to create the context menu. MATLAB displays the
context menu whenever you right-click over the image.

UserData matrix

User specified data. This property can be any data you want to associate with
the image object. The image does not use this property, but you can access it
using set and get.

Visible {on} | off

Image visibility. By default, image objects are visible. Setting this property to
off prevents the image from being displayed. However, the object still exists
and you can set and query its properties.

XData [1 size(CData,2)] by default

Control placement of image along x-axis. A vector specifying the locations of the
centers of the elements CData(1,1) and CData(m,n), where CData has a size of
m-by-n. Element CData(1,1) is centered over the coordinate defined by the first

Image Properties

769

elements in XData and YData. Element CData(m,n) is centered over the
coordinate defined by the last elements in XData and YData. The centers of the
remaining elements of CData are evenly distributed between those two points.

The width of each CData element is determined by the expression:

(XData(2)-XData(1))/(size(CData,2)-1)

You can also specify a single value for XData. In this case, image centers the
first element at this coordinate and centers each following element one unit
apart.

YData [1 size(CData,1)] by default

Control placement of image along y-axis. A vector specifying the locations of the
centers of the elements CData(1,1) and CData(m,n), where CData has a size of
m-by-n. Element CData(1,1) is centered over the coordinate defined by the first
elements in XData and YData. Element CData(m,n) is centered over the
coordinate defined by the last elements in XData and YData. The centers of the
remaining elements of CData are evenly distributed between those two points.

The height of each CData element is determined by the expression:

(YData(2)-YData(1))/(size(CData,1)-1)

You can also specify a single value for YData. In this case, image centers the
first element at this coordinate and centers each following elements one unit
apart.

See Also colormap, imfinfo, imread, imwrite, pcolor, newplot, surface

Displaying Bit-Mapped Images in Visualzation Techniques.

imagesc

770

1imagescPurpose Scale data and display an image object

Syntax imagesc(C)
imagesc(x,y,C)
imagesc(...,clims)
h = imagesc(...)

Description The imagesc function scales image data to the full range of the current
colormap and displays the image. (See the illustration on the following page.)

imagesc(C) displays C as an image. Each element of C corresponds to a
rectangular area in the image. The values of the elements of C are indices into
the current colormap that determine the color of each patch.

imagesc(x,y,C) displays C as an image and specifies the bounds of the x- and
y-axis with vectors x and y.

imagesc(...,clims) normalizes the values in C to the range specified by clims
and displays C as an image. clims is a two-element vector that limits the range
of data values in C. These values map to the full range of values in the current
colormap.

h = imagesc(...) returns the handle for an image graphics object.

Remarks x and y do not affect the elements in C; they only affect the annotation of the
axes. If length(x) > 2 or length(y) > 2, imagesc ignores all except the first
and last elements of the respective vector.

Algorithm imagesc creates an image with CDataMapping set to scaled, and sets the axes
CLim property to the value passed in clims.

imagesc

771

Examples If the size of the current colormap is 81-by-3,

The left image maps to the gray colormap using the statements

load clown
imagesc(X)
colormap(gray)

The right image has values between 10 and 60 scaled to the full range of the
gray colormap using the statements

load clown
clims = [10 60];
imagesc(X,clims)
colormap(gray)

81
80
79
78

4
3
2
1

60
59
58

11
10

12

81

1

Data Colormap
 ValuesValues

the statements

clims = [10 60]
imagesc(C,clims)

map the data values in C to the colormap,
as shown to the right.

50 100 150 200 250 300

20

40

60

80

100

120

140

160

180

200
50 100 150 200 250 300

20

40

60

80

100

120

140

160

180

200

imagesc

772

See Also image, colorbar

imfinfo

773

1imfinfoPurpose Information about graphics file

Syntax info = imfinfo(filename,fmt)
info = imfinfo(filename)

Description info = imfinfo(filename,fmt) returns a structure whose fields contain
information about an image in a graphics file. filename is a string that
specifies the name of the graphics file, and fmt is a string that specifies the
format of the file. The file must be in the current directory or in a directory on
the MATLAB path. If imfinfo cannot find a file named filename, it looks for a
file named filename.fmt.

This table lists the possible values for fmt.

If filename is a TIFF or HDF file containing more than one image, info is a
structure array with one element (i.e., an individual structure) for each image
in the file. For example, info(3) would contain information about the third
image in the file.

Format File Type

'bmp' Windows Bitmap (BMP)

'cur' Windows Cursor resources (CUR)

'hdf' Hierarchical Data Format (HDF)

'ico' Windows Icon resources (ICO)

'jpg' or 'jpeg' Joint Photographic Experts Group (JPEG)

'pcx' Windows Paintbrush (PCX)

'png' Portable Network Graphics (PNG)

'tif' or 'tiff' Tagged Image File Format (TIFF)

'xwd' X Windows Dump (XWD)

imfinfo

774

The set of fields in info depends on the individual file and its format. However,
the first nine fields are always the same. This table lists these fields and
describes their values.

info = imfinfo(filename) attempts to infer the format of the file from its
contents.

Example info = imfinfo('canoe.tif')

info =

 Filename:'canoe.tif'

Field Value

Filename A string containing the name of the file; if the file is
not in the current directory, the string contains the
full pathname of the file

FileModDate A string containing the date when the file was last
modified

FileSize An integer indicating the size of the file in bytes

Format A string containing the file format, as specified by fmt;
for JPEG and TIFF files, the three-letter variant is
returned

FormatVersion A string or number describing the version of the
format

Width An integer indicating the width of the image in pixels

Height An integer indicating the height of the image in pixels

BitDepth An integer indicating the number of bits per pixel

ColorType A string indicating the type of image; either
'truecolor' for a truecolor RGB image, 'grayscale'
for a grayscale intensity image, or 'indexed' for an
indexed image

imfinfo

775

 FileModDate: '25-Oct-1996 22:10:39'
 FileSize: 69708
 Format: 'tif'
 FormatVersion: []
 Width: 346
 Height: 207
 BitDepth: 8
 ColorType: 'indexed'
 FormatSignature: [73 73 42 0]
 ByteOrder: 'little-endian'
 NewSubfileType: 0
 BitsPerSample: 8
 Compression: 'PackBits'
 PhotometricInterpretation: 'RGB Palette'
 StripOffsets: [9x1 double]
 SamplesPerPixel: 1
 RowsPerStrip: 23
 StripByteCounts: [9x1 double]
 XResolution: 72
 YResolution: 72
 ResolutionUnit: 'Inch'
 Colormap: [256x3 double]
 PlanarConfiguration: 'Chunky'
 TileWidth: []
 TileLength: []
 TileOffsets: []
 TileByteCounts: []
 Orientation: 1
 FillOrder: 1
 GrayResponseUnit: 0.0100
 MaxSampleValue: 255
 MinSampleValue: 0
 Thresholding: 1

See Also imread, imwrite

import

776

1importPurpose Add a package or class to the current Java import list for the MATLAB
command environment or for the calling function

Syntax import package_name.*
import class_name
import cls_or_pkg_name1 cls_or_pkg_name2...
import
L = import

Description import package_name.* adds all the classes in package_name to the current
import list. Note that package_name must be followed by .*.

import class_name adds a single class to the current import list. Note that
class_name must be fully qualified (that is, it must include the package name).

import cls_or_pkg_name1 cls_or_pkg_name2... adds all named classes and
packages to the current import list. Note that each class name must be fully
qualified, and each package name must be followed by .*.

import with no input arguments displays the current import list, without
adding to it.

L = import with no input arguments returns a cell array of strings containing
the current import list, without adding to it.

The import command operates exclusively on the import list of the function
from which it is invoked. When invoked at the command prompt, import uses
the import list for the MATLAB command environment. If import is used in a
script invoked from a function, it affects the import list of the function. If
import is used in a script that is invoked from the command prompt, it affects
the import list for the command environment.

The import list of a function is persistent across calls to that function and is
only cleared when the function is cleared.

To clear the current import list, use the following command.

clear import

This command may only be invoked at the command prompt. Attempting to use
clear import within a function results in an error.

import

777

Remarks The only reason for using import is to allow your code to refer to each imported
class with the immediate class name only, rather than with the fully qualified
class name. import is particularly useful in streamlining calls to constructors,
where most references to Java classes occur.

Examples This example shows importing and using the single class, java.lang.String,
and two complete packages, java.util and java.awt.

import java.lang.String
import java.util.* java.awt.*
f = Frame; % Create java.awt.Frame object
s = String('hello'); % Create java.lang.String object
methods Enumeration % List java.util.Enumeration methods

See Also clear

importdata

778

1importdataPurpose Load data from disk file.

Syntax importdata('filename')
A = importdata('filename')
importdata('filename','delimiter')

Description importdata('filename') loads data from filename into the workspace.

A = importdata('filename') loads data from filename into A.

A = importdata('filename','delimiter') loads data from filename using
delimiter as the column separator (if text). Use '\t' for tab.

Remarks importdata looks at the file extension to determine which helper function to
use. If it can recognize the file extension, importdata calls the appropriate
helper function, specifying the maximum number of output arguments. If it
cannot recognize the file extension, importdata calls finfo to determine which
helper function to use. If no helper function is defined for this file extension,
importdata treats the file as delimited text. importdata removes from the
result empty outputs returned from the helper function.

Examples s = importdata('ding.wav')
s =

 data: [11554x1 double]
 fs: 22050

See Also load

imread

779

1imreadPurpose Read image from graphics files

Syntax A = imread(filename,fmt)
[X,map] = imread(filename,fmt)
[...] = imread(filename)
[...] = imread(...,idx) (CUR, ICO, and TIFF only)
[...] = imread(...,ref) (HDF only)
[...] = imread(...,’BackgroundColor’,BG) (PNG only)
[A,map,alpha] = imread(...) (PNG only)

Description A = imread(filename,fmt) reads a grayscale or truecolor image named
filename into A. If the file contains a grayscale intensity image, A is a
two-dimensional array. If the file contains a truecolor (RGB) image, A is a
three-dimensional (m-by-n-by-3) array.

[X,map] = imread(filename,fmt) reads the indexed image in filename into
X and its associated colormap into map. The colormap values are rescaled to the
range [0,1]. A and map are two-dimensional arrays.

[...] = imread(filename) attempts to infer the format of the file from its
content.

filename is a string that specifies the name of the graphics file, and fmt is a
string that specifies the format of the file. If the file is not in the current
directory or in a directory in the MATLAB path, specify the full pathname for
a location on your system. If imread cannot find a file named filename, it looks
for a file named filename.fmt. If you do not specify a string for fmt, the toolbox
will try to discern the format of the file by checking the file header.

This table lists the possible values for fmt.

Format File Type

'bmp' Windows Bitmap (BMP)

'cur' Windows Cursor resources (CUR)

'hdf' Hierarchical Data Format (HDF)

'ico' Windows Icon resources (ICO)

imread

780

Special Case
Syntax:

TIFF-Specific Syntax
[...] = imread(...,idx) reads in one image from a multi-image TIFF file.
idx is an integer value that specifies the order in which the image appears in
the file. For example, if idx is 3, imread reads the third image in the file. If you
omit this argument, imread reads the first image in the file.

PNG-Specific Syntax
The discussion in this section is only relevant to PNG files that contain
transparent pixels. A PNG file does not necessarily contain transparency data.
Transparent pixels, when they exist, will be identified by one of two
components: a transparency chunk or an alpha channel. (A PNG file can only
have one of these components, not both.)

The transparency chunk identifies which pixel values will be treated as
transparent, e.g., if the value in the transparency chunk of an 8-bit image is
0.5020, all pixels in the image with the color 0.5020 can be displayed as
transparent. An alpha channel is an array with the same number of pixels as
are in the image, which indicates the transparency status of each
corresponding pixel in the image (transparent or nontransparent).

Another potential PNG component related to transparency is the background
color chunk, which (if present) defines a color value that can be used behind all
transparent pixels. This section identifies the default behavior of the toolbox
for reading PNG images that contain either a transparency chunk or an alpha
channel, and describes how you can override it.

Case 1. You do not ask to output the alpha channel and do not specify a
background color to use. For example,

'jpg' or 'jpeg' Joint Photographic Experts Group (JPEG)

'pcx' Windows Paintbrush (PCX)

‘png’ Portable Network Graphics (PNG)

'tif' or 'tiff' Tagged Image File Format (TIFF)

'xwd' X Windows Dump (XWD)

Format File Type

imread

781

[A,map] = imread(filename);
A = imread(filename);

If the PNG file contains a background color chunk, the transparent pixels will
be composited against the specified background color.

If the PNG file does not contain a background color chunk, the transparent
pixels will be composited against 0 for grayscale (black), 1 for indexed (first
color in map), or [0 0 0] for RGB (black).

Case 2. You do not ask to output the alpha channel but you specify the
background color parameter in your call. For example,

[...] = imread(...,'BackgroundColor',bg);

The transparent pixels will be composited against the specified color. The form
of bg depends on whether the file contains an indexed, intensity (grayscale), or
RGB image. If the input image is indexed, bg should be an integer in the range
[1,P] where P is the colormap length. If the input image is intensity, bg should
be an integer in the range [0,1]. If the input image is RGB, bg should be a
three-element vector whose values are in the range [0,1].

There is one exception to the toolbox’s behavior of using your background color.
If you set background to 'none' no compositing will be performed. For example,

[...] = imread(...,'Back','none');

Note If you specify a background color, you cannot output the alpha channel.

Case 3. You ask to get the alpha channel as an output variable. For example,

[A,map,alpha] = imread(filename);
[A,map,alpha] = imread(filename,fmt);

No compositing is performed; the alpha channel will be stored separately from
the image (not merged into the image as in cases 1 and 2). This form of imread
returns the alpha channel if one is present, and also returns the image and any
associated colormap. If there is no alpha channel, alpha returns []. If there is
no colormap, or the image is grayscale or truecolor, map may be empty.

imread

782

HDF-Specific Syntax
[...] = imread(...,ref) reads in one image from a multi-image HDF file.
ref is an integer value that specifies the reference number used to identify the
image. For example, if ref is 12, imread reads the image whose reference
number is 12. (Note that in an HDF file the reference numbers do not
necessarily correspond to the order of the images in the file. You can use
imfinfo to match up image order with reference number.) If you omit this
argument, imread reads the first image in the file.

CUR- and ICO-Specific Syntax
[...] = imread(...,idx) reads in one image from a multi-image icon or
cursor file. idx is an integer value that specifies the order that the image
appears in the file. For example, if idx is 3, imread reads the third image in the
file. If you omit this argument, imread reads the first image in the file.

[A,map,alpha] = imread(...) returns the AND mask for the resource, which
can be used to determine the transparency information. For cursor files, this
mask may contain the only useful data.

Note By default, Microsoft Windows cursors are 32-by-32 pixels. MATLAB
pointers must be 16-by-16. You will probably need to scale your image. If you
have the Image Processing Toolbox, you can use the imresize function.

Format Support
This table summarizes the types of images that imread can read.

Format Variants

BMP 1-bit, 4-bit, 8-bit, and 24-bit uncompressed images; 4-bit
and 8-bit run-length encoded (RLE) images

CUR 1-bit, 4-bit, and 8-bit uncompressed images

HDF 8-bit raster image datasets, with or without associated
colormap; 24-bit raster image datasets

ICO 1-bit, 4-bit, and 8-bit uncompressed images

imread

783

Class Support In most of the image file formats supported by imread, pixels are stored using
eight or fewer bits per color plane. When reading such a file, the class of the
output (A or X) is uint8. imread also supports reading 16-bit-per-pixel data from
TIFF and PNG files; for such image files, the class of the output (A or X) is
uint16. Note that for indexed images, imread always reads the colormap into
an array of class double, even though the image array itself may be of class
uint8 or uint16.

Remarks imread is a function in MATLAB.

Examples This example reads the sixth image in a TIFF file.

[X,map] = imread('flowers.tif',6);

This example reads the fourth image in an HDF file.

info = imfinfo('skull.hdf');
[X,map] = imread('skull.hdf',info(4).Reference);

This example reads a 24-bit PNG image and sets any of its fully transparent
(alpha channel) pixels to red.

bg = [255 0 0];

JPEG Any baseline JPEG image (8 or 24-bit); JPEG images with
some commonly used extensions

PCX 1-bit, 8-bit, and 24-bit images

PNG Any PNG image, including 1-bit, 2-bit, 4-bit, 8-bit, and
16-bit grayscale images; 8-bit and 16-bit indexed images;
24-bit and 48-bit RGB images

TIFF Any baseline TIFF image, including 1-bit, 8-bit, and 24-bit
uncompressed images; 1-bit, 8-bit, 16-bit, and 24-bit images
with packbits compression; 1-bit images with CCITT
compression; also 16-bit grayscale, 16-bit indexed, and
48-bit RGB images.

XWD 1-bit and 8-bit ZPixmaps; XYBitmaps; 1-bit XYPixmaps

Format Variants

imread

784

A = imread('image.png','BackgroundColor',bg);

This example returns the alpha channel (if any) of a PNG image.

[A,map,alpha] = imread('image.png');

This example reads an ICO image, applies a transparency mask, and then
displays the image.

[a,b,c] = imread('myicon.ico');
% Augment colormap for background color (white).
b2 = [b; 1 1 1];
% Create new image for display.
d = ones(size(a)) * (length(b2) - 1);
% Use the AND mask to mix the background and
% foreground data on the new image
d(c == 0) = a(c == 0);
% Display new image
imshow(uint8(d), b2)

See Also double, fread, imfinfo, imwrite, uint8, uint16

imwrite

785

1imwritePurpose Write image to graphics file

Syntax imwrite(A,filename,fmt)
imwrite(X,map,filename,fmt)
imwrite(...,filename)
imwrite(...,Param1,Val1,Param2,Val2...)

Description imwrite(A,filename,fmt) writes the image in A to filename in the format
specified by fmt. A can be either a grayscale image (M-by-N) or a truecolor
image (M-by-N-by-3). If A is of class uint8 or uint16, imwrite writes the
actual values in the array to the file. If A is of class double, imwrite rescales
the values in the array before writing, using uint8(round(255*A)). This
operation converts the floating-point numbers in the range [0,1] to 8-bit
integers in the range [0,255].

imwrite(X,map,filename,fmt) writes the indexed image in X and its
associated colormap map to filename in the format specified by fmt. If X is of
class uint8 or uint16, imwritewrites the actual values in the array to the file.
If X is of class double, imwrite offsets the values in the array before writing
using uint8(X–1). (See note below for an exception.) map must be a valid
MATLAB colormap of class double; imwrite rescales the values in map using
uint8(round(255*map)). Note that most image file formats do not support
colormaps with more than 256 entries.

Note If the image is double, and you specify PNG as the output format and a
bit depth of 16 bpp, the values in the array will be offset using uint16(X-1).

imwrite(...,filename) writes the image to filename, inferring the format to
use from the filename’s extension. The extension must be one of the legal values
for fmt.

imwrite(...,Param1,Val1,Param2,Val2...) specifies parameters that
control various characteristics of the output file. Parameter settings can
currently be made for HDF, PNG, JPEG, and TIFF files. For example, if you
are writing a JPEG file, you can set the “quality” of the JPEG compression. For
the lists of parameters available for each format, see the tables below.

imwrite

786

filename is a string that specifies the name of the output file, and fmt is a
string that specifies the format of the file.

This table lists the possible values for fmt.

This table describes the available parameters for HDF files.

Format File Type

'bmp' Windows Bitmap (BMP)

'hdf' Hierarchical Data Format (HDF)

'jpg' or 'jpeg' Joint Photographic Experts Group (JPEG)

'pcx' Windows Paintbrush (PCX)

'png' Portable Network Graphics (PNG)

'tif' or 'tiff' Tagged Image File Format (TIFF)

'xwd' X Windows Dump (XWD)

Parameter Values Default

'Compression' One of these strings: 'none' (the default), 'rle',
'jpeg'. 'rle' is valid only for grayscale and
indexed images. 'jpeg' is valid only for grayscale
and RGB images.

'rle'

'Quality' A number between 0 and 100; this parameter
applies only if 'Compression' is 'jpeg'.
Higher numbers mean higher quality (less image
degradation due to compression), but the resulting
file size is larger.

75

'WriteMode' One of these strings: 'overwrite' (the default), or
'append'.

'overwrite'

imwrite

787

This table describes the available parameters for JPEG files.

This table describes the available parameters for TIFF files.

This table describes the available parameters for PNG files.

Parameter Values Default

'Quality' A number between 0 and 100; higher numbers
mean higher quality (less image degradation due to
compression), but the resulting file size is larger.

75

Parameter Values Default

'Compression' One of these strings: 'none', 'packbits', 'ccitt',
'fax3', or 'fax4'. The 'ccitt', 'fax3', and
'fax4' compression schemes are valid for binary
images only.

'ccitt' for
binary images;
'packbits' for
nonbinary images

'Description' Any string; fills in the ImageDescription field
returned by imfinfo.

empty

'Resolution' A two-element vector containing the XResolution
and YResolution, or a scalar indicating both
resolutions.

72

'WriteMode' One of these strings: 'overwrite' or 'append' 'overwrite'

Parameter Values Default

'Author' A string Empty

'Description' A string Empty

'Copyright' A string Empty

'CreationTime' A string Empty

'Software' A string Empty

'Disclaimer' A string Empty

imwrite

788

'Warning' A string Empty

'Source' A string Empty

'Comment' A string Empty

'InterlaceType' Either 'none' or 'adam7' 'none'

'BitDepth' A scalar value indicating desired bit depth. For
grayscale images this can be 1, 2, 4, 8, or 16.
For grayscale images with an alpha channel this
can be 8 or 16. For indexed images this can be 1, 2,
4, or 8. For truecolor images with or without an
alpha channel this can be 8 or 16.

8 bits per pixel if
image is double or
uint8
16 bits per pixel if
image is uint16
1 bit per pixel if
image is logical

'Transparency' This value is used to indicate transparency
information only when no alpha channel is used. Set
to the value that indicates which pixels should be
considered transparent. (If the image uses a
colormap, this value will represent an index number
to the colormap.)

For indexed images: a Q-element vector in the range
[0,1] where Q is no larger than the colormap length
and each value indicates the transparency
associated with the corresponding colormap entry.
In most cases, Q=1.

For grayscale images: a scalar in the range [0,1].
The value indicates the grayscale color to be
considered transparent.

For truecolor images: a three-element vector in the
range [0,1]. The value indicates the truecolor color
to be considered transparent.

You cannot specify 'Transparency' and 'Alpha' at
the same time.

Empty

Parameter Values Default

imwrite

789

'Background' The value specifies background color to be used
when compositing transparent pixels. For indexed
images: an integer in the range [1,P], where P is the
colormap length. For grayscale images: a scalar in
the range [0,1]. For truecolor images: a
three-element vector in the range [0,1].

Empty

'Gamma' A nonnegative scalar indicating the file gamma Empty

'Chromaticities' An eight-element vector [wx wy rx ry gx gy bx
by] that specifies the reference white point and the
primary chromaticities

Empty

'XResolution' A scalar indicating the number of pixels/unit in the
horizontal direction

Empty

'YResolution' A scalar indicating the number of pixels/unit in the
vertical direction

Empty

'ResolutionUnit' Either 'unknown' or 'meter' Empty

'Alpha' A matrix specifying the transparency of each pixel
individually. The row and column dimensions must
be the same as the data array; they can be uint8,
uint16, or double, in which case the values should
be in the range [0,1].

Empty

'SignificantBits' A scalar or vector indicating how many bits in the
data array should be regarded as significant; values
must be in the range [1,BitDepth].
For indexed images: a three-element vector. For
grayscale images: a scalar. For grayscale images
with an alpha channel: a two-element vector. For
truecolor images: a three-element vector. For
truecolor images with an alpha channel: a
four-element vector

Empty

Parameter Values Default

imwrite

790

In addition to these PNG parameters, you can use any parameter name that
satisfies the PNG specification for keywords, including only printable
characters, 80 characters or fewer, and no leading or trailing spaces. The value
corresponding to these user-specified parameters must be a string that
contains no control characters other than linefeed.

Format Support
This table summarizes the types of images that imwrite can write.

Class Support Most of the supported image file formats store uint8 data. PNG and TIFF
additionally support uint16 data. For grayscale and RGB images, if the data
array is double, the assumed dynamic range is [0,1]. The data array is
automatically scaled by 255 before being written out as uint8. If the data array
is uint8 or uint16 (PNG and TIFF only), then it is written out without scaling
as uint8 or uint16, respectively.

Format Variants

BMP 8-bit uncompressed images with associated colormap;
24-bit uncompressed images

HDF 8-bit raster image datasets, with or without associated colormap,
24-bit raster image datasets; uncompressed or with RLE or JPEG compression.

JPEG Baseline JPEG images (8 or 24-bit).
Note: Indexed images are converted to RGB before writing out JPEG files,
because the JPEG format does not support indexed images.

PCX 8-bit images

PNG 1-bit, 2-bit, 4-bit, 8-bit, and 16-bit grayscale images;
8-bit and 16-bit grayscale images with alpha channels;
1-bit, 2-bit, 4-bit, and 8-bit indexed images;
24-bit and 48-bit truecolor images with or without alpha channels

TIFF Baseline TIFF images, including 1-bit, 8-bit, and 24-bit uncompressed images;
1-bit, 8-bit, and 24-bit images with packbits compression;
1-bit images with CCITT 1D, Group 3, and Group 4 compression.

XWD 8-bit ZPixmaps

imwrite

791

Note If a logical double or uint8 is written to a PNG or TIFF file, it is
assumed to be a binary image and will be written with a bit depth of 1.

For indexed images, if the index array is double, then the indices are first
converted to zero-based indices by subtracting 1 from each element, and then
they are written out as uint8. If the index array is uint8 or uint16 (PNG and
TIFF only), then it is written out without modification as uint8 or uint16,
respectively. When writing PNG files, you can override this behavior with the
'BitDepth' parameter; see the PNG table in this imwrite reference for details.

Remarks imwrite is a function in MATLAB.

Example This example appends an indexed image X and its colormap map to an existing
uncompressed multipage HDF file named flowers.hdf.

imwrite(X,map,'flowers.hdf','Compression','none',...
'WriteMode','append')

See Also fwrite, imfinfo, imread

ind2rgb

792

1ind2rgbPurpose Convert an indexed image to an RGB image

Syntax RGB = ind2rgb(X,map)

Description RGB = ind2rgb(X,map) converts thematrix X and corresponding colormap map
to RGB (truecolor) format.

Class Support X can be of class uint8, uint16, or double. RGB is an m-by-n-3 array of class
double.

See Also image

ind2sub

793

1ind2subPurpose Subscripts from linear index

Syntax [I,J] = ind2sub(siz,IND)
[I1,I2,I3,...,In] = ind2sub(siz,IND)

Description The ind2sub command determines the equivalent subscript values corre-
sponding to a single index into an array.

[I,J] = ind2sub(siz,IND) returns the arrays I and J containing the
equivalent row and column subscripts corresponding to the index matrix IND
for a matrix of size siz.

For matrices, [I,J] = ind2sub(size(A),find(A>5)) returns the same values
as
[I,J] = find(A>5).

[I1,I2,I3,...,In] = ind2sub(siz,IND) returns n subscript arrays
I1,I2,..,In containing the equivalent multidimensional array subscripts
equivalent to IND for an array of size siz.

Examples The mapping from linear indexes to subscript equivalents for a 2-by-2-by-2
array is:

See Also sub2ind, find

1,2,21,1,2

2,2,22,1,2

1,2,11,1,1

2,2,12,1,1

75

86

31

42

Inf

794

1InfPurpose Infinity

Syntax inf

Description Inf returns the IEEE arithmetic representation for positive infinity. Infinity
results from operations like division by zero and overflow, which lead to results
too large to represent as conventional floating-point values.

Examples 1/0, 1.e1000, 2^1000, and exp(1000) all produce Inf.

log(0) produces -Inf.

Inf-Inf and Inf/Inf both produce NaN, Not-a-Number.

See Also is*, NaN

inferiorto

795

1inferiortoPurpose Inferior class relationship

Syntax inferiorto('class1','class2',...)

Description The inferiorto function establishes a hierarchy which determines the order
in which MATLAB calls object methods.

inferiorto('class1','class2',...) invoked within a class constructor
method (say myclass.m) indicates that myclass's method should not be invoked
if a function is called with an object of class myclass and one or more objects of
class class1, class2, and so on.

Remarks Suppose A is of class 'class_a', B is of class 'class_b' and C is of class
'class_c'. Also suppose the constructor class_c.m contains the statement:
inferiorto('class_a'). Then e = fun(a,c) or e = fun(c,a) invokes
class_a/fun.

If a function is called with two objects having an unspecified relationship, the
two objects are considered to have equal precedence, and the leftmost object's
method is called. So, fun(b,c) calls class_b/fun, while fun(c,b) calls
class_c/fun.

See Also superiorto

info

796

1infoPurpose Display contact information about The MathWorks or toolbox Readme files

Syntax info
info <toolbox>

Description info displays contact information about The MathWorks in the Command
Window, including phone and fax numbers and e-mail addresses.

info toolbox displays in the Help browser the Readme file for the specified
toolbox, which contains information about problems from previous releases
that have been fixed in the current release.

inline

797

1inlinePurpose Construct an inline object

Syntax g = inline(expr)
g = inline(expr,arg1,arg2, ...)
g = inline(expr,n)

Description inline(expr) constructs an inline function object from the MATLAB
expression contained in the string expr. The input argument to the inline
function is automatically determined by searching expr for an isolated lower
case alphabetic character, other than i or j, that is not part of a word formed
from several alphabetic characters. If no such character exists, x is used. If the
character is not unique, the one closest to x is used. If two characters are found,
the one later in the alphabet is chosen.

inline(expr,arg1,arg2, ...) constructs an inline function whose input
arguments are specified by the strings arg1, arg2,.... Multicharacter symbol
names may be used.

inline(expr,n), where n is a scalar, constructs an inline function whose input
arguments are x, P1, P2,

Remarks Three commands related to inline allow you to examine an inline function
object and determine how it was created.

char(fun) converts the inline function into a character array. This is identical
to formula(fun).

argnames(fun) returns the names of the input arguments of the inline object
fun as a cell array of strings.

formula(fun) returns the formula for the inline object fun.

A fourth command vectorize(fun) inserts a . before any ^, * or /' in the
formula for fun. The result is a vectorized version of the inline function.

Examples This example creates a simple inline function to square a number.

g = inline('t^2')

g =

 Inline function:

inline

798

 g(t) = t^2

You can convert the result to a string using the char function.

char(g)

ans =

t^2

This example creates an inline function to represent the formula
. The resulting inline function can be evaluated with the

argnames and formula functions.

f = inline('3*sin(2*x.^2)')

f =

 Inline function:
 f(x) = 3*sin(2*x.^2)

argnames(f)

ans =

 'x'

formula(f)

ans =

3*sin(2*x.^2)ans =
This call to inline defines the function f to be dependent on two variables,
alpha and x:

f = inline('sin(alpha*x)')

f =

 Inline function:
 f(alpha,x) = sin(alpha*x)

f 3 2x2()sin=

inline

799

If inline does not return the desired function variables or if the function
variables are in the wrong order, you can specify the desired variables
explicitly with the inline argument list.

g = inline('sin(alpha*x)','x','alpha')

g =

 Inline function:
 g(x,alpha) = sin(alpha*x)

inmem

800

1inmemPurpose Return functions in memory

Syntax M = inmem
[M,X] = inmem
[M,X,J] = inmem

Description M = inmem returns a cell array of strings containing the names of the M-files
that are currently loaded.

[M,X] = inmem returns an additional cell array, X, containing the names of
the MEX-files that are currently loaded.

[M,X,J] = inmem also returns a cell array, J, containing the names of the
Java classes that are currently loaded.

Examples This example lists the M-files that are required to run erf.

clear all; % Clear the workspace
erf(0.5);
M = inmem

M =

 'repmat'
 'erfcore'
 'erf'

See Also clear

inpolygon

801

1inpolygonPurpose Detect points inside a polygonal region

Syntax IN = inpolygon(X,Y,xv,yv)

Description IN = inpolygon(X,Y,xv,yv) returns a matrix IN the same size as X and Y.
Each element of IN is assigned one of the values 1, 0.5 or 0, depending on
whether the point (X(p,q),Y(p,q)) is inside the polygonal region whose
vertices are specified by the vectors xv and yv. In particular:

Examples L = linspace(0,2.*pi,6); xv = cos(L)';yv = sin(L)';
xv = [xv ; xv(1)]; yv = [yv ; yv(1)];
x = randn(250,1); y = randn(250,1);
in = inpolygon(x,y,xv,yv);
plot(xv,yv,x(in),y(in),'r+',x(~in),y(~in),'bo')

IN(p,q) = 1 If (X(p,q),Y(p,q)) is inside the polygonal region

IN(p,q) = 0.5 If (X(p,q),Y(p,q)) is on the polygon boundary

IN(p,q) = 0 If (X(p,q),Y(p,q)) is outside the polygonal region

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−3

−2

−1

0

1

2

3

input

802

1inputPurpose Request user input

Syntax user_entry = input('prompt')
user_entry = input('prompt','s')

Description The response to the input prompt can be any MATLAB expression, which is
evaluated using the variables in the current workspace.

user_entry = input('prompt') displays prompt as a prompt on the screen,
waits for input from the keyboard, and returns the value entered in
user_entry.

user_entry = input('prompt','s') returns the entered string as a text
variable rather than as a variable name or numerical value.

Remarks If you press the Return key without entering anything, input returns an empty
matrix.

The text string for the prompt may contain one or more '\n' characters. The
'\n' means to skip to the next line. This allows the prompt string to span
several lines. To display just a backslash, use '\\'.

Examples Press Return to select a default value by detecting an empty matrix:

i = input('Do you want more? Y/N [Y]: ','s');
if isempty(i)
 i = 'Y';
end

See Also keyboard, menu, ginput, uicontrol

inputdlg

803

1inputdlgPurpose Create input dialog box

Syntax answer = inputdlg(prompt)
answer = inputdlg(prompt,title)
answer = inputdlg(prompt,title,lineNo)
answer = inputdlg(prompt,title,lineNo,defAns)
answer = inputdlg(prompt,title,lineNo,defAns,Resize)

Description answer = inputdlg(prompt) creates a modal dialog box and returns user
inputs in the cell array. prompt is a cell array containing prompt strings.

answer = inputdlg(prompt,title) title specifies a title for the dialog box.

answer = inputdlg(prompt,title,lineNo) lineNo specifies the number of
lines for each user entered value. lineNo can be a scalar, column vector, or
matrix.

• If lineNo is a scalar, it applies to all prompts.

• If lineNo is a column vector, each element specifies the number of lines of
input for a prompt.

• If lineNo is a matrix, it should be size m-by-2, where m is the number of
prompts on the dialog box. Each row refers to a prompt. The first column
specifies the number of lines of input for a prompt. The second column
specifies the width of the field in characters.

answer = inputdlg(prompt,title,lineNo,defAns) defAns specifies the
default value to display for each prompt. defAns must contain the same
number of elements as prompt and all elements must be strings.

answer = inputdlg(prompt,title,lineNo,defAns,Resize) Resize specifies
whether or not the dialog box can be resized. Permissible values are 'on' and
'off' where 'on' means that the dialog box can be resized and that the dialog
box is not modal.

Example Create a dialog box to input an integer and colormap name. Allow one line for
each value.

prompt = {'Enter matrix size:','Enter colormap name:'};
title = 'Input for peaks function';

inputdlg

804

lines= 1;
def = {'20','hsv'};
answer = inputdlg(prompt,title,lines,def);

See Also dialog, errordlg, helpdlg, questdlg, warndlg

inputname

805

1inputnamePurpose Input argument name

Syntax inputname(argnum)

Description This command can be used only inside the body of a function.

inputname(argnum) returns the workspace variable name corresponding to the
argument number argnum. If the input argument has no name (for example, if
it is an expression instead of a variable), the inputname command returns the
empty string ('').

Examples Suppose the function myfun.m is defined as:

function c = myfun(a,b)
disp(sprintf('First calling variable is "%s".',inputname(1))

Then

x = 5; y = 3; myfun(x,y)

produces

First calling variable is "x".

But

myfun(pi+1,pi-1)

produces

First calling variable is "".

See Also nargin, nargout, nargchk

inspect

806

1inspectPurpose Start the Property Inspector

Syntax inspect

Description inspect displays the Property Inspector, which enables you to inspect and set
the properties of any object you select in the figure window or Layout Editor.

See Also guide

instraction

807

1instractionPurpose Display event information when an event occurs

Syntax instraction(obj, event)

Arguments

Description instraction(obj, event) displays a message that contains the event type,
the time the event occurred, and the name of the serial port object that caused
the event to occur.

For error events, the error message is also displayed. For pin status events, the
pin that changed value and its value are also displayed.

Remarks You should use instraction as a template from which you create action
functions that suit your specific application needs.

Example The following example creates the serial port objects s, and configures s to
execute instraction when an output-empty event occurs. The event occurs
after the *IDN? command is written to the instrument.

s = serial('COM1');
set(s,'OutputEmptyAction','instraction')
fopen(s)
fprintf(s,'*IDN?','async')

The resulting display from instraction is shown below.

OutputEmpty event occurred at 08:37:49 for the object:
Serial-COM1.

Read the identification information from the input buffer and end the serial
port session.

idn = fscanf(s);
fclose(s)
delete(s)

clear s

obj An serial port object.

event The event that caused the action to execute.

instrfind

808

1instrfindPurpose Return serial port objects from memory to the MATLAB workspace

Syntax out = instrfind
out = instrfind('PropertyName',PropertyValue,...)
out = instrfind(S)
out = instrfind(obj,'PropertyName',PropertyValue,...)

Arguments

Description out = instrfind returns all valid serial port objects as an array to out.

out = instrfind('PropertyName',PropertyValue,...) returns an array of
serial port objects whose property names and property values match those
specified.

out = instrfind(S) returns an array of serial port objects whose property
names and property values match those defined in the structure S. The field
names of S are the property names, while the field values are the associated
property values.

out = instrfind(obj,'PropertyName',PropertyValue,...) restricts the
search for matching property name/property value pairs to the serial port
objects listed in obj.

Remarks Refer to “Displaying Property Names and Property Values” on page 8-21 for a
list of serial port object properties that you can use with instrfind.

You must specify property values using the same format as the get function
returns. For example, if get returns the Name property value as MyObject,
instrfind will not find an object with a Name property value of myobject.
However, this is not the case for properties that have a finite set of string

'PropertyName' A property name for obj.

PropertyValue A property value supported by PropertyName.

S A structure of property names and property values.

obj A serial port object, or an array of serial port objects.

out An array of serial port objects.

instrfind

809

values. For example, instrfind will find an object with a Parity property
value of Even or even.

You can use property name/property value string pairs, structures, and cell
array pairs in the same call to instrfind.

Example Suppose you create the following two serial port objects.

s1 = serial('COM1');
s2 = serial('COM2');
set(s2,'BaudRate',4800)

You can use instrfind to return serial port objects based on property values.

out1 = instrfind('Port','COM1');
out2 = instrfind({'Port','BaudRate'},{'COM2',4800});

You can also use instrfind to return cleared serial port objects to the
MATLAB workspace.

clear s1 s2
newobjs = instrfind;

See Also Functions
clear, get

int2str

810

1int2strPurpose Integer to string conversion

Syntax str = int2str(N)

Description str = int2str(N) converts an integer to a string with integer format. The
input N can be a single integer or a vector or matrix of integers. Noninteger
inputs are rounded before conversion.

Examples int2str(2+3) is the string '5'.

One way to label a plot is

title(['case number ' int2str(n)])

For matrix or vector inputs, int2str returns a string matrix:

int2str(eye(3))

ans =

1 0 0
0 1 0
0 0 1

See Also fprintf, num2str, sprintf

int8, int16, int32

811

1int8, int16, int32Purpose Convert to signed integer

Syntax i = int8(x)
i = int16(x)
i = int32(x)

Description i = int*(x) converts the vector x into a signed integer. x can be any numeric
object (such as a double). The results of an int* operation are shown in the
next table.

A value of x above or below the range for a class is mapped to one of the
endpoints of the range. If x is already a signed integer of the same class, int*
has no effect.

The int* class is primarily meant to store integer values. Most operations that
manipulate arrays without changing their elements are defined (examples are
reshape, size, the logical and relational operators, subscripted assignment,
and subscripted reference). No math operations except for sum are defined for
int* since such operations are ambiguous on the boundary of the set (for
example, they could wrap or truncate there). You can define your own methods
for int* (as you can for any object) by placing the appropriately named method
in an @int* directory within a directory on your path.

Type help datatypes for the names of the methods you can overload.

See Also double, single, uint8, uint16, uint32

Operatio
n

Output
Range

Output Type Bytes per
Element

Output Class

int8 -128 to 127 Signed 8-bit
integer

1 int8

int16 -32768 to
32767

Signed 16-bit
integer

2 int16

int32 -2147483648
to
2147483647

Signed 32-bit
integer

4 int32

interp1

812

1interp1Purpose One-dimensional data interpolation (table lookup)

Syntax yi = interp1(x,Y,xi)
yi = interp1(Y,xi)
yi = interp1(x,Y,xi,method)
yi = interp1(x,Y,xi,method,extrapval)

Description yi = interp1(x,Y,xi) returns vector yi containing elements corresponding
to the elements of xi and determined by interpolation within vectors x and Y.
The vector x specifies the points at which the data Y is given. If Y is a matrix,
then the interpolation is performed for each column of Y and yi is
length(xi)-by-size(Y,2).

yi = interp1(Y,xi) assumes that x = 1:N, where N is the length of Y for
vector Y, or size(Y,1) for matrix Y.

yi = interp1(x,Y,xi,method) interpolates using alternative methods:

If any element of xi is outside the interval spanned by x, the specified
interpolation method is used for extrapolation. Alternatively,
yi = interp1(x,Y,xi,method,extrapval) replaces extrapolated values with
extrapval. NaN is often used for extrapval.

The interp1 command interpolates between data points. It finds values at
intermediate points, of a one-dimensional function f(x) that underlies the data.
This function is shown below, along with the relationship between vectors x, Y,
xi, and yi.

'nearest' Nearest neighbor interpolation

'linear' Linear interpolation (default)

'spline' Cubic spline interpolation

'pchip' Piecewise cubic Hermite interpolation

'cubic' (Same as 'pchip')

'v5cubic' Cubic interpolation used in MATLAB 5

interp1

813

Interpolation is the same operation as table lookup. Described in table lookup
terms, the table is [x,Y] and interp1 looks up the elements of xi in x, and,
based upon their locations, returns values yi interpolated within the elements
of Y.

Examples Example 1. Generate a coarse sine curve and interpolate over a finer abscissa.

x = 0:10;
y = sin(x);
xi = 0:.25:10;
yi = interp1(x,y,xi);
plot(x,y,'o',xi,yi)

x

xi

Y yi

f(x)

interp1

814

Example 2. Here are two vectors representing the census years from 1900 to
1990 and the corresponding United States population in millions of people.

t = 1900:10:1990;
p = [75.995 91.972 105.711 123.203 131.669...
 150.697 179.323 203.212 226.505 249.633];

The expression interp1(t,p,1975) interpolates within the census data to
estimate the population in 1975. The result is

ans =
 214.8585

Now interpolate within the data at every year from 1900 to 2000, and plot the
result.

 x = 1900:1:2000;
 y = interp1(t,p,x,'spline');
 plot(t,p,'o',x,y)

0 1 2 3 4 5 6 7 8 9 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

interp1

815

Sometimes it is more convenient to think of interpolation in table lookup
terms, where the data are stored in a single table. If a portion of the census
data is stored in a single 5-by-2 table,

tab =
 1950 150.697
 1960 179.323
 1970 203.212
 1980 226.505
 1990 249.633

then the population in 1975, obtained by table lookup within the matrix tab, is

p = interp1(tab(:,1),tab(:,2),1975)
p =
 214.8585

Algorithm The interp1 command is a MATLAB M-file. The 'nearest' and 'linear'
methods have straightforward implementations.

For the 'spline' method, interp1 calls a function spline that uses the
functions ppval, mkpp, and unmkpp. These routines form a small suite of
functions for working with piecewise polynomials. spline uses them to perform

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000
50

100

150

200

250

300

interp1

816

the cubic spline interpolation. For access to more advanced features, see the
spline reference page, the M-file help for these functions, and the Spline
Toolbox.

For the 'pchip' and 'cubic' methods, interp1 calls a function pchip that
performs piecewise cubic interpolation within the vectors x and y. This method
preserves monotonicity and the shape of the data. See the pchip reference page
for more information.

See Also interpft, interp2, interp3, interpn, pchip, spline

References [1] de Boor, C., A Practical Guide to Splines, Springer-Verlag, 1978.

interp2

817

1interp2Purpose Two-dimensional data interpolation (table lookup)

Syntax ZI = interp2(X,Y,Z,XI,YI)
ZI = interp2(Z,XI,YI)
ZI = interp2(Z,ntimes)
ZI = interp2(X,Y,Z,XI,YI,method)

Description ZI = interp2(X,Y,Z,XI,YI) returns matrix ZI containing elements
corresponding to the elements of XI and YI and determined by interpolation
within the two-dimensional function specified by matrices X, Y, and Z. X and Y
must be monotonic, and have the same format (“plaid”) as if they were
produced by meshgrid. Matrices X and Y specify the points at which the data Z
is given. Out of range values are returned as NaNs.

XI and YI can be matrices, in which case interp2 returns the values of Z
corresponding to the points (XI(i,j),YI(i,j)). Alternatively, you can pass in
the row and column vectors xi and yi, respectively. In this case, interp2
interprets these vectors as if you issued the command meshgrid(xi,yi).

ZI = interp2(Z,XI,YI) assumes that X = 1:n and Y = 1:m, where [m,n] =
size(Z).

ZI = interp2(Z,ntimes) expands Z by interleaving interpolates between
every element, working recursively for ntimes. interp2(Z) is the same as
interp2(Z,1).

ZI = interp2(X,Y,Z,XI,YI,method) specifies an alternative interpolation
method:

• 'linear' for bilinear interpolation (default)

• 'nearest' for nearest neighbor interpolation

• 'spline' for cubic spline interpolation

• 'cubic' for bicubic interpolation

All interpolation methods require that X and Y be monotonic, and have the
same format (“plaid”) as if they were produced by meshgrid. Variable spacing
is handled by mapping the given values in X, Y, XI, and YI to an equally spaced
domain before interpolating. For faster interpolation when X and Y are equally

interp2

818

spaced and monotonic, use the methods '∗linear', '∗cubic', '∗spline', or
'∗nearest'.

Remarks The interp2 command interpolates between data points. It finds values of a
two-dimensional function f(x,y) underlying the data at intermediate points.

Interpolation is the same operation as table lookup. Described in table lookup
terms, the table is tab = [NaN,Y; X,Z] and interp2 looks up the elements of
XI in X, YI in Y, and, based upon their location, returns values ZI interpolated
within the elements of Z.

Examples Interpolate the peaks function over a finer grid:

[X,Y] = meshgrid(-3:.25:3);
Z = peaks(X,Y);
[XI,YI] = meshgrid(-3:.125:3);
ZI = interp2(X,Y,Z,XI,YI);
mesh(X,Y,Z), hold, mesh(XI,YI,ZI+15)
hold off

f(x,y)
Interpolated points P(XI,YI,ZI)

Grid points P(X,Y,Z)

interp2

819

axis([-3 3 -3 3 -5 20])

Given this set of employee data,

years = 1950:10:1990;
service = 10:10:30;
wage = [150.697 199.592 187.625

179.323 195.072 250.287
203.212 179.092 322.767
226.505 153.706 426.730
249.633 120.281 598.243];

it is possible to interpolate to find the wage earned in 1975 by an employee with
15 years’ service:

w = interp2(service,years,wage,15,1975)
w =
 190.6287

See Also griddata, interp1, interp3, interpn, meshgrid

−3
−2

−1
0

1
2

3

−3
−2

−1
0

1
2

−5

0

5

10

15

20

interp3

820

1interp3Purpose Three-dimensional data interpolation (table lookup)

Syntax VI = interp3(X,Y,Z,V,XI,YI,ZI)
VI = interp3(V,XI,YI,ZI)
VI = interp3(V,ntimes)
VI = interp3(...,method)

Description VI = interp3(X,Y,Z,V,XI,YI,ZI) interpolates to find VI, the values of the
underlying three-dimensional function V at the points in arrays XI,YI and ZI.
XI,YI, ZImust be arrays of the same size, or vectors. Vector arguments that are
not the same size, and have mixed orientations (i.e. with both row and column
vectors) are passed through meshgrid to create the Y1, Y2, Y3 arrays. Arrays X,
Y, and Z specify the points at which the data V is given. Out of range values are
returned as NaN.

VI = interp3(V,XI,YI,ZI) assumes X=1:N, Y=1:M, Z=1:P where
[M,N,P]=size(V).

VI = interp3(V,ntimes) expands V by interleaving interpolates between
every element, working recursively for ntimes iterations. The command
interp3(V) is the same as interp3(V,1).

VI = interp3(...,method) specifies alternative methods:

Discussion All the interpolation methods require that X,Y and Z be monotonic and have the
same format (“plaid”) as if they were created using meshgrid. X, Y, and Z can be
non-uniformly spaced. For faster interpolation when X, Y, and Z are equally
spaced and monotonic, use the methods '∗linear', '∗cubic', or '∗nearest'.

Examples To generate a coarse approximation of flow and interpolate over a finer mesh:

[x,y,z,v] = flow(10);
[xi,yi,zi] = meshgrid(.1:.25:10, -3:.25:3, -3:.25:3);

'linear' Linear interpolation (default)

'cubic' Cubic interpolation

'spline' Cubic spline interpolation

'nearest' Nearest neighbor interpolation

interp3

821

vi = interp3(x,y,z,v,xi,yi,zi); % V is 31-by-41-by-27
slice(xi,yi,zi,vi,[6 9.5],2,[-2 .2]), shading flat

See Also interp1, interp2, interpn, meshgrid

0
2

4
6

8
10

−3

−2

−1

0

1

2

3
−3

−2

−1

0

1

2

3

interpft

822

1interpftPurpose One-dimensional interpolation using the FFT method

Syntax y = interpft(x,n)
y = interpft(x,n,dim)

Description y = interpft(x,n) returns the vector y that contains the value of the periodic
function x resampled to n equally spaced points.

If length(x) = m, and x has sample interval dx, then the new sample interval
for y is dy = dx∗m/n. Note that n cannot be smaller than m.

If X is a matrix, interpft operates on the columns of X, returning a matrix Y
with the same number of columns as X, but with n rows.

y = interpft(x,n,dim) operates along the specified dimension.

Algorithm The interpft command uses the FFT method. The original vector x is
transformed to the Fourier domain using fft and then transformed back with
more points.

See Also interp1

interpn

823

1interpnPurpose Multidimensional data interpolation (table lookup)

Syntax VI = interpn(X1,X2,X3,...,V,Y1,Y2,Y3,...)
VI = interpn(V,Y1,Y2,Y3,...)
VI = interpn(V,ntimes)
VI = interpn(...,method)

Description VI = interpn(X1,X2,X3,...,V,Y1,Y2,Y3,...) interpolates to find VI, the
values of the underlying multidimensional function V at the points in the
arrays Y1, Y2, Y3, etc. For an N-D V, interpn is called with 2*N+1 arguments.
Arrays X1, X2, X3, etc. specify the points at which the data V is given. Out of
range values are returned as NaNs. Y1, Y2, Y3, etc. must be arrays of the same
size, or vectors. Vector arguments that are not the same size, and have mixed
orientations (i.e. with both row and column vectors) are passed through ndgrid
to create the Y1, Y2, Y3, etc. arrays. interpn works for all N-D arrays with 2 or
more dimensions.

VI = interpn(V,Y1,Y2,Y3,...) interpolates as above, assuming
X1 = 1:size(V,1), X2 = 1:size(V,2), X3 = 1:size(V,3), etc.

VI = interpn(V,ntimes) expands V by interleaving interpolates between
each element, working recursively for ntimes iterations. interpn(V,1) is the
same as interpn(V).

VI = interpn(...,method) specifies alternative methods:

Discussion All the interpolation methods require that X1,X2, and X3 be monotonic and have
the same format (“plaid”) as if they were created using ndgrid. X1,X2,X3,... and
Y1, Y2, Y3, etc. can be non-uniformly spaced. For faster interpolation when X1,
X2, X3, etc. are equally spaced and monotonic, use the methods '∗linear',
'∗cubic', or '∗nearest'.

'linear' Linear interpolation (default)

'cubic' Cubic interpolation

'spline' Cubic spline interpolation

'nearest' Nearest neighbor interpolation

interpn

824

See Also interp1, interp2, interp3, ndgrid

interpstreamspeed

825

1interpstreamspeedPurpose Interpolate stream line vertices from flow speed

Syntax interpstreamspeed(X,Y,Z,U,V,W,vertices)
interpstreamspeed(U,V,W,vertices)
interpstreamspeed(X,Y,Z,speed,vertices)
interpstreamspeed(speed,vertices)

interpstreamspeed(X,Y,U,V,vertices)
interpstreamspeed(U,V,vertices)
interpstreamspeed(X,Y,speed,vertices)
interpstreamspeed(speed,vertices)

interpstreamspeed(...,sf)
vertsout = interpstreamspeed(...)

Description interpstreamspeed(X,Y,Z,U,V,W,vertices) interpolates stream line
vertices based on the magnitude of the vector data U, V, W. The arrays X, Y, Z
define the coordinates for U, V, W and must be monotonic and 3-D plaid (as if
produced by meshgrid).

interpstreamspeed(U,V,W,vertices) assumes X, Y, and Z are determined by
the expression:

[X Y Z] = meshgrid(1:n,1:m,1:p)

where [m n p] = size(U).

interpstreamspeed(X,Y,Z,speed,vertices) uses the 3-D array speed for the
speed of the vector field.

interpstreamspeed(speed,vertices) assumes X, Y, and Z are determined by
the expression:

[X Y Z] = meshgrid(1:n,1:m,1:p)

where [m n p]=size(speed).

interpstreamspeed(X,Y,U,V,vertices) interpolates streamline vertices
based on the magnitude of the vector data U, V. The arrays X, Y define the

interpstreamspeed

826

coordinates for U, V and must be monotonic and 2-D plaid (as if produced by
meshgrid)

interpstreamspeed(U,V,vertices) assumes X and Y are determined by the
expression:

[X Y] = meshgrid(1:n,1:m)

where [M N]=size(U).

interpstreamspeed(X,Y,speed,vertices) uses the 2-D array speed for the
speed of the vector field.

interpstreamspeed(speed,vertices) assumes X and Y are determined by the
expression:

[X Y] = meshgrid(1:n,1:m)

where [M,N]= size(speed)

interpstreamspeed(...,sf) uses sf to scale the magnitude of the vector data
and therefore controls the number of interpolated vertices. For example, if sf
is 3, then interpstreamspeed creates only one third of the vertices.

vertsout = interpstreamspeed(...) returns a cell array of vertex arrays.

Examples This example draws stream lines using the vertices returned by
interpstreamspeed. Dot markers indicate the location of each vertex. This
example enables you to visualize the relative speeds of the flow data. Stream
lines having widely space vertices indicate faster flow; those with closely
spaced vertices indicate slower flow.

load wind
[sx sy sz] = meshgrid(80,20:1:55,5);
verts = stream3(x,y,z,u,v,w,sx,sy,sz);
iverts = interpstreamspeed(x,y,z,u,v,w,verts,.2);
sl = streamline(iverts);
set(sl,'Marker','.')
axis tight; view(2); daspect([1 1 1])

interpstreamspeed

827

This example plots stream lines whose vertex spacing indicates the value of the
gradient along the stream line.

z = membrane(6,30);
[u v] = gradient(z);
[verts averts] = streamslice(u,v);
iverts = interpstreamspeed(u,v,verts,15);
sl = streamline(iverts);
set(sl,'Marker','.')
hold on; pcolor(z); shading interp
axis tight; view(2); daspect([1 1 1])

interpstreamspeed

828

See Also stream2, stream3, streamline, streamslice, streamparticles

intersect

829

1intersectPurpose Set intersection of two vectors

Syntax c = intersect(a,b)
c = intersect(A,B,'rows')
[c,ia,ib] = intersect(...)

Description c = intersect(a,b) returns the values common to both a and b. The resulting
vector is sorted in ascending order. In set theoretic terms, this is
a∩ b. a and b can be cell arrays of strings.

c = intersect(A,B,'rows') when A and B are matrices with the same
number of columns returns the rows common to both A and B.

[c,ia,ib] = intersect(a,b) also returns column index vectors ia and ib
such that c = a(ia) and c = b(ib) (or c = a(ia,:) and c = b(ib,:)).

Examples A = [1 2 3 6]; B = [1 2 3 4 6 10 20];
[c,ia,ib] = intersect(A,B);
disp([c;ia;ib])
 1 2 3 6
 1 2 3 4
 1 2 3 5

See Also ismember, setdiff, setxor, union, unique

inv

830

1invPurpose Matrix inverse

Syntax Y = inv(X)

Description Y = inv(X) returns the inverse of the square matrix X. A warning message is
printed if X is badly scaled or nearly singular.

In practice, it is seldom necessary to form the explicit inverse of a matrix. A
frequent misuse of inv arises when solving the system of linear equations
Ax = b. One way to solve this is with x = inv(A)∗b. A better way, from both an
execution time and numerical accuracy standpoint, is to use the matrix division
operator x = A\b. This produces the solution using Gaussian elimination,
without forming the inverse. See \ and / for further information.

Examples Here is an example demonstrating the difference between solving a linear
system by inverting the matrix with inv(A)∗b and solving it directly with A\b.
A random matrix A of order 500 is constructed so that its condition number,
cond(A), is 1.e10, and its norm, norm(A), is 1. The exact solution x is a random
vector of length 500 and the right-hand side is b = A∗x. Thus the system of
linear equations is badly conditioned, but consistent.

On a 300 MHz, laptop computer the statements

n = 500;
Q = orth(randn(n,n));
d = logspace(0,-10,n);
A = Q*diag(d)*Q';
x = randn(n,1);
b = A*x;
tic, y = inv(A)*b; toc
err = norm(y-x)
res = norm(A*y-b)

produce

elapsed_time =
 1.4320
err =
 7.3260e-006
res =
 4.7511e-007

inv

831

while the statements

tic, z = A\b, toc
err = norm(z-x)
res = norm(A*z-b)

produce

elapsed_time =
 0.6410
err =
 7.1209e-006
res =
 4.4509e-015

It takes almost two and one half times as long to compute the solution with
y = inv(A)∗b as with z = A\b. Both produce computed solutions with about
the same error, 1.e-6, reflecting the condition number of the matrix. But the
size of the residuals, obtained by plugging the computed solution back into the
original equations, differs by several orders of magnitude. The direct solution
produces residuals on the order of the machine accuracy, even though the
system is badly conditioned.

The behavior of this example is typical. Using A\b instead of inv(A)∗b is two to
three times as fast and produces residuals on the order of machine accuracy,
relative to the magnitude of the data.

Algorithm inv uses LAPACK routines to compute the matrix inverse:

See Also det, lu, rref

The arithmetic operators \, /

Matrix Routine

Real DLANGE, DGETRF, DGECON, DGETRI

Complex ZLANGE, ZGETRF, ZGECON, ZGETRI

inv

832

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
LAPACK User’s Guide, Third Edition, SIAM, Philadelphia, 1999.

invhilb

833

1invhilbPurpose Inverse of the Hilbert matrix

Syntax H = invhilb(n)

Description H = invhilb(n) generates the exact inverse of the exact Hilbert matrix for n
less than about 15. For larger n, invhilb(n) generates an approximation to the
inverse Hilbert matrix.

Limitations The exact inverse of the exact Hilbert matrix is a matrix whose elements are
large integers. These integers may be represented as floating-point numbers
without roundoff error as long as the order of the matrix, n, is less than 15.

Comparing invhilb(n) with inv(hilb(n)) involves the effects of two or three
sets of roundoff errors:

• The errors caused by representing hilb(n)

• The errors in the matrix inversion process

• The errors, if any, in representing invhilb(n)

It turns out that the first of these, which involves representing fractions like 1/
3 and 1/5 in floating-point, is the most significant.

Examples invhilb(4) is

 16 -120 240 -140
 -120 1200 -2700 1680
 240 -2700 6480 -4200
 -140 1680 -4200 2800

See Also hilb

References [1] Forsythe, G. E. and C. B. Moler, Computer Solution of Linear Algebraic
Systems, Prentice-Hall, 1967, Chapter 19.

ipermute

834

1ipermutePurpose Inverse permute the dimensions of a multidimensional array

Syntax A = ipermute(B,order)

Description A = ipermute(B,order) is the inverse of permute. ipermute rearranges the
dimensions of B so that permute(A,order) will produce B. B has the same
values as A but the order of the subscripts needed to access any particular
element are rearranged as specified by order. All the elements of order must
be unique.

Remarks permute and ipermute are a generalization of transpose (.') for
multidimensional arrays.

Examples Consider the 2-by-2-by-3 array a:

a = cat(3,eye(2),2*eye(2),3*eye(2))

a(:,:,1) = a(:,:,2) =
 1 0 2 0
 0 1 0 2

a(:,:,3) =
 3 0
 0 3

Permuting and inverse permuting a in the same fashion restores the array to
its original form:

B = permute(a,[3 2 1]);
C = ipermute(B,[3 2 1]);
isequal(a,C)
ans=

 1

See Also permute

is*

835

1is*Purpose Detect state

Syntax k = iscell(C) TF = isnan(A)
k = iscellstr(S) k = isnumeric(A)
k = ischar(S) k = isobject(A)
k = isempty(A) TF = isprime(A)
k = isequal(A,B,...) k = isreal(A)
k = isfield(S,’field’) TF = isspace('str')
TF = isfinite(A) k = issparse(S)
k = isglobal(NAME) k = isstruct(S)
TF = isinf(A) k = isstudent
TF = isletter('str') k = isunix
k = islogical(A)

Description k = iscell(C) returns logical true (1) if C is a cell array and logical false (0)
otherwise.

k = iscellstr(S) returns logical true (1) if S is a cell array of strings and
logical false (0) otherwise. A cell array of strings is a cell array where every
element is a character array.

k = ischar(S) returns logical true (1) if S is a character array and logical false
(0) otherwise.

k = isempty(A) returns logical true (1) if A is an empty array and logical false
(0) otherwise. An empty array has at least one dimension of size zero, for
example, 0-by-0 or 0-by-5.

k = isequal(A,B,...) returns logical true (1) if the input arrays are the same
type and size and hold the same contents, and logical false (0) otherwise.

k = isfield(S,’field’) returns logical true (1) if field is the name of a field
in the structure array S.

TF = isfinite(A) returns an array the same size as A containing logical true
(1) where the elements of the array A are finite and logical false (0) where they
are infinite or NaN.

is*

836

For any A, exactly one of the three quantities isfinite(A), isinf(A), and
isnan(A) is equal to one.

k = isglobal(NAME) returns logical true (1) if NAME has been declared to be a
global variable, and logical false (0) if it has not been so declared.

TF = isinf(A) returns an array the same size as A containing logical true (1)
where the elements of A are +Inf or -Inf and logical false (0) where they are
not.

TF = isletter('str') returns an array the same size as 'str' containing
logical true (1) where the elements of str are letters of the alphabet and logical
false (0) where they are not.

k = islogical(A) returns logical true (1) if A is a logical array and logical false
(0) otherwise.

TF = isnan(A) returns an array the same size as A containing logical true (1)
where the elements of A are NaNs and logical false (0) where they are not.

k = isnumeric(A) returns logical true (1) if A is a numeric array and logical
false (0) otherwise. For example, sparse arrays, and double-precision arrays
are numeric while strings, cell arrays, and structure arrays are not.

k = isobject(A) returns logical true (1) if A is an object and logical false (0)
otherwise.

TF = isprime(A) returns an array the same size as A containing logical true
(1) for the elements of A which are prime, and logical false (0) otherwise.

k = isreal(A) returns logical true (1) if all elements of A are real numbers,
and logical false (0) if either A is not a numeric array, or if any element of A has
a nonzero imaginary component. Since strings are a subclass of numeric
arrays, isreal always returns 1 for a string input.

Because MATLAB supports complex arithmetic, certain of its functions can
introduce significant imaginary components during the course of calculations
that appear to be limited to real numbers. Thus, you should use isreal with
discretion.

is*

837

TF = isspace('str') returns an array the same size as 'str' containing
logical true (1) where the elements of str are ASCII white spaces and logical
false (0) where they are not. White spaces in ASCII are space, newline, carriage
return, tab, vertical tab, or formfeed characters.

k = issparse(S) returns logical true (1) if the storage class of S is sparse and
logical false (0) otherwise.

k = isstruct(S) returns logical true (1) if S is a structure and logical false (0)
otherwise.

k = isstudent returns logical true (1) for student editions of MATLAB and
logical false (0) for commercial editions.

k = isunix returns logical true (1) for UNIX versions of MATLAB and logical
false (0) otherwise.

Examples s = 'A1,B2,C3';

isletter(s)
ans =

1 0 0 1 0 0 1 0

B = rand(2,2,2);
B(:,:,:) = [];

isempty(B)
ans =

1

Given,

A = B = C =
 1 0 1 0 1 0
 0 1 0 1 0 0

isequal(A,B,C) returns 0, and isequal(A,B) returns 1.

is*

838

Let

a = [-2 -1 0 1 2]

Then

isfinite(1./a) = [1 1 0 1 1]
isinf(1./a) = [0 0 1 0 0]
isnan(1./a) = [0 0 0 0 0]

and

isfinite(0./a) = [1 1 0 1 1]
isinf(0./a) = [0 0 0 0 0]
isnan(0./a) = [0 0 1 0 0]

See Also isappdata, ishandle, ishold, isjava, iskeyword, ismember, isstr, isvalid,
isvarname

isa

839

1isaPurpose Detect an object of a given MATLAB class or Java class

Syntax K = isa(obj,'class_name')

Description K = isa(obj,'class_name') returns logical true (1) if obj is of class (or a
subclass of) class_name, and logical false (0) otherwise.

The argument obj is a MATLAB object or a Java object. The argument
class_name is the name of a MATLAB (predefined or user-defined) or a Java
class. Predefined MATLAB classes include:

You cannot use isa to identify a logical value. Use islogical for this instead.

Examples isa(rand(3,4),'double')
ans =
 1

cell Cell array

char Characters array

double Double-precision floating-point array

function_handle Function Handle

int8 8-bit signed integer array

int16 16-bit signed integer array

int32 32-bit signed integer array

numeric Integer or floating-point array

single Single-precision floating-point array

sparse 2-D real (or complex) sparse array

struct Structure array

uint8 8-bit unsigned integer array

uint16 16-bit unsigned integer array

uint32 32-bit unsigned integer array

isa

840

The following example creates an instance of the user-defined MATLAB class,
named polynom. The isa function identifies the object as being of the polynom
class.

polynom_obj = polynom([1 0 -2 -5]);
isa(polynom_obj,'polynom')
ans =
 1

See Also class,is

isappdata

841

1isappdataPurpose True if application-defined data exists

Syntax isappdata(h,name)

Description isappdata(h,name) returns 1 if application-defined data with the specified
name exists on the object specified by handle h, and returns 0 otherwise.

See Also getappdata, rmappdata, setappdata

ishandle

842

1ishandlePurpose Determines if values are valid graphics object handles

Syntax array = ishandle(h)

Description array = ishandle(h) returns an array that contains 1’s where the elements
of h are valid graphics handles and 0’s where they are not.

Examples Determine whether the handles previously returned by fill remain handles of
existing graphical objects:

X = rand(4); Y = rand(4);
h = fill(X,Y,'blue')
.
.
.
delete(h(3))
.
.
.
ishandle(h)
ans =

1
1
0
1

See Also findobj

ishold

843

1isholdPurpose Return hold state

Syntax k = ishold

Description k = ishold returns the hold state of the current axes. If hold is on k = 1, if
hold is off, k = 0.

Examples ishold is useful in graphics M-files where you want to perform a particular
action only if hold is not on. For example, these statements set the view to 3-D
only if hold is off:

if ~ishold
view(3);

end

See Also axes, figure, hold, newplot

isjava

844

1isjavaPurpose Test whether an object is a Java object

Syntax B = isjava(obj)

Description B = isjava(obj) returns 1 if obj is a Java object, and returns 0 if it is not.

See Also isa, isstruct, iscell, isnumeric, isobject, islogical, is*

iskeyword

845

1iskeywordPurpose Test if string is a MATLAB keyword

Syntax iskeyword 's'
iskeyword
R = iskeyword('s')

Description iskeyword 's' returns a 1 if string, s, is a keyword in the MATLAB language.
Returns 0, otherwise.

iskeyword returns a list of all MATLAB keywords.

R = iskeyword('s') returns a 1 in R if string, s, is a MATLAB keyword.

Examples To test if the word while is a MATLAB keyword

iskeyword 'while'
ans =
 1

To obtain a list of all MATLAB keywords

iskeyword
 'break'
 'case'
 'catch'
 'continue'
 'else'
 'elseif'
 'end'
 'for'
 'function'
 'global'
 'if'
 'otherwise'
 'persistent'
 'return'
 'switch'
 'try'
 'while'

iskeyword

846

See Also isvarname

ismember

847

1ismemberPurpose Detect members of a set

Syntax k = ismember(a,S)
k = ismember(A,S,'rows')

Description k = ismember(a,S) returns an vector the same length as a containing logical
true (1) where the elements of a are in the set S, and logical false (0) elsewhere.
In set theoretic terms, k is 1 where a ∈ S. a and S can be cell arrays of strings.

k = ismember(A,S,'rows') when A and S are matrices with the same number
of columns returns a vector containing 1 where the rows of A are also rows of S
and 0 otherwise.

Examples set = [0 2 4 6 8 10 12 14 16 18 20];
a = reshape(1:5,[5 1])

a =

 1
 2
 3
 4
 5

ismember(a,set)

ans =

0
1
0
1
0

See Also intersect, setdiff, setxor, union, unique

isocaps

848

1isocapsPurpose Compute isosurface end-cap geometry

Syntax fvc = isocaps(X,Y,Z,V,isovalue)
fvc = isocaps(V,isovalue)
fvc = isocaps(...,'enclose')
fvc = isocaps(...,'whichplane')
[f,v,c] = isocaps(...)
isocaps(...)

Description fvc = isocaps(X,Y,Z,V,isovalue) computes isosurface end cap geometry for
the volume data V at isosurface value isovalue. The arrays X, Y, and Z define
the coordinates for the volume V.

The struct fvc contains the face, vertex, and color data for the end caps and can
be passed directly to the patch command.

fvc = isocaps(V,isovalue) assumes the arrays X, Y, and Z are defined as
[X,Y,Z] = meshgrid(1:n,1:m,1:p) where [m,n,p] = size(V).

fvc = isocaps(...,'enclose') specifies whether the end caps enclose data
values above or below the value specified in isovalue. The string enclose can
be either above (default) or below.

fvc = isocaps(...,'whichplane') specifies on which planes to draw the end
caps. Possible values for whichplane are: all (default), xmin, xmax, ymin, ymax,
zmin, or zmax.

[f,v,c] = isocaps(...) returns the face, vertex, and color data for the end
caps in three arrays instead of the struct fvc.

isocaps(...) without output arguments draws a patch with the computed
faces, vertices, and colors.

Examples This example uses a data set that is a collection of MRI slices of a human skull.
It illustrates the use of isocaps to draw the end caps on this cut-away volume.

The red isosurface shows the outline of the volume (skull) and the end caps
show what is inside of the volume.

The patch created from the end cap data (p2) uses interpolated face coloring,
which means the gray colormap and the light sources determine how it is

isocaps

849

colored. The isosurface patch (p1) used a flat red face color, which is affected by
the lights, but does not use the colormap.

load mri
D = squeeze(D);
D(:,1:60,:) = [];
p1 = patch(isosurface(D, 5),'FaceColor','red',...

'EdgeColor','none');
p2 = patch(isocaps(D, 5),'FaceColor','interp',...

'EdgeColor','none');
view(3); axis tight; daspect([1,1,.4])
colormap(gray(100))
camlight left; camlight; lighting gouraud
isonormals(D,p1)

See Also isosurface, isonormals, smooth3, subvolume, reducevolume, reducepatch

isocolors

850

1isocolorsPurpose Calculates isosurface and patch colors

Syntax nc = isocolors(X,Y,Z,C,vertices)
nc = isocolors(X,Y,Z,R,G,B,vertices)
nc = isocolors(C,vertices)
nc = isocolors(R,G,B,vertices)
nc = isocolors(...,PatchHandle)
isocolors(...,PatchHandle)

Description nc = isocolors(X,Y,Z,C,vertices) computes the colors of isosurface (patch
object) vertices (vertices) using color values C. Arrays X, Y, Z define the
coordinates for the color data in C and must be monotonic vectors or 3-D plaid
arrays (as if produced by meshgrid). The colors are returned in nc. C must be
3-D (index colors).

nc = isocolors(X,Y,Z,R,G,B,vertices) uses R, G, B as the red, green, and
blue color arrays (truecolor).

nc = isocolors(C,vertices), nc = isocolors(R,G,B,vertices) assumes
X, Y, and Z are determined by the expression:

[X Y Z] = meshgrid(1:n,1:m,1:p)

where [m n p] = size(C).

nc = isocolors(...,PatchHandle) uses the vertices from the patch
identified by PatchHandle.

isocolors(...,PatchHandle) sets the FaceVertexCData property of the patch
specified by PatchHandle to the computed colors.

Examples Indexed Color Data
This example displays an isosurface and colors it with random data using
indexed color. (See "Interpolating in Indexed Color vs. Truecolor" for
information on how patch objects interpret color data.)

[x y z] = meshgrid(1:20,1:20,1:20);
data = sqrt(x.^2 + y.^2 + z.^2);
cdata = smooth3(rand(size(data)),'box',7);
p = patch(isosurface(x,y,z,data,10));

isocolors

851

isonormals(x,y,z,data,p);
isocolors(x,y,z,cdata,p);
set(p,'FaceColor','interp','EdgeColor','none')
view(150,30); daspect([1 1 1]);axis tight
camlight; lighting phong;

Truecolor Data
This example displays an isosurface and colors it with truecolor (RGB) data.

[x y z] = meshgrid(1:20,1:20,1:20);
data = sqrt(x.^2 + y.^2 + z.^2);
p = patch(isosurface(x,y,z,data,20));
isonormals(x,y,z,data,p);
[r g b] = meshgrid(20:-1:1,1:20,1:20);
isocolors(x,y,z,r/20,g/20,b/20,p);
set(p,'FaceColor','interp','EdgeColor','none')
view(150,30); daspect([1 1 1]);
camlight; lighting phong;

isocolors

852

Modified Truecolor Data
This example uses isocolors to calculate the truecolor data using the
isosurface’s (patch object’s) vertices, but then returns the color data in a
variable (c) in order to modify the values. It then explicitly sets the isosurface’s
FaceVertexCData to the new data (1-c).

[x y z] = meshgrid(1:20,1:20,1:20);
data = sqrt(x.^2 + y.^2 + z.^2);
p = patch(isosurface(data,20));
isonormals(data,p);
[r g b] = meshgrid(20:-1:1,1:20,1:20);
c = isocolors(r/20,g/20,b/20,p);
set(p,'FaceVertexCData',1-c)
set(p,'FaceColor','interp','EdgeColor','none')
view(150,30); daspect([1 1 1]);
camlight; lighting phong;

isocolors

853

See Also isosurface, isocaps, smooth3, subvolume, reducevolume, reducepatch,
isonormals.

isonormals

854

1isonormalsPurpose Compute normals of isosurface vertices

Syntax n = isonormals(X,Y,Z,V,vertices)
n = isonormals(V,vertices)
n = isonormals(V,p), n = isonormals(X,Y,Z,V,p)
n = isonormals(...,'negate')
isonormals(V,p), isonormals(X,Y,Z,V,p)

Description n = isonormals(X,Y,Z,V,vertices) computes the normals of the isosurface
vertices from the vertex list, vertices, using the gradient of the data V. The
arrays X, Y, and Z define the coordinates for the volume V. The computed
normals are returned in n.

n = isonormals(V,vertices) assumes the arrays X, Y, and Z are defined as
[X,Y,Z] = meshgrid(1:n,1:m,1:p) where [m,n,p] = size(V).

n = isonormals(V,p) and n = isonormals(X,Y,Z,V,p) compute normals from
the vertices of the patch identified by the handle p.

n = isonormals(...,'negate') negates (reverses the direction of) the
normals.

isonormals(V,p) and isonormals(X,Y,Z,V,p) set the VertexNormals
property of the patch identified by the handle p to the computed normals rather
than returning the values.

Examples This example compares the effect of different surface normals on the visual
appearance of lit isosurfaces. In one case, the triangles used to draw the
isosurface define the normals. In the other, the isonormals function uses the
volume data to calculate the vertex normals based on the gradient of the data
points. The latter approach generally produces a smoother-appearing
isosurface.

Define a 3-D array of volume data (cat, interp3):

data = cat(3, [0 .2 0; 0 .3 0; 0 0 0], ...
 [.1 .2 0; 0 1 0; .2 .7 0],...
 [0 .4 .2; .2 .4 0;.1 .1 0]);
data = interp3(data,3,'cubic');

isonormals

855

Draw an isosurface from the volume data and add lights. This isosurface uses
triangle normals (patch, isosurface, view, daspect, axis, camlight,
lighting, title):

subplot(1,2,1)
p1 = patch(isosurface(data,.5),...
'FaceColor','red','EdgeColor','none');
view(3); daspect([1,1,1]); axis tight
camlight; camlight(-80,-10); lighting phong;
title('Triangle Normals')

Draw the same lit isosurface using normals calculated from the volume data:

subplot(1,2,2)
p2 = patch(isosurface(data,.5),...
 'FaceColor','red','EdgeColor','none');
isonormals(data,p2)
view(3); daspect([1 1 1]); axis tight
camlight; camlight(-80,-10); lighting phong;
title('Data Normals')

These isosurfaces illustrate the difference between triangle and data normals:

See Also interp3, isosurface, isocaps, smooth3, subvolume, reducevolume,
reducepatch

isosurface

856

1isosurfacePurpose Extract isosurface data from volume data

Syntax fv = isosurface(X,Y,Z,V,isovalue)
fv = isosurface(V,isovalue)
fv = isosurface(X,Y,Z,V), fv = isosurface(X,Y,Z,V)
fvc = isosurface(...,colors)
fv = isosurface(...,'noshare')
fv = isosurface(...,'verbose')
[f,v] = isosurface(...)
isosurface(...)

Description fv = isosurface(X,Y,Z,V,isovalue) computes isosurface data from the
volume data V at the isosurface value specified in isovalue. The arrays X, Y,
and Z define the coordinates for the volume V. The structure fv contains the
faces and vertices of the isosurface, which you can pass directly to the patch
command.

fv = isosurface(V,isovalue) assumes the arrays X, Y, and Z are defined as
[X,Y,Z] = meshgrid(1:n,1:m,1:p) where [m,n,p] = size(V).

fvc = isosurface(...,colors) interpolates the array colors onto the scalar
field and returns the interpolated values in the facevertexcdata field of the
fvc structure. The size of the colors array must be the same as V. The colors
argument enables you to control the color mapping of the isosurface with data
different from that used to calculate the isosurface (e.g., temperature data
superimposed on a wind current isosurface.

fv = isosurface(...,'noshare') does not create shared vertices. This is
faster, but produces a larger set of vertices.

fv = isosurface(...,'verbose') prints progress messages to the command
window as the computation progresses.

[f,v] = isosurface(...) returns the faces and vertices in two arrays instead
of a struct.

isosurface(...) with no output arguments creates a patch using the
computed faces and vertices.

isosurface

857

Remarks You can pass the fv structure created by isosurface directly to the patch
command, but you cannot pass the individual faces and vertices arrays (f, v) to
patch without specifying property names. For example,

patch(isosurface(X,Y,Z,V,isovalue))

or

[f,v] = isosurface(X,Y,Z,V,isovalue);
patch('Faces',f,'Vertices',v)

Examples This example uses the flow data set, which represents the speed profile of a
submerged jet within an infinite tank (type help flow for more information).
The isosurface is drawn at the data value of -3. The statements that follow the
patch command prepare the isosurface for lighting by:

• Recalculating the isosurface normals based on the volume data (isonormals)

• Setting the face and edge color (set, FaceColor, EdgeColor)

• Specifying the view (daspect, view)

• Adding lights (camlight, lighting)

[x,y,z,v] = flow;
p = patch(isosurface(x,y,z,v,-3));
isonormals(x,y,z,v,p)
set(p,’FaceColor’,’red’,’EdgeColor’,’none’);
daspect([1 1 1])
view(3); axis tight
camlight
lighting gouraud

isosurface

858

See Also isonormals, isocaps, reducepatch, reducevolume, shrinkfaces, smooth3,
subvolume

isstr

859

1isstrPurpose Detect strings

Description This MATLAB 4 function has been renamed ischar in MATLAB 5.

See Also is*

isvalid

860

1isvalidPurpose Determine if serial port objects are valid

Syntax out = isvalid(obj)

Arguments

Description out = isvalid(obj) returns the logical array out, which contains a 0 where
the elements of obj are invalid serial port objects and a 1 where the elements
of obj are valid serial port objects.

Remarks obj becomes invalid after it is removed from memory with the delete function.
Since you cannot connect an invalid serial port object to the device, you should
remove it from the workspace with the clear command.

Example Suppose you create the following two serial port objects.

s1 = serial('COM1');
s2 = serial('COM1');

s2 becomes invalid after it is deleted.

delete(s2)

isvalid verifies that s1 is valid and s2 is invalid.

sarray = [s1 s2];
isvalid(sarray)
ans =
 1 0

See Also Functions
clear, delete

obj A serial port object or array of serial port objects.

out A logical array.

isvarname

861

1isvarnamePurpose Test if string is a valid variable name

Syntax isvarname 's'
R = isvarname('s')

Description isvarname 's' returns a 1 if string, s, is a valid MATLAB variable name.
Returns 0, otherwise. A valid variable name is a character string of letters,
digits, and underscores, totaling not more than 32 characters and beginning
with a letter.

R = isvarname('s') returns a 1 in R if string, s, is a valid variable name.

Examples You can use isvarname without parenthesis if you pass a single string
argument. If you are building strings from various pieces, place the
construction in parenthesis.

isvarname foo
ans =

1

isvarname 'Monday 23'
ans =

0

d = date;
isvarname(['Monday_',d(1:2)])
ans =

1

See Also iskeyword, is*

j

862

1jPurpose Imaginary unit

Syntax j
x+yj
x+j*y

Description Use the character j in place of the character i, if desired, as the imaginary unit.

As the basic imaginary unit sqrt(-1), j is used to enter complex numbers.
Since j is a function, it can be overridden and used as a variable. This permits
you to use j as an index in for loops, etc.

It is possible to use the character j without a multiplication sign as a suffix in
forming a numerical constant.

Examples Z = 2+3j
Z = x+j*y
Z = r*exp(j*theta)

See Also conj, i, imag, real

javaArray

863

1javaArrayPurpose Constructs a Java array

Syntax javaArray('package_name.class_name’,x1,...,xn)

Description javaArray('package_name.class_name’,x1,...,xn) constructs an empty
Java array capable of storing objects of Java class, 'class_name'. The
dimensions of the array are x1 by ... by xn. You must include the package
name when specifying the class.

The array that you create with javaArray is equivalent to the array that you
would create with the Java code

A = new class_name[x1]...[xn];

Examples The following example constructs and populates a 4-by-5 array of
java.lang.Double objects.

dblArray = javaArray ('java.lang.Double', 4, 5);

for i = 1:4
 for j = 1:5
 dblArray(i,j) = java.lang.Double((i*10) + j);
 end
end

dblArray

dblArray =
java.lang.Double[][]:
 [11] [12] [13] [14] [15]
 [21] [22] [23] [24] [25]
 [31] [32] [33] [34] [35]
 [41] [42] [43] [44] [45]

See Also javaObject, javaMethod, class, methodsview, isjava

javaMethod

864

1javaMethodPurpose Invokes a Java method

Syntax X = javaMethod('method_name','class_name’,x1,...,xn)
X = javaMethod('method_name',J,x1,...,xn)

Description javaMethod('method_name','class_name’,x1,...,xn) invokes the static
method method_name in the class class_name, with the argument list that
matches x1,...,xn.

javaMethod('method_name',J,x1,...,xn) invokes the nonstatic method
method_name on the object J, with the argument list that matches x1,...,xn.

Remarks Using the javaMethod function enables you to

• Use methods having names longer than 31 characters

• Specify the method you want to invoke at run-time, for example, as input
from an application user

The javaMethod function enables you to use methods having names longer
than 31 characters. This is the only way you can invoke such a method in
MATLAB. For example:

javaMethod('DataDefinitionAndDataManipulationTransactions', T);

With javaMethod, you can also specify the method to be invoked at run-time.
In this situation, your code calls javaMethod with a string variable in place of
the method name argument. When you use javaMethod to invoke a static
method, you can also use a string variable in place of the class name argument.

Note Typically, you do not need to use javaMethod. The default MATLAB
syntax for invoking a Java method is somewhat simpler and is preferable for
most applications. Use javaMethod primarily for the two cases described
above.

Examples To invoke the static Java method isNaN on class, java.lang.Double, use

javaMethod('isNaN','java.lang.Double',2.2)

javaMethod

865

The following example invokes the nonstatic method setTitle, where
frameObj is a java.awt.Frame object.

frameObj = java.awt.Frame;
javaMethod('setTitle', frameObj, 'New Title');

See Also javaArray, javaObject, import, methods, isjava

javaObject

866

1javaObjectPurpose Constructs a Java object

Syntax J = javaObject('class_name’,x1,...,xn)

Description javaObject('class_name’,x1,...,xn) invokes the Java constructor for class
'class_name’ with the argument list that matches x1,...,xn, to return a new
object.

If there is no constructor that matches the class name and argument list passed
to javaObject, an error occurs.

Remarks Using the javaObject function enables you to

• Use classes having names with more than 31 consecutive characters

• Specify the class for an object at run-time, for example, as input from an
application user

The default MATLAB constructor syntax requires that no segment of the input
class name be longer than 31 characters. (A name segment, is any portion of the
class name before, between, or after a period. For example, there are three
segments in class, java.lang.String.) Any class name segment that exceeds
31 characters is truncated by MATLAB. In the rare case where you need to use
a class name of this length, you must use javaObject to instantiate the class.

The javaObject function also allows you to specify the Java class for the object
being constructed at run-time. In this situation, you call javaObject with a
string variable in place of the class name argument.

class = 'java.lang.String';
text = 'hello';
strObj = javaObject(class, text);

In the usual case, when the class to instantiate is known at development time,
it is more convenient to use the MATLAB constructor syntax. For example, to
create a java.lang.String object, you would use

strObj = java.lang.String('hello');

Note Typically, you will not need to use javaObject. The default MATLAB
syntax for instantiating a Java class is somewhat simpler and is preferable for

javaObject

867

most applications. Use javaObject primarily for the two cases described
above.

Examples The following example constructs and returns a Java object of class
java.lang.String:

strObj = javaObject('java.lang.String','hello')

See Also javaArray, javaMethod, import, methods, fieldnames, isjava

keyboard

868

1keyboardPurpose Invoke the keyboard in an M-file

Syntax keyboard

Description keyboard , when placed in an M-file, stops execution of the file and gives
control to the keyboard. The special status is indicated by a K appearing before
the prompt. You can examine or change variables; all MATLAB commands are
valid. This keyboard mode is useful for debugging your M-files.

To terminate the keyboard mode, type the command:

return

then press the Return key.

See Also dbstop, input, quit, return

kron

869

1kronPurpose Kronecker tensor product

Syntax K = kron(X,Y)

Description K = kron(X,Y) returns the Kronecker tensor product of X and Y. The result is
a large array formed by taking all possible products between the elements of X
and those of Y. If X is m-by-n and Y is p-by-q, then kron(X,Y) is m*p-by-n*q.

Examples If X is 2-by-3, then kron(X,Y) is

[X(1,1)*Y X(1,2)*Y X(1,3)*Y
 X(2,1)*Y X(2,2)*Y X(2,3)*Y]

The matrix representation of the discrete Laplacian operator on a
two-dimensional, n-by-n grid is a n^2-by-n^2 sparse matrix. There are at most
five nonzero elements in each row or column. The matrix can be generated as
the Kronecker product of one-dimensional difference operators with these
statements:

 I = speye(n,n);
 E = sparse(2:n,1:n-1,1,n,n);
 D = E+E'-2*I;
 A = kron(D,I)+kron(I,D);

Plotting this with the spy function for n = 5 yields:

lasterr

870

1lasterrPurpose Last error message

Syntax str = lasterr
lasterr('')

Description str = lasterr returns the last error message generated by MATLAB.

lasterr('') resets lasterr so it returns an empty matrix until the next error
occurs.

Examples Here is a function that examines the lasterr string and displays its own
message based on the error that last occurred. This example deals with two
cases, each of which is an error that can result from a matrix multiply.

function catchfcn
l = lasterr;
j = findstr(l,'Inner matrix dimensions');
if ~isempty(j)
 disp('Wrong dimensions for matrix multiply')
else
 k = findstr(l,'Undefined function or variable');
 if ~isempty(k)
 disp('At least one operand does not exist')
 end
end

The lasterr function is useful in conjunction with the two-argument form of
the eval function:

eval('string','catchstr')

or the try ... catch...end statements. The catch action examines the
lasterr string to determine the cause of the error and takes appropriate
action.

The eval function evaluates string and returns if no error occurs. If an error
occurs, eval executes catchstr. Using eval with the catchfcn function above:

clear
A = [1 2 3; 6 7 2; 0 -1 5];
B = [9 5 6; 0 4 9];

lasterr

871

eval('A*B','catchfcn')

MATLAB responds with Wrong dimensions for matrix multiply.

See Also error, eval

lastwarn

872

1lastwarnPurpose Last warning message

Syntax lastwarn
lastwarn('')
lastwarn('string')

Description lastwarn returns a string containing the last warning message issued by
MATLAB.

lastwarn('') resets the lastwarn function so that it will return an empty
string matrix until the next warning is encountered.

lastwarn('string') sets the last warning message to 'string'. The last
warning message is updated regardless of whether warning is on or off.

See Also lasterr, warning

lcm

873

1lcmPurpose Least common multiple

Syntax L = lcm(A,B)

Description L = lcm(A,B) returns the least common multiple of corresponding elements of
arrays A and B. Inputs A and B must contain positive integer elements and must
be the same size (or either can be scalar).

Examples lcm(8,40)

ans =

40

lcm(pascal(3),magic(3))

ans =
 8 1 6
 3 10 21
 4 9 6

See Also gcd

legend

874

1legendPurpose Display a legend on graphs

Syntax legend('string1','string2',...)
legend(h,'string1','string2',...)
legend(string_matrix)
legend(h,string_matrix)
legend(axes_handle,...)
legend('off')
legend(h,...)
legend(...,pos)
h = legend(...)
[legend_handle,object_handles] = legend(...)

Description legend places a legend on various types of graphs (line plots, bar graphs, pie
charts, etc.). For each line plotted, the legend shows a sample of the line type,
marker symbol, and color beside the text label you specify. When plotting filled
areas (patch or surface objects), the legend contains a sample of the face color
next to the text label.

legend('string1','string2',...) displays a legend in the current axes
using the specified strings to label each set of data.

legend(h,'string1','string2',...) displays a legend on the plot
containing the handles in the vector h, using the specified strings to label the
corresponding graphics object (line, bar, etc.).

legend(string_matrix) adds a legend containing the rows of the matrix
string_matrix as labels. This is the same as
legend(string_matrix(1,:),string_matrix(2,:),...).

legend(h,string_matrix) associates each row of the matrix string_matrix
with the corresponding graphics object in the vector h.

legend(axes_handle,...) displays the legend for the axes specified by
axes_handle.

legend('off'),legend(axes_handle,'off') removes the legend from the
current axes or the axes specified by axes_hanlde.

legend

875

legend_handle = legend returns the handle to the legend on the current axes
or an empty vector if no legend exists.

legend with no arguments refreshes all the legends in the current figure.

legend(legend_handle) refreshes the specified legend.

legend(...,pos) uses pos to determine where to place the legend.

• pos = –1 places the legend outside the axes boundary on the right side.

• pos = 0 places the legend inside the axes boundary, obscuring as few points
as possible.

• pos = 1 places the legend in the upper-right corner of the axes (default).

• pos = 2 places the legend in the upper-left corner of the axes.

• pos = 3 places the legend in the lower-left corner of the axes.

• pos = 4 places the legend in the lower-right corner of the axes.

[legend_handle,object_handles] = legend(...) returns the handle of the
legend (legend_handle), which is an axes graphics object and the handles of
the line, patch and text graphics objects (object_handles) used in the legend.
These handles enable you to modify the properties of the respective objects.

Remarks legend associates strings with the objects in the axes in the same order that
they are listed in the axes Children property. By default, the legend annotates
the current axes.

MATLAB displays only one legend per axes. legend positions the legend based
on a variety of factors, such as what objects the legend obscures. You move the
legend by pressing the left mouse button while the cursor is over the legend and
dragging the legend to a new location. Double clicking on a label allows you to
edit the label.

legend

876

Examples Add a legend to a graph showing a sine and cosine function:

x = –pi:pi/20:pi;
plot(x,cos(x),'−ro',x,sin(x),'−.b')
h = legend('cos','sin',2);

In this example, the plot command specifies a solid, red line ('−r') for the
cosine function and a dash-dot, blue line ('−.b') for the sine function.

See Also LineSpec, plot

−4 −3 −2 −1 0 1 2 3 4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

cos
sin

legendre

877

1legendrePurpose Associated Legendre functions

Syntax P = legendre(n,X)
S = legendre(n,X,'sch')

Definition The Legendre functions are defined by:

where

is the Legendre polynomial of degree n:

The Schmidt seminormalized associated Legendre functions are related to the
nonnormalized associated Legendre functions by:

where m > 0.

Description P = legendre(n,X) computes the associated Legendre functions of degree n
and order m = 0,1,...,n, evaluated at X. Argument n must be a scalar integer
less than 256, and X must contain real values in the domain -1 ≤ x ≤ 1.

The returned array P has one more dimension than X, and each element
P(m+1,d1,d2...) contains the associated Legendre function of degree n and
order m evaluated at X(d1,d2...).

Pn
m x() 1–()m 1 x2–()m 2/

xm

m

d

d Pn x()=

Pn x()

Pn x() 1

2nn!

x

n

d
d x2 1–()

n
=

Pn
m x()

Sn
m x() 1–()m 2 n m–()!

n m+()!
------------------------- Pn

m x()=

legendre

878

If X is a vector, then P is a matrix of the form:

S = legendre(...,'sch') computes the Schmidt seminormalized associated
Legendre functions .

Examples The statement legendre(2,0:0.1:0.2) returns the matrix:

Note that this matrix is of the form shown at the bottom of the previous page.

Given,

X = rand(2,4,5); N = 2;
P = legendre(N,X)

Then size(P) is 3-by-2-by-4-by-5, and P(:,1,2,3) is the same as
legendre(n,X(1,2,3)).

P2
0 x 1()()

P2
1 x 1()()

P2
2 x 1()()

P2
0 x 2()()

P2
1 x 2()()

P2
2 x 2()()

P2
0 x 3()() ...

P2
1 x 3()() ...

P2
2 x 3()() ...

Sn
m x()

x = 0 x = 0.1 x = 0.2

m = 0 -0.5000 -0.4850 -0.4400

m = 1 0 -0.2985 -0.5879

m = 2 3.0000 2.9700 2.8800

length

879

1lengthPurpose Length of vector

Syntax n = length(X)

Description The statement length(X) is equivalent to max(size(X)) for nonempty arrays
and 0 for empty arrays.

n = length(X) returns the size of the longest dimension of X. If X is a vector,
this is the same as its length.

Examples x = ones(1,8);
n = length(x)

n =

 8

x = rand(2,10,3);
n = length(x)

n =

 10

See Also ndims, size

length (serial)

880

1length (serial)Purpose Length of serial port object array

Syntax length(obj)

Arguments

Description length(obj) returns the length of obj. It is equivalent to the command
max(size(obj)).

See Also Functions
size

obj A serial port object or an array of serial port objects.

license

881

1licensePurpose Show the license number for MATLAB

Syntax license

Description license shows the license number for MATLAB, as a string. It returns demo for
demonstration versions and unknown if the license number cannot be
determined.

See Also version

light

882

1lightPurpose Create a light object

Syntax light('PropertyName',PropertyValue,...)
handle = light(...)

Description light creates a light object in the current axes. lights affect only patch and
surface object.

light('PropertyName',PropertyValue,...) creates a light object using the
specified values for the named properties. MATLAB parents the light to the
current axes unless you specify another axes with the Parent property.

handle = light(...) returns the handle of the light object created.

Remarks You cannot see a light object per se, but you can see the effects of the light
source on patch and surface objects. You can also specify an axes-wide ambient
light color that illuminates these objects. However, ambient light is visible only
when at least one light object is present and visible in the axes.

You can specify properties as property name/property value pairs, structure
arrays, and cell arrays (see set and get for examples of how to specify these
data types).

See also the patch and surface AmbientStrength, DiffuseStrength,
SpecularStrength, SpecularExponent, SpecularColorReflectance, and
VertexNormals properties. Also see the lighting and material commands.

Examples Light the peaks surface plot with a light source located at infinity and oriented
along the direction defined by the vector [1 0 0], that is, along the x-axis.

h = surf(peaks);
set(h,’FaceLighting’,’phong’,'FaceColor',’interp’,...

'AmbientStrength',0.5)
light('Position’,[1 0 0],’Style’,’infinite’);

light

883

Object
Hierarchy

Setting Default Properties
You can set default light properties on the axes, figure, and root levels:

set(0,'DefaultLightProperty',PropertyValue...)
set(gcf,'DefaultLightProperty',PropertyValue...)
set(gca,'DefaultLightProperty',PropertyValue...)

Where Property is the name of the light property and PropertyValue is the
value you are specifying. Use set and get to access light properties.

The following table lists all light properties and provides a brief description of
each. The property name links take you to an expanded description of the
properties.

Uimenu

Line

Axes Uicontrol

Image

Figure

Uicontextmenu

Light SurfacePatch Text

Root

Rectangle

Property Name Property Description Property Value

Defining the Light

Color Color of the light produced by the
light object

Values: ColorSpec

Position Location of light in the axes Values: x-, y-, z-coordinates
in axes units
Default: [1 0 1]

Style Parallel or divergent light source Values: infinite, local

light

884

Controlling the Appearance

SelectionHighlight This property is not used by light
objects

Values: on, off
Default: on

Visible Make the effects of the light visible
or invisible

Values: on, off
Default: on

Controlling Access to Objects

HandleVisibility Determines if and when the the line’s
handle is visible to other functions

Values: on, callback, off
Default: on

HitTest This property is not used by light
objects

Values: on, off
Default: on

General Information About the Light

Children Light objects have no children Values: [] (empty matrix)

Parent The parent of a light object is always
an axes object

Value: axes handle

Selected This property is not used by light
objects

Values: on, off
Default: on

Tag User-specified label Value: any string
Default: '' (empty string)

Type The type of graphics object (read
only)

Value: the string 'light'

UserData User-specified data Values: any matrix
Default: [] (empty matrix)

Properties Related to Callback Routine Execution

BusyAction Specify how to handle callback
routine interruption

Values: cancel, queue
Default: queue

ButtonDownFcn This property is not used by light
objects

Values: string
Default: empty string

Property Name Property Description Property Value

light

885

Controlling the Appearance

SelectionHighlight This property is not used by light
objects

Values: on, off
Default: on

Visible Make the effects of the light visible
or invisible

Values: on, off
Default: on

Controlling Access to Objects

HandleVisibility Determines if and when the the line’s
handle is visible to other functions

Values: on, callback, off
Default: on

HitTest This property is not used by light
objects

Values: on, off
Default: on

General Information About the Light

Children Light objects have no children Values: [] (empty matrix)

Parent The parent of a light object is always
an axes object

Value: axes handle

Selected This property is not used by light
objects

Values: on, off
Default: on

Tag User-specified label Value: any string
Default: '' (empty string)

Type The type of graphics object (read
only)

Value: the string 'light'

UserData User-specified data Values: any matrix
Default: [] (empty matrix)

Properties Related to Callback Routine Execution

BusyAction Specify how to handle callback
routine interruption

Values: cancel, queue
Default: queue

ButtonDownFcn This property is not used by light
objects

Values: string
Default: empty string

Property Name Property Description Property Value

light

886

CreateFcn Define a callback routine that
executes when a light is created

Values: string (command or
M-file name)
Default: empty string

DeleteFcn Define a callback routine that
executes when the light is deleted
(via close or delete)

Values: string (command or
M-file name)
Default: empty string

Interruptible Determine if callback routine can be
interrupted

Values: on, off
Default: on (can be
interrupted)

UIContextMenu This property is not used by light
objects

Values: handle of a
Uicontrextmenu

Property Name Property Description Property Value

Light Properties

887

1Light PropertiesModifying
Properties

You can set and query graphics object properties in two ways:

• The Property Editor is an interactive tool that enables you to see and change
object property values.

• The set and get commands enable you to set and query the values of
properties

To change the default value of properties see Setting Default Property Values.

Light Property
Descriptions

This section lists property names along with the type of values each accepts.

BusyAction cancel | {queue}

Callback routine interruption. The BusyAction property enables you to control
how MATLAB handles events that potentially interrupt executing callback
routines. If there is a callback routine executing, subsequently invoked
callback routes always attempt to interrupt it. If the Interruptible property
of the object whose callback is executing is set to on (the default), then
interruption occurs at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the object owning
the executing callback) determines how MATLAB handles the event. The
choices are:

• cancel – discard the event that attempted to execute a second callback
routine.

• queue – queue the event that attempted to execute a second callback routine
until the current callback finishes.

ButtonDownFcn string

This property is not useful on lights.

Children handles

The empty matrix; light objects have no children.

Clipping on | off

Clipping has no effect on light objects.

Color ColorSpec

Color of light. This property defines the color of the light emanating from the
light object. Define it as three-element RGB vector or one of MATLAB’s
predefined names. See the ColorSpec reference page for more information.

Light Properties

888

CreateFcn string

Callback routine executed during object creation. This property defines a
callback routine that executes when MATLAB creates a light object. You must
define this property as a default value for lights. For example, the statement,

set(0,'DefaultLightCreateFcn','set(gcf,''Colormap'',hsv)')

sets the current figure colormap to hsv whenever you create a light object.
MATLAB executes this routine after setting all light properties. Setting this
property on an existing light object has no effect.

The handle of the object whose CreateFcn is being executed is accessible only
through the root CallbackObject property, which you can query using gcbo.

DeleteFcn string

Delete light callback routine. A callback routine that executes when you delete
the light object (i.e., when you issue a delete command or clear the axes or
figure containing the light). MATLAB executes the routine before destroying
the object’s properties so these values are available to the callback routine.

The handle of the object whose DeleteFcn is being executed is accessible only
through the root CallbackObject property, which you can query using gcbo.

HandleVisibility {on} | callback | off

Control access to object’s handle by command-line users and GUIs. This
property determines when an object’s handle is visible in its parent’s list of
children. HandleVisibility is useful for preventing command-line users from
accidentally drawing into or deleting a figure that contains only user interface
devices (such as a dialog box).

Handles are always visible when HandleVisibility is on.

Setting HandleVisibility to callback causes handles to be visible from
within callback routines or functions invoked by callback routines, but not from
within functions invoked from the command line. This provides a means to
protect GUIs from command-line users, while allowing callback routines to
have complete access to object handles.

Setting HandleVisibility to off makes handles invisible at all times. This
may be necessary when a callback routine invokes a function that might
potentially damage the GUI (such as evaling a user-typed string), and so
temporarily hides its own handles during the execution of that function.

Light Properties

889

When a handle is not visible in its parent’s list of children, it cannot be returned
by functions that obtain handles by searching the object hierarchy or querying
handle properties. This includes get, findobj, gca, gcf, gco, newplot, cla, clf,
and close.

When a handle’s visibility is restricted using callback or off, the object’s
handle does not appear in its parent’s Children property, figures do not appear
in the root’s CurrentFigure property, objects do not appear in the root’s
CallbackObject property or in the figure’s CurrentObject property, and axes
do not appear in their parent’s CurrentAxes property.

You can set the root ShowHiddenHandles property to on to make all handles
visible, regardless of their HandleVisibility settings (this does not affect the
values of the HandleVisibility properties).

Handles that are hidden are still valid. If you know an object’s handle, you can
set and get its properties, and pass it to any function that operates on handles.

HitTest {on} | off

This property is not used by light objects.

Interruptible {on} | off

Callback routine interruption mode. Light object callback routines defined for
the DeleteFcn property are not affected by the Interruptible property.

Parent handle of parent axes

Light objects parent. The handle of the light object’s parent axes. You can move
a light object to another axes by changing this property to the new axes handle.

Position [x,y,z] in axes data units

Location of light object. This property specifies a vector defining the location of
the light object. The vector is defined from the origin to the specified x, y, and
z coordinates. The placement of the light depends on the setting of the Style
property:

• If the Style property is set to local, Position specifies the actual location
of the light (which is then a point source that radiates from the location in all
directions).

• If the Style property is set to infinite, Position specifies the direction
from which the light shines in parallel rays.

Light Properties

890

Selected on | off

This property is not used by light objects.

SelectionHighlight {on} | off

This property is not used by light objects.

Style {infinite} | local

Parallel or divergent light source. This property determines whether MATLAB
places the light object at infinity, in which case the light rays are parallel, or at
the location specified by the Position property, in which case the light rays
diverge in all directions. See the Position property.

Tag string

User-specified object label. The Tag property provides a means to identify
graphics objects with a user-specified label. This is particularly useful when
constructing interactive graphics programs that would otherwise need to
define object handles as global variables or pass them as arguments between
callback routines. You can define Tag as any string.

Type string (read only)

Type of graphics object. This property contains a string that identifies the class
of graphics object. For light objects, Type is always 'light'.

UIContextMenu handle of a uicontextmenu object

This property is not used by light objects.

UserData matrix

User specified data. This property can be any data you want to associate with
the light object. The light does not use this property, but you can access it using
set and get.

Visible {on} | off

Light visibility. While light objects themselves are not visible, you can see the
light on patch and surface objects. When you set Visible to off, the light
emanating from the source is not visible. There must be at least one light object
in the axes whose Visible property is on for any lighting features to be enabled
(including the axes AmbientLightColor and patch and surface
AmbientStrength).

Light Properties

891

See Also lighting, material, patch, surface

lightangle

892

1lightanglePurpose Create or position a light object in spherical coordinates

Syntax lightangle(az,el)
light_handle = lightangle(az,el)
lightangle(light_handle,az,el)
[ax el] = lightangle(light_handle)

Description lightangle(az,el) creates a light at the position specified by azimuth and
elevation. az is the azimuthal (horizontal) rotation and el is the vertical
elevation (both in degrees). The interpretation of azimuth and elevation is the
same as that of the view command.

light_handle = lightangle(az,el) creates a light and returns the handle of
the light in light_handle.

lightangle(light_handle,az,el) sets the position of the light specified by
light_handle.

[az,el] = lightangle(light_handle) returns the azimuth and elevation of
the light specified by light_handle.

Remarks By default, when a light is created, its style is infinite. If the light handle
passed into lightangle refers to a local light, the distance between the light
and the camera target is preserved as the position is changed.

Examples surf(peaks)
axis vis3d
h = light;
for az = −50:10:50

lightangle(h,az,30)
drawnow

end

See Also light, camlight, view

lighting

893

1lightingPurpose Select the lighting algorithm

Syntax lighting flat
lighting gouraud
lighting phong
lighting none

Description lighting selects the algorithm used to calculate the effects of light objects on
all surface and patch objects in the current axes.

lighting flat selects flat lighting.

lighting gouraund selects gouraud lighting.

lighting phong selects phong lighting.

lighting none turns off lighting.

Remarks The surf, mesh, pcolor, fill, fill3, surface, and patch functions create
graphics objects that are affected by light sources. The lighting command sets
the FaceLighting and EdgeLighting properties of surfaces and patches
appropriately for the graphics object.

See Also light, material, patch, surface

lin2mu

894

1lin2muPurpose Convert linear audio signal to mu-law

Syntax mu = lin2mu(y)

Description mu = lin2mu(y) converts linear audio signal amplitudes in the range
-1 ≤ Y ≤ 1 to mu-law encoded “flints” in the range 0 ≤ u ≤ 255.

See Also auwrite, mu2lin

line

895

1linePurpose Create line object

Syntax line(X,Y)
line(X,Y,Z)
line(X,Y,Z,'PropertyName',PropertyValue,...)
line('PropertyName',PropertyValue,...) low-level–PN/PV pairs only
h = line(...)

Description line creates a line object in the current axes. You can specify the color, width,
line style, and marker type, as well as other characteristics.

The line function has two forms:

• Automatic color and line style cycling. When you specify matrix coordinate
data using the informal syntax (i.e., the first three arguments are
interpreted as the coordinates),
line(X,Y,Z)

MATLAB cycles through the axes ColorOrder and LineStyleOrder property
values the way the plot function does. However, unlike plot, line does not
call the newplot function.

• Purely low-level behavior. When you call line with only property name/
property value pairs,
line('XData',x,'YData',y,'ZData',z)

MATLAB draws a line object in the current axes using the default line color
(see the colordef function for information on color defaults). Note that you
cannot specify matrix coordinate data with the low-level form of the line
function.

line(X,Y) adds the line defined in vectors X and Y to the current axes. If X and
Y are matrices of the same size, line draws one line per column.

line(X,Y,Z) creates lines in three-dimensional coordinates.

line(X,Y,Z,'PropertyName',PropertyValue,...) creates a line using the
values for the property name/property value pairs specified and default values
for all other properties.

See the LineStyle and Marker properties for a list of supported values.

line

896

line('XData',x,'YData',y,'ZData',z,'PropertyName',PropertyValue,..
.) creates a line in the current axes using the property values defined as
arguments. This is the low-level form of the line function, which does not
accept matrix coordinate data as the other informal forms described above.

h = line(...) returns a column vector of handles corresponding to each line
object the function creates.

Remarks In its informal form, the line function interprets the first three arguments
(two for 2-D) as the X, Y, and Z coordinate data, allowing you to omit the
property names. You must specify all other properties as name/value pairs. For
example,

line(X,Y,Z,'Color','r','LineWidth',4)

The low-level form of the line function can have arguments that are only
property name/property value paris. For example,

line('XData',x,'YData',y,'ZData',z,'Color','r','LineWidth',4)

Line properties control various aspects of the line object and are described in
the “Line Properties” section. You can also set and query property values after
creating the line using set and get.

You can specify properties as property name/property value pairs, structure
arrays, and cell arrays (see the set and get reference pages for examples of
how to specify these data types).

Unlike high-level functions such as plot, line does not respect the setting of
the figure and axes NextPlot properties. It simply adds line objects to the
current axes. However, axes properties that are under automatic control such
as the axis limits can change to accommodate the line within the current axes.

Examples This example uses the line function to add a shadow to plotted data. First, plot
some data and save the line’s handle:

t = 0:pi/20:2*pi;
hline1 = plot(t,sin(t),’k’);

Next, add a shadow by offsetting the x coordinates. Make the shadow line light
gray and wider than the default LineWidth:

hline2 = line(t+.06,sin(t),'LineWidth',4,'Color',[.8 .8 .8]);

line

897

Finally, pop the first line to the front:

set(gca,'Children',[hline1 hline2])

Input Argument Dimensions – Informal Form
This statement reuses the one column matrix specified for ZData to produce
two lines, each having four points.

line(rand(4,2),rand(4,2),rand(4,1))

If all the data has the same number of columns and one row each, MATLAB
transposes the matrices to produce data for plotting. For example,

line(rand(1,4),rand(1,4),rand(1,4))

is changed to:

line(rand(4,1),rand(4,1),rand(4,1))

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

line

898

This also applies to the case when just one or two matrices have one row. For
example, the statement,

line(rand(2,4),rand(2,4),rand(1,4))

is equivalent to:

line(rand(4,2),rand(4,2),rand(4,1))

Object
Hierarchy

Setting Default Properties
You can set default line properties on the axes, figure, and root levels.

set(0,'DefaultLinePropertyName',PropertyValue,...)
set(gcf,'DefaultLinePropertyName',PropertyValue,...)
set(gca,'DefaultLinePropertyName',PropertyValue,...)

Where PropertyName is the name of the line property and PropertyValue is the
value you are specifying. Use set and get to access line properties.

The following table lists all light properties and provides a brief description of
each. The property name links take you to an expanded description of the
properties.

Uimenu

Line

Axes Uicontrol

Image

Figure

Uicontextmenu

Light SurfacePatch Text

Root

Rectangle

line

899

Property Name Property Description Property Value

Data Defining the Object

XData The x-coordinates defining the line Values: vector or matrix
Default: [0 1]

YData The y-coordinates defining the line Values: vector or matrix
Default: [0 1]

ZData The z-coordinates defining the line Values: vector or matrix
Default: [] empty matrix

Defining Line Styles and Markers

LineStyle Select from five line styles. Values: −, −− , :, −., none
Default: −

LineWidth The width of the line in points Values: scalar
Default: 0.5 points

Marker Marker symbol to plot at data points Values: see Marker property
Default: none

MarkerEdgeColor Color of marker or the edge color for
filled markers

Values: ColorSpec, none, auto
Default: auto

MarkerFaceColor Fill color for markers that are closed
shapes

Values: ColorSpec, none, auto
Default: none

MarkerSize Size of marker in points Values: size in points
Default: 6

Controlling the Appearance

Clipping Clipping to axes rectangle Values: on, off
Default: on

EraseMode Method of drawing and erasing the
line (useful for animation)

Values: normal, none, xor,
background
Default: normal

SelectionHighlight Highlight line when selected (Selected
property set to on)

Values: on, off
Default: on

line

900

Visible Make the line visible or invisible Values: on, off
Default: on

Color Color of the line ColorSpec

Controlling Access to Objects

HandleVisibility Determines if and when the the line’s
handle is visible to other functions

Values: on, callback, off
Default: on

HitTest Determines if the line can become the
current object (see the figure
CurrentObject property)

Values: on, off
Default: on

General Information About the Line

Children Line objects have no children Values: [] (empty matrix)

Parent The parent of a line object is always an
axes object

Value: axes handle

Selected Indicate whether the line is in a
“selected” state.

Values: on, off
Default: on

Tag User-specified label Value: any string
Default: '' (empty string)

Type The type of graphics object (read only) Value: the string 'line'

UserData User-specified data Values: any matrix
Default: [] (empty matrix)

Properties Related to Callback Routine Execution

BusyAction Specify how to handle callback routine
interruption

Values: cancel, queue
Default: queue

ButtonDownFcn Define a callback routine that executes
when a mouse button is pressed on
over the line

Values: string
Default: '' (empty string)

Property Name Property Description Property Value

line

901

CreateFcn Define a callback routine that executes
when a line is created

Values: string
Default: '' (empty string)

DeleteFcn Define a callback routine that executes
when the line is deleted (via close or
delete)

Values: string
Default: '' (empty string)

Interruptible Determine if callback routine can be
interrupted

Values: on, off
Default: on (can be interrupted)

UIContextMenu Associate a context menu with the line Values: handle of a
Uicontextmenu

Property Name Property Description Property Value

Line Properties

902

1Line PropertiesModifying
Properties

You can set and query graphics object properties in two ways:

• The Property Editor is an interactive tool that enables you to see and change
object property values.

• The set and get commands enable you to set and query the values of
properties

To change the default value of properties see Setting Default Property Values.

Line Property
Descriptions

This section lists property names along with the type of values each accepts.
Curly braces { } enclose default values.

BusyAction cancel | {queue}

Callback routine interruption. The BusyAction property enables you to control
how MATLAB handles events that potentially interrupt executing callback
routines. If there is a callback routine executing, subsequently invoked
callback routes always attempt to interrupt it. If the Interruptible property
of the object whose callback is executing is set to on (the default), then
interruption occurs at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the object owning
the executing callback) determines how MATLAB handles the event. The
choices are:

• cancel – discard the event that attempted to execute a second callback
routine.

• queue – queue the event that attempted to execute a second callback routine
until the current callback finishes.

ButtonDownFcn string

Button press callback routine. A callback routine that executes whenever you
press a mouse button while the pointer is over the line object. Define this
routine as a string that is a valid MATLAB expression or the name of an M-file.
The expression executes in the MATLAB workspace.

Children vector of handles

The empty matrix; line objects have no children.

Clipping {on} | off

Clipping mode. MATLAB clips lines to the axes plot box by default. If you set
Clipping to off, lines display outside the axes plot box. This can occur if you

Line Properties

903

create a line, set hold to on, freeze axis scaling (axis manual), and then create
a longer line.

Color ColorSpec

Line color. A three-element RGB vector or one of MATLAB’s predefined names,
specifying the line color. See the ColorSpec reference page for more
information on specifying color.

CreateFcn string

Callback routine executed during object creation. This property defines a
callback routine that executes when MATLAB creates a line object. You must
define this property as a default value for lines. For example, the statement,

set(0,'DefaultLineCreateFcn','set(gca,''LineStyleOrder'',''-.|--'')')

defines a default value on the root level that sets the axes LineStyleOrder
whenever you create a line object. MATLAB executes this routine after setting
all line properties. Setting this property on an existing line object has no effect.

The handle of the object whose CreateFcn is being executed is accessible only
through the root CallbackObject property, which you can query using gcbo.

DeleteFcn string

Delete line callback routine. A callback routine that executes when you delete
the line object (e.g., when you issue a delete command or clear the axes or
figure). MATLAB executes the routine before deleting the object’s properties so
these values are available to the callback routine.

The handle of the object whose DeleteFcn is being executed is accessible only
through the root CallbackObject property, which you can query using gcbo.

EraseMode {normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses to draw and
erase line objects. Alternative erase modes are useful for creating animated
sequences, where control of the way individual objects redraw is necessary to
improve performance and obtain the desired effect.

• normal (the default) — Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all objects are
rendered correctly. This mode produces the most accurate picture, but is the

Line Properties

904

slowest. The other modes are faster, but do not perform a complete redraw
and are therefore less accurate.

• none – Do not erase the line when it is moved or destroyed. While the object
is still visible on the screen after erasing with EraseMode none, you cannot
print it because MATLAB stores no information about its former location.

• xor – Draw and erase the line by performing an exclusive OR (XOR) with the
color of the screen beneath it. This mode does not damage the color of the
objects beneath the line. However, the line’s color depends on the color of
whatever is beneath it on the display.

• background – Erase the line by drawing it in the axes’ background Color, or
the figure background Color if the axes Color is set to none. This damages
objects that are behind the erased line, but lines are always properly colored.

Printing with Non-normal Erase Modes
MATLAB always prints figures as if the EraseMode of all objects is normal. This
means graphics objects created with EraseMode set to none, xor, or background
can look different on screen than on paper. On screen, MATLAB may
mathematically combine layers of colors (e.g., XORing a pixel color with that of
the pixel behind it) and ignore three-dimensional sorting to obtain greater
rendering speed. However, these techniques are not applied to the printed
output.

You can use the MATLAB getframe command or other screen capture
application to create an image of a figure containing non-normal mode objects.

HitTest {on} | off

Selectable by mouse click. HitTest determines if the line can become the
current object (as returned by the gco command and the figure CurrentObject
property) as a result of a mouse click on the line. If HitTest is off, clicking on
the line selects the object below it (which may be the axes containing it).

HandleVisibility {on} | callback | off

Control access to object’s handle by command-line users and GUIs. This
property determines when an object’s handle is visible in its parent’s list of
children. HandleVisibility is useful for preventing command-line users from
accidentally drawing into or deleting a figure that contains only user interface
devices (such as a dialog box).

Handles are always visible when HandleVisibility is on.

Line Properties

905

Setting HandleVisibility to callback causes handles to be visible from
within callback routines or functions invoked by callback routines, but not from
within functions invoked from the command line. This provides a means to
protect GUIs from command-line users, while allowing callback routines to
have complete access to object handles.

Setting HandleVisibility to off makes handles invisible at all times. This
may be necessary when a callback routine invokes a function that might
potentially damage the GUI (such as evaling a user-typed string), and so
temporarily hides its own handles during the execution of that function.

When a handle is not visible in its parent’s list of children, it cannot be returned
by functions that obtain handles by searching the object hierarchy or querying
handle propertes. This includes get, findobj, gca, gcf, gco, newplot, cla, clf,
and close.

When a handle’s visibility is restricted using callback or off, the object’s
handle does not appear in its parent’s Children property, figures do not appear
in the root’s CurrentFigure property, objects do not appear in the root’s
CallbackObject property or in the figure’s CurrentObject property, and axes
do not appear in their parent’s CurrentAxes property.

You can set the root ShowHiddenHandles property to on to make all handles
visible, regardless of their HandleVisibility settings (this does not affect the
values of the HandleVisibility properties).

Handles that are hidden are still valid. If you know an object’s handle, you can
set and get its properties, and pass it to any function that operates on handles.

Interruptible {on} | off

Callback routine interruption mode. The Interruptible property controls
whether a line callback routine can be interrupted by subsequently invoked
callback routines. Only callback routines defined for the ButtonDownFcn are
affected by the Interruptible property. MATLAB checks for events that can
interrupt a callback routine only when it encounters a drawnow, figure,
getframe, or pause command in the routine.

Line Properties

906

LineStyle {−} | −− | : | −. | none

Line style. This property specifies the line style. Available line styles are shown
in the table.

You can use LineStyle none when you want to place a marker at each point
but do not want the points connected with a line (see the Marker property).

LineWidth scalar

The width of the line object. Specify this value in points (1 point = 1/72 inch). The
default LineWidth is 0.5 points.

Marker character (see table)

Marker symbol. The Marker property specifies marks that display at data
points. You can set values for the Marker property independently from the
LineStyle property. Supported markers include those shown in the table.

Symbol Line Style

− solid line (default)

−− dashed line

: dotted line

−. dash-dot line

none no line

Marker Specifier Description

+ plus sign

o circle

* asterisk

. point

x cross

s square

Line Properties

907

MarkerEdgeColor ColorSpec | none | {auto}

Marker edge color. The color of the marker or the edge color for filled markers
(circle, square, diamond, pentagram, hexagram, and the four triangles).
ColorSpec defines the color to use. none specifies no color, which makes
nonfilled markers invisible. auto sets MarkerEdgeColor to the same color as
the line’s Color property.

MarkerFaceColor ColorSpec | {none} | auto

Marker face color. The fill color for markers that are closed shapes (circle,
square, diamond, pentagram, hexagram, and the four triangles). ColorSpec
defines the color to use. none makes the interior of the marker transparent,
allowing the background to show through. auto sets the fill color to the axes
color, or the figure color, if the axes Color property is set to none (which is the
factory default for axes).

MarkerSize size in points

Marker size. A scalar specifying the size of the marker, in points. The default
value for MarkerSize is six points (1 point = 1/72 inch). Note that MATLAB
draws the point marker (specified by the '.' symbol) at one-third the specified
size.

d diamond

^ upward pointing triangle

v downward pointing triangle

> right pointing triangle

< left pointing triangle

p five-pointed star (pentagram)

h six-pointed star (hexagram)

none no marker (default)

Marker Specifier Description

Line Properties

908

Parent handle

Line’s parent. The handle of the line object’s parent axes. You can move a line
object to another axes by changing this property to the new axes handle.

Selected on | off

Is object selected. When this property is on. MATLAB displays selection
handles if the SelectionHighlight property is also on. You can, for example,
define the ButtonDownFcn to set this property, allowing users to select the
object with the mouse.

SelectionHighlight {on} | off

Objects highlight when selected. When the Selected property is on, MATLAB
indicates the selected state by drawing handles at each vertex. When
SelectionHighlight is off, MATLAB does not draw the handles.

Tag string

User-specified object label. The Tag property provides a means to identify
graphics objects with a user-specified label. This is particularly useful when
constructing interactive graphics programs that would otherwise need to
define object handles as global variables or pass them as arguments between
callback routines. You can define Tag as any string.

Type string (read only)

Class of graphics object. For line objects, Type is always the string 'line'.

UIContextMenu handle of a uicontextmenu object

Associate a context menu with the line. Assign this property the handle of a
uicontextmenu object created in same figure as the line. Use the
uicontextmenu function to create the context menu. MATLAB displays the
context menu whenever you right-click over the line.

UserData matrix

User-specified data. Any data you want to associate with the line object.
MATLAB does not use this data, but you can access it using the set and get
commands.

Visible {on} | off

Line visibility. By default, all lines are visible. When set to off, the line is not
visible, but still exists and you can get and set its properties.

Line Properties

909

XData vector of coordinates

X-coordinates. A vector of x-coordinates defining the line. YData and ZData
must have the same number of rows. (See Examples).

YData vector or matrix of coordinates

Y-coordinates. A vector of y-coordinates defining the line. XData and ZData
must have the same number of rows.

ZData vector of coordinates

Z-coordinates. A vector of z-coordinates defining the line. XData and YData
must have the same number of rows.

See Also axes,newplot, plot, plot3

LineSpec

910

1LineSpecPurpose Line specification syntax

Description This page describes how to specify the properties of lines used for plotting.
MATLAB enables you to define many characteristics including:

• Line style

• Line width

• Color

• Marker type

• Marker size

• Marker face and edge coloring (for filled markers)

MATLAB defines string specifiers for line styles, marker types, and colors. The
following tables list these specifiers.

LineSpec

911

Line Style Specifiers

Marker Specifiers

Specifier Line Style

− solid line (default)

−− dashed line

: dotted line

−. dash-dot line

Specifier Marker Type

+ plus sign

o circle

* asterisk

. point

x cross

s square

d diamond

^ upward pointing triangle

v downward pointing triangle

> right pointing triangle

< left pointing triangle

p five-pointed star (pentagram)

h six-pointed star (hexagram)

LineSpec

912

Color Specifiers

Many plotting commands accept a LineSpec argument that defines three
components used to specify lines:

• Line style

• Marker symbol

• Color

For example,

plot(x,y,'−.or')

plots y versus x using a dash-dot line (−.), places circular markers (o) at the
data points, and colors both line and marker red (r). Specify the components (in
any order) as a quoted string after the data arguments.

If you specify a marker, but not a line style, MATLAB plots only the markers.
For example,

plot(x,y,'d')

Related
Properties

When using the plot and plot3 functions, you can also specify other
characteristics of lines using graphics properties:

Specifier Color

r red

g green

b blue

c cyan

m magenta

y yellow

k black

w white

LineSpec

913

• LineWidth – specifies the width (in points) of the line

• MarkerEdgeColor – specifies the color of the marker or the edge color forfilled
markers (circle, square, diamond, pentagram, hexagram, and the four
triangles).

• MarkerFaceColor – specifies the color of the face of filled markers.

• MarkerSize – specifies the size of the marker in points.

In addition, you can specify the LineStyle, Color, and Marker properties
instead of using the symbol string. This is useful if you want to specify a color
that is not in the list by using RGB values. See ColorSpec for more information
on color.

LineSpec

914

Examples Plot the sine function over three different ranges using different line styles,
colors, and markers.

t = 0:pi/20:2*pi;
plot(t,sin(t),'−.r*')
hold on
plot(sin(t−pi/2),’−−mo’)
plot(sin(t−pi),’:bs’)
hold off

Create a plot illustrating how to set line properties.

plot(t,sin(2*t),’−mo’,...
’LineWidth’,2,...
’MarkerEdgeColor’,’k’,...
’MarkerFaceColor’,[.49 1 .63],...
’MarkerSize’,12)

0 5 10 15 20 25 30 35 40 45
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

LineSpec

915

See Also line, plot, patch, set, surface, axes LineStyleOrder property

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

linspace

916

1linspacePurpose Generate linearly spaced vectors

Syntax y = linspace(a,b)
y = linspace(a,b,n)

Description The linspace function generates linearly spaced vectors. It is similar to the
colon operator “:”, but gives direct control over the number of points.

y = linspace(a,b) generates a row vector y of 100 points linearly spaced
between and including a and b.

y = linspace(a,b,n) generates a row vector y of n points linearly spaced
between and including a and b.

See Also logspace

The colon operator :

listdlg

917

1listdlgPurpose Create list selection dialog box

Syntax [Selection,ok] = listdlg('ListString',S,...)

Description [Selection,ok] = listdlg('ListString',S) creates a modal dialog box that
enables you to select one or more items from a list. Selection is a vector of
indices of the selected strings (in single selection mode, its length is 1).
Selection is [] when ok is 0. ok is 1 if you click the OK button, or 0 if you click
the Cancel button or close the dialog box. Double-clicking on an item or
pressing Return when multiple items are selected has the same effect as
clicking the OK button. The dialog box has a Select all button (when in
multiple selection mode) that enables you to select all list items.

Inputs are in parameter/value pairs:

Parameter Description

'ListString' Cell array of strings that specify the list box items.

'SelectionMode' String indicating whether one or many items can be
selected:'single' or 'multiple' (the default).

'ListSize' List box size in pixels, specified as a two element
vector, [width height]. Default is [160 300].

'InitialValue' Vector of indices of the list box items that are
initially selected. Default is 1, the first item.

'Name' String for the dialog box’s title. Default is ''.

'PromptString' String matrix or cell array of strings that appears
as text above the list box. Default is {}.

'OKString' String for the OK button. Default is 'OK'.

'CancelString' String for the Cancel button. Default is 'Cancel'.

'uh' Uicontrol button height, in pixels. Default is 18.

'fus' Frame/uicontrol spacing, in pixels. Default is 8.

'ffs' Frame/figure spacing, in pixels. Default is 8.

listdlg

918

Example This example displays a dialog box that enables the user to select a file from
the current directory. The function returns a vector. Its first element is the
index to the selected file; its second element is 0 if no selection is made, or 1 if
a selection is made.

d = dir;
str = {d.name};
[s,v] = listdlg('PromptString','Select a file:',...

'SelectionMode','single',...
'ListString',str)

See Also dir

load

919

1loadPurpose Load workspace variables from disk

Syntax load
load filename
load filename X Y Z
load filename –ascii
load filename –mat
S = load(...)

Description load loads all the variables from the MAT-file matlab.mat, if it exists, and
returns an error if it doesn’t exist.

load filename loads all the variables from filename given a full pathname or
a MATLABPATH relative partial pathname. If filename has no extension, load
looks for file named filename or filename.mat and treats it as a binary
MAT-file. If filename has an extension other than .mat, load treats the file as
ASCII data.

load filename X Y Z ... loads just the specified variables from the
MAT-file. The wildcard '*' loads variables that match a pattern (MAT-file
only).

load –ascii filename or load –mat filename forces load to treat the file as
either an ASCII file or a MAT-file, regardless of file extension. With -ascii,
load returns an error if the file is not numeric text. With -mat, load returns
an error if the file is not a MAT-file.

load filename.ext reads ASCII files that contain rows of space-separated
values. The resulting data is placed into a variable with the same name as the
file (without the extension). ASCII files may contain MATLAB comments (lines
that begin with %).

If filename is a MAT-file, load creates the requested variables from filename
in the workspace. If filename is not a MAT-file, load creates a double precision
array with a name based on filename. load replaces leading underscores or
digits in filename with an X and replaces other non-alphabetic character with
underscores. The text file must be organized as a rectangular table of numbers,
separated by blanks, with one row per line, and an equal number of elements
in each row.

load

920

S = load(...) returns the contents of a MAT-file in the variable S. If the file
is a MAT-file, S is a struct containing fields that match the variables in
retrieved. When the file contains ASCII data, S is a double-precision array.

Use the functional form of load, such as load('filename'), when the file name
is stored in a string, when an output argument is requested, or if filename
contains spaces. To specify an command line option with this functional form,
specify the option as a string argument, including the hyphen. For example,

load('myfile.dat','-mat')

Remarks MAT-files are double-precision binary MATLAB format files created by the
save command and readable by the load command. They can be created on one
machine and later read by MATLAB on another machine with a different
floating-point format, retaining as much accuracy and range as the disparate
formats allow. They can also be manipulated by other programs, external to
MATLAB.

The Application Program Interface Libraries contain C- and Fortran-callable
routines to read and write MAT-files from external programs.

See Also fprintf, fscanf, partialpath, save, spconvert

load (serial)

921

1load (serial)Purpose Load serial port objects and variables into the MATLAB workspace

Syntax load filename
load filename obj1 obj2...
out = load('filename','obj1','obj2',...)

Arguments

Description load filename returns all variables from the MAT-file specified by filename
into the MATLAB workspace.

load filename obj1 obj2... returns the serial port objects specified by obj1
obj2 ... from the MAT-file filename into the MATLAB workspace.

out = load('filename','obj1','obj2',...) returns the specified serial port
objects from the MAT-file filename as a structure to out instead of directly
loading them into the workspace. The field names in out match the names of
the loaded serial port objects.

Remarks Values for read-only properties are restored to their default values upon
loading. For example, the Status property is restored to closed. To determine
if a property is read-only, examine its reference pages.

If you use the help command to display help for load, then you need to supply
the pathname shown below.

help serial/private/load

Example Suppose you create the serial port objects s1 and s2, configure a few properties
for s1, and connect both objects to their instruments.

s1 = serial('COM1');
s2 = serial('COM2');
set(s1,'Parity','mark','DataBits',7)
fopen(s1)
fopen(s2)

filename The MAT-file name.

obj1 obj2... Serial port objects or arrays of serial port objects.

out A structure containing the specified serial port objects.

load (serial)

922

Save s1 and s2 to the file MyObject.mat, and then load the objects into the
workspace using new variables.

save MyObject s1 s2
news1 = load MyObject s1
news2 = load('MyObject','s2')

Values for read-only properties are restored to their default values upon
loading, while all other properties values are honored.

get(news1,{'Parity','DataBits','Status'})
ans =
 'mark' [7] 'closed'
get(news2,{'Parity','DataBits','Status'})
ans =
 'none' [8] 'closed'

See Also Functions
save

Properties
Status

loadobj

923

1loadobjPurpose User-defined extension of the load function for user objects

Syntax b = loadobj(a)

Description b = loadobj(a) extends the load function for user objects. When an object is
loaded from a MAT file, the load function calls the loadobj method for the
object’s class if it is defined. The loadobj method must have the calling
sequence shown; the input argument a is the object as loaded from the MAT file
and the output argument b is the object that the load function will load into
the workspace.

These steps describe how an object is loaded from a MAT file into the
workspace:

1 The load function detects the object a in the MAT file.

2 The load function looks in the current workspace for an object of the same
class as the object a. If there isn’t an object of the same class in the
workspace, load calls the default constructor, registering an object of that
class in the workspace. The default constructor is the constructor function
called with no input arguments.

3 The load function checks to see if the structure of the object a matches the
structure of the object registered in the workspace. If the objects match, a is
loaded. If the objects don’t match, load converts a to a structure variable.

4 The load function calls the loadobj method for the object’s class if it is
defined. load passes the object a to the loadobj method as an input
argument. Note, the format of the object a is dependent on the results of step
3 (object or structure). The output argument of loadobj, b, is loaded into the
workspace in place of the object a.

Remarks loadobj can be overloaded only for user objects. load will not call loadobj for
built-in datatypes (such as double).

loadobj is invoked separately for each object in the MAT file. The load
function recursively descends cell arrays and structures applying the loadobj
method to each object encountered.

See Also load, save, saveobj

log

924

1logPurpose Natural logarithm

Syntax Y = log(X)

Description The log function operates element-wise on arrays. Its domain includes complex
and negative numbers, which may lead to unexpected results if used
unintentionally.

Y = log(X) returns the natural logarithm of the elements of X. For complex or
negative z, where z= x + y*i, the complex logarithm is returned:

log(z) = log(abs(z)) + i*atan2(y,x)

Examples The statement abs(log(-1)) is a clever way to generate π:

ans =

3.1416

See Also exp, log10, log2, logm

log2

925

1log2Purpose Base 2 logarithm and dissect floating-point numbers into exponent and
mantissa

Syntax Y = log2(X)
[F,E] = log2(X)

Description Y = log2(X) computes the base 2 logarithm of the elements of X.

[F,E] = log2(X) returns arrays F and E. Argument F is an array of real
values, usually in the range 0.5 ≤ abs(F) < 1. For real X, F satisfies the
equation: X = F.*2.^E. Argument E is an array of integers that, for real X,
satisfy the equation: X = F.*2.^E.

Remarks This function corresponds to the ANSI C function frexp() and the IEEE
floating-point standard function logb(). Any zeros in X produce F = 0 and
E = 0.

Examples For IEEE arithmetic, the statement [F,E] = log2(X) yields the values:

See Also log, pow2

X F E

1 1/2 1

pi pi/4 2

-3 -3/4 2

eps 1/2 -51

realmax 1-eps/2 1024

realmin 1/2 -1021

log10

926

1log10Purpose Common (base 10) logarithm

Syntax Y = log10(X)

Description The log10 function operates element-by-element on arrays. Its domain
includes complex numbers, which may lead to unexpected results if used
unintentionally.

Y = log10(X) returns the base 10 logarithm of the elements of X.

Examples log10(realmax) is 308.2547

and

log10(eps) is -15.6536

See Also exp, log, log2, logm

logical

927

1logicalPurpose Convert numeric values to logical

Syntax K = logical(A)

Description K = logical(A) returns an array that can be used for logical indexing or
logical tests.

A(B), where B is a logical array, returns the values of A at the indices where the
real part of B is nonzero. B must be the same size as A.

Remarks Most arithmetic operations remove the logicalness from an array. For example,
adding zero to a logical array removes its logical characteristic. A = +A is the
easiest way to convert a logical double array, A, to a strictly numeric double
array.

Logical arrays are also created by the relational operators (==,<,>,~, etc.) and
functions like any, all, isnan, isinf, and isfinite.

Examples Given A = [1 2 3; 4 5 6; 7 8 9], the statement B = logical(eye(3))
returns a logical array

B =
 1 0 0
 0 1 0
 0 0 1

which can be used in logical indexing that returns A’s diagonal elements:

A(B)

ans =
 1
 5
 9

However, attempting to index into A using the numeric array eye(3) results in:

A(eye(3))
??? Index into matrix is negative or zero.

See Also islogical, logical operators

Logical Operators & | ~

928

1Logical Operators & | ~Purpose Logical operations

Syntax A & B
A | B
~A

Description The symbols &, |, and ~ are the logical operators AND, OR, and NOT. They work
element-wise on arrays, with 0 representing logical false (F), and anything
nonzero representing logical true (T). The & operator does a logical AND, the|
operator does a logical OR, and ~A complements the elements of A. The function
xor(A,B) implements the exclusive OR operation. Truth tables for these
operators and functions follow.

The precedence for the logical operators with respect to each other is:

1 not has the highest precedence.

2 and and or have equal precedence, and are evaluated from left to right.

Remarks The logical operators have M-file function equivalents, as shown:

Precedence of & and |
MATLAB’s left to right execution precedence causes a|b&c to be equivalent to
(a|b)&c. However, in most programming languages, a|b&c is equivalent to

Inputs and or xor NOT

A B A&B A|B xor(A,B) ~A

0 0 0 0 0 1

0 1 0 1 1 1

1 0 0 1 1 0

1 1 1 1 0 0

and A&B and(A,B)

or A|B or(A,B)

not ~A not(A)

Logical Operators & | ~

929

a|(b&c), that is, & takes precedence over |. To ensure compatibility with
future versions of MATLAB, you should use parentheses to explicity specify the
intended precedence of statements containing combinations of & and |.

Examples Here are two examples that illustrate the precedence of the logical operators to
each other:

1 | 0 & 0 = 0
0 & 0 | 1 = 1

See Also all, any, find, logical, xor

The relational operators: <, <=, >, >=, ==, ~=ì

loglog

930

1loglogPurpose Log-log scale plot

Syntax loglog(Y)
loglog(X1,Y1,...)
loglog(X1,Y1,LineSpec,...)
loglog(...,'PropertyName',PropertyValue,...)
h = loglog(...)

Description loglog(Y) plots the columns of Y versus their index if Y contains real numbers.
If Y contains complex numbers, loglog(Y) and loglog(real(Y),imag(Y)) are
equivalent. loglog ignores the imaginary component in all other uses of this
function.

loglog(X1,Y1,...) plots all Xn versus Yn pairs. If only Xn or Yn is a matrix,
loglog plots the vector argument versus the rows or columns of the matrix,
depending on whether the vector’s row or column dimension matches the
matrix.

loglog(X1,Y1,LineSpec,...) plots all lines defined by the Xn,Yn,LineSpec
triples, where LineSpec determines line type, marker symbol, and color of the
plotted lines. You can mix Xn,Yn,LineSpec triples with Xn,Yn pairs, for
example,

loglog(X1,Y1,X2,Y2,LineSpec,X3,Y3)

loglog(...,' PropertyName', PropertyValue,...) sets property values for
all line graphics objects created by loglog. See the line reference page for
more information.

h = loglog(...) returns a column vector of handles to line graphics objects,
one handle per line.

Remarks If you do not specify a color when plotting more than one line, loglog
automatically cycles through the colors and line styles in the order specified by
the current axes.

loglog

931

Examples Create a simple loglog plot with square markers.

x = logspace(−1,2);
loglog(x,exp(x),'−s')
grid on

See Also line, LineSpec, plot, semilogx, semilogy

10
−1

10
0

10
1

10
2

10
0

10
5

10
10

10
15

10
20

10
25

10
30

10
35

10
40

10
45

logm

932

1logmPurpose Matrix logarithm

Syntax Y = logm(X)
[Y,esterr] = logm(X)

Description Y = logm(X) returns the matrix logarithm: the inverse function of expm(X).
Complex results are produced if X has negative eigenvalues. A warning
message is printed if the computed expm(Y) is not close to X.

[Y,esterr] = logm(X) does not print any warning message, but returns an
estimate of the relative residual, norm(expm(Y)-X)/norm(X).

Remarks If X is real symmetric or complex Hermitian, then so is logm(X).

Some matrices, like X = [0 1; 0 0], do not have any logarithms, real or
complex, and logm cannot be expected to produce one.

Limitations For most matrices:

logm(expm(X)) = X = expm(logm(X))

These identities may fail for some X. For example, if the computed eigenvalues
of X include an exact zero, then logm(X) generates infinity. Or, if the elements
of X are too large, expm(X) may overflow.

Examples Suppose A is the 3-by-3 matrix

 1 1 0
 0 0 2
 0 0 -1

and X = expm(A) is

X =

 2.7183 1.7183 1.0862
 0 1.0000 1.2642
 0 0 0.3679

Then A = logm(X) produces the original matrix A.

A =

logm

933

 1.0000 1.0000 0.0000
 0 0 2.0000
 0 0 -1.0000

But log(X) involves taking the logarithm of zero, and so produces

ans =

 1.0000 0.5413 0.0826
 -Inf 0 0.2345
 -Inf -Inf -1.0000

Algorithm The matrix functions are evaluated using an algorithm due to Parlett, which is
described in [1]. The algorithm uses the Schur factorization of the matrix and
may give poor results or break down completely when the matrix has repeated
eigenvalues. A warning message is printed when the results may be
inaccurate.

See Also expm, funm, sqrtm

References [1] Golub, G. H. and C. F. Van Loan, Matrix Computation, Johns Hopkins
University Press, 1983, p. 384.

[2] Moler, C. B. and C. F. Van Loan, “Nineteen Dubious Ways to Compute the
Exponential of a Matrix,” SIAM Review 20, 1979,pp. 801-836.

logspace

934

1logspacePurpose Generate logarithmically spaced vectors

Syntax y = logspace(a,b)
y = logspace(a,b,n)
y = logspace(a,pi)

Description The logspace function generates logarithmically spaced vectors. Especially
useful for creating frequency vectors, it is a logarithmic equivalent of linspace
and the “:” or colon operator.

y = logspace(a,b) generates a row vector y of 50 logarithmically spaced
points between decades 10^a and 10^b.

y = logspace(a,b,n) generates n points between decades 10^a and 10^b.

y = logspace(a,pi) generates the points between 10^a and pi, which is
useful for digital signal processing where frequencies over this interval go
around the unit circle.

Remarks All the arguments to logspace must be scalars.

See Also linspace

The colon operator :

lookfor

935

1lookforPurpose Search for the specified keyword in all help entries

Syntax lookfor topic
lookfor topic -all

Description lookfor topic searches for the string topic in the first comment line (the H1
line) of the help text in all M-files found on MATLAB’s search path. For all files
in which a match occurs, lookfor displays the H1 line.

lookfor topic -all searches the entire first comment block of an M-file
looking for topic.

Examples For example

lookfor inverse

finds at least a dozen matches, including H1 lines containing “inverse
hyperbolic cosine,” “two-dimensional inverse FFT,” and “pseudoinverse.”
Contrast this with

which inverse

or

what inverse

These functions run more quickly, but probably fail to find anything because
MATLAB does not have a function inverse.

In summary, what lists the functions in a given directory, which finds the
directory containing a given function or file, and lookfor finds all functions in
all directories that might have something to do with a given keyword.

Even more extensive than the lookfor function is the Find feature in the
Current Directory browser. It looks for all occurrences of a specified word in all
the M-files in the current directory. See “Finding and Replacing Content
Within Files” for instructions.

See Also dir, doc, filebrowser, help, helpdesk, helpwin, what, which, who

lower

936

1lowerPurpose Convert string to lower case

Syntax t = lower('str')
B = lower(A)

Description t = lower('str') returns the string formed by converting any upper-case
characters in str to the corresponding lower-case characters and leaving all
other characters unchanged.

B = lower(A) when A is a cell array of strings, returns a cell array the same
size as A containing the result of applying lower to each string within A.

Examples lower('MathWorks') is mathworks.

Remarks Character sets supported:

• PC: Windows Latin-1

• Other: ISO Latin-1 (ISO 8859-1)

See Also upper

ls

937

1lsPurpose List directory on UNIX

Syntax ls

Description ls displays the results of the ls command on UNIX. You can pass any flags to
ls that your operating system supports. On UNIX, ls returns a \n delimited
string of filenames. On all other platforms, ls executes dir.

See Also dir

lscov

938

1lscovPurpose Least squares solution in the presence of known covariance

Syntax x = lscov(A,b,V)
[x,dx] = lscov(A,b,V)

Description x = lscov(A,b,V) returns the vector x that solves A*x = b + e where e is
normally distributed with zero mean and covariance V. Matrix A must be m-by-n
where m > n. This is the over-determined least squares problem with
covariance V. The solution is found without inverting V.

[x,dx] = lscov(A,b,V) returns the standard errors of x in dx. The standard
statistical formula for the standard error of the coefficients is:

mse = B'*(inv(V)-inv(V)*A*inv(A'*inv(V)*A)*A'*inv(V))*B./(m-n)
dx = sqrt(diag(inv(A'*inv(V)*A)*mse))

Algorithm The vector x minimizes the quantity (A*x-b)'*inv(V)*(A*x-b). The classical
linear algebra solution to this problem is

 x = inv(A'*inv(V)*A)*A'*inv(V)*b

but the lscov function instead computes the QR decomposition of A and then
modifies Q by V.

See Also lsqnonneg, qr

The arithmetic operator \

Reference Strang, G., Introduction to Applied Mathematics, Wellesley-Cambridge, 1986,
p. 398.

lsqnonneg

939

1lsqnonnegPurpose Linear least squares with nonnegativity constraints

Syntax x = lsqnonneg(C,d)
x = lsqnonneg(C,d,x0)
x = lsqnonneg(C,d,x0,options)
[x,resnorm] = lsqnonneg(...)
[x,resnorm,residual] = lsqnonneg(...)
[x,resnorm,residual,exitflag] = lsqnonneg(...)
[x,resnorm,residual,exitflag,output] = lsqnonneg(...)
[x,resnorm,residual,exitflag,output,lambda] = lsqnonneg(...)

Description x = lsqnonneg(C,d) returns the vector x that minimizes norm(C*x-d) subject
to x >= 0. C and d must be real.

x = lsqnonneg(C,d,x0) uses x0 as the starting point if all x0 >= 0; otherwise,
the default is used. The default start point is the origin (the default is used
when x0==[] or when only two input arguments are provided).

x = lsqnonneg(C,d,x0,options) minimizes with the optimization
parameters specified in the structure options. You can define these
parameters using the optimset function. lsqnonneg uses these options
structure fields:

[x,resnorm] = lsqnonneg(...) returns the value of the squared 2-norm of
the residual: norm(C*x-d)^2.

[x,resnorm,residual] = lsqnonneg(...) returns the residual, C*x-d.

Display Level of display. 'off' displays no output; 'final'
displays just the final output; 'notify' (default)
dislays output only if the function does not converge.

TolX Termination tolerance on x.

lsqnonneg

940

[x,resnorm,residual,exitflag] = lsqnonneg(...) returns a value
exitflag that describes the exit condition of lsqnonneg:

[x,resnorm,residual,exitflag,output] = lsqnonneg(...) returns a
structure output that contains information about the operation:

[x,resnorm,residual,exitflag,output,lambda] = lsqnonneg(...)
returns the dual vector (Lagrange multipliers) lambda, where lambda(i)<=0
when x(i) is (approximately) 0, and lambda(i) is (approximately) 0 when
x(i)>0.

Examples Compare the unconstrained least squares solution to the lsqnonneg solution
for a 4-by-2 problem:

C = [
 0.0372 0.2869
 0.6861 0.7071
 0.6233 0.6245
 0.6344 0.6170];

d = [
 0.8587
 0.1781
 0.0747
 0.8405];

[C\d lsqnonneg(C,d)] =
-2.5627 0

 3.1108 0.6929

[norm(C*(C\d)-d) norm(C*lsqnonneg(C,d)-d)] =
0.6674 0.9118

>0 Indicates that the function converged to a solution x.

 0 Indicates that the iteration count was exceeded. Increasing the
tolerance (TolX parameter in options) may lead to a solution.

output.algorithm The algorithm used

output.iterations The number of iterations taken

lsqnonneg

941

The solution from lsqnonneg does not fit as well (has a larger residual), as the
least squares solution. However, the nonnegative least squares solution has no
negative components.

Algorithm lsqnonneg uses the algorithm described in [1]. The algorithm starts with a set
of possible basis vectors and computes the associated dual vector lambda. It
then selects the basis vector corresponding to the maximum value in lambda in
order to swap out of the basis in exchange for another possible candidate. This
continues until lambda <= 0.

See Also The arithmetic operator \, optimset

References [1] Lawson, C.L. and R.J. Hanson, Solving Least Squares Problems,
Prentice-Hall, 1974, Chapter 23, p. 161.

lsqr

942

1lsqrPurpose LSQR implementation of Conjugate Gradients on the Normal Equations

Syntax x = lsqr(A,b)
lsqr(A,b,tol)
lsqr(A,b,tol,maxit)
lsqr(A,b,tol,maxit,M)
lsqr(A,b,tol,maxit,M1,M2)
lsqr(A,b,tol,maxit,M1,M2,x0)
lsqr(afun,b,tol,maxit,m1fun,m2fun,x0,p1,p2,...)
[x,flag] = lsqr(A,b,...)
[x,flag,relres] = lsqr(A,b,...)
[x,flag,relres,iter] = lsqr(A,b,...)
[x,flag,relres,iter,resvec] = lsqr(A,b,...)

Description x = lsqr(A,b) attempts to solve the system of linear equations A*x=b for x if
A is consistent, otherwise it attempts to solve the least squares solution x that
minimizes norm(b-A*x). The m-by-n coefficient matrix A need not be square but
the column vector b must have length m. A can be a function afun such that
afun(x) returns A*x and afun(x,'transp') returns A'*x.

If lsqr converges, a message to that effect is displayed. If lsqr fails to converge
after the maximum number of iterations or halts for any reason, a warning
message is printed displaying the relative residual norm(b-A*x)/norm(b) and
the iteration number at which the method stopped or failed.

lsqr(A,b,tol) specifies the tolerance of the method. If tol is [], then lsqr
uses the default, 1e-6.

lsqr(A,b,tol,maxit) specifies the maximum number of iterations. If maxit
is [], then lsqr uses the default, min([m,n,20]).

lsqr(A,b,tol,maxit,M1) and lsqr(A,b,tol,maxit,M1,M2) use n-by-n
preconditioner M or M = M1*M2 and effectively solve the system A*inv(M)*y = b
for y, where x = M*y. If M is [] then lsqr applies no preconditioner. M can be
a function mfun such that mfun(x) returns M\x and mfun(x,'transp') returns
M'\x.

lsqr(A,b,tol,maxit,M1,M2,x0) specifies the n-by-1 initial guess. If x0 is [],
then lsqr uses the default, an all zero vector.

lsqr

943

lsqr(afun,b,tol,maxit,m1fun,m2fun,x0,p1,p2,...) passes parameters
p1,p2,... to functions afun(x,p1,p2,...) and
afun(x,p1,p2,...,'transp') and similarly to the preconditioner functions
m1fun and m2fun.

[x,flag] = lsqr(A,b,tol,maxit,M1,M2,x0) also returns a convergence flag.

Whenever flag is not 0, the solution x returned is that with minimal norm
residual computed over all the iterations. No messages are displayed if the
flag output is specified.

[x,flag,relres] = lsqr(A,b,tol,maxit,M1,M2,x0) also returns an
estimate of the relative residual norm(b-A*x)/norm(b). If flag is 0,
relres <= tol.

[x,flag,relres,iter] = lsqr(A,b,tol,maxit,M1,M2,x0) also returns the
iteration number at which x was computed, where 0 <= iter <= maxit.

[x,flag,relres,iter,resvec] = lsqr(A,b,tol,maxit,M1,M2,x0) also
returns a vector of the residual norm estimates at each iteration, including
norm(b-A*x0).

Examples n = 100;
on = ones(n,1);
A = spdiags([-2*on 4*on -on],-1:1,n,n);
b = sum(A,2);

Flag Convergence

0 lsqr converged to the desired tolerance tol within maxit
iterations.

1 lsqr iterated maxit times but did not converge.

2 Preconditioner M was ill-conditioned.

3 lsqr stagnated. (Two consecutive iterates were the same.)

4 One of the scalar quantities calculated during lsqr became
too small or too large to continue computing.

lsqr

944

tol = 1e-8;
maxit = 15;
M1 = spdiags([on/(-2) on],-1:0,n,n);
M2 = spdiags([4*on -on],0:1,n,n);

x = lsqr(A,b,tol,maxit,M1,M2,[]);
lsqr converged at iteration 12 to a solution with relative
residual 3.5e-009

Alternatively, use this matrix-vector product function

function y = afun(x,n,transp_flag)
if (nargin > 2) & strcmp(transp_flag,'transp')
 y = 4 * x;
 y(1:n-1) = y(1:n-1) - 2 * x(2:n);
 y(2:n) = y(2:n) - x(1:n-1);
else
 y = 4 * x;
 y(2:n) = y(2:n) - 2 * x(1:n-1);
 y(1:n-1) = y(1:n-1) - x(2:n);
end

 as input to lsqr.

x1 = lsqr(@afun,b,tol,maxit,M1,M2,[],n);

See Also bicg, bicgstab, cgs, gmres, minres, pcg, qmr, symmlq

@ (function handle)

References [1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.

[2] Paige, C. C. and M. A. Saunders, “LSQR: An Algorithm for Sparse Linear
Equations And Sparse Least Squares,” ACM Trans. Math. Soft., Vol.8, 1982,
pp. 43-71.

lu

945

1luPurpose LU matrix factorization

Syntax [L,U] = lu(X)
[L,U,P] = lu(X)
lu(X)
lu(X, thresh)

Description The lu function expresses a square matrix X as the product of two essentially
triangular matrices, one of them a permutation of a lower triangular matrix
and the other an upper triangular matrix. The factorization is often called the
LU, or sometimes the LR, factorization.

[L,U] = lu(X) returns an upper triangular matrix in U and a psychologically
lower triangular matrix (i.e., a product of lower triangular and permutation
matrices) in L, so that X = L*U.

[L,U,P] = lu(X) returns an upper triangular matrix in U, a lower triangular
matrix in L, and a permutation matrix in P, so that L*U = P*X.

lu(X) returns the output from the LAPACK routine DGETRF or ZGETRF.

lu(X,thresh) controls pivoting for sparse matrices, where thresh is a pivot
threshold in [0,1]. Pivoting occurs when the diagonal entry in a column has
magnitude less than thresh times the magnitude of any sub-diagonal entry in
that column. thresh = 0 forces diagonal pivoting. thresh = 1 is the default.

Remarks Most of the algorithms for computing LU factorization are variants of Gaussian
elimination. The factorization is a key step in obtaining the inverse with inv
and the determinant with det. It is also the basis for the linear equation
solution or matrix division obtained with \ and /.

Arguments X Square matrix to be factored.

thresh Pivot threshold for sparse matrices. Valid values are in [0,1]. The
default is 1.

L A factor of X. Depending on the form of the function, L is either lower
triangular, or else the product of a lower triangular matrix with a
permutation matrix P.

lu

946

Examples Start with

A =
 1 2 3
 4 5 6
 7 8 0

To see the LU factorization, call lu with two output arguments:

[L,U] = lu(A)

L =

 0.1429 1.0000 0
 0.5714 0.5000 1.0000
 1.0000 0 0

U =

 7.0000 8.0000 0.0000
 0 0.8571 3.0000
 0 0 4.5000

Notice that L is a permutation of a lower triangular matrix that has 1’s on the
permuted diagonal, and that U is upper triangular. To check that the
factorization does its job, compute the product:

L*U

which returns the original A. Using three arguments on the left-hand side to
get the permutation matrix as well

[L,U,P] = lu(A)

returns the same value of U, but L is reordered:

L =

 1.0000 0 0

U An upper triangular matrix that is a factor of X.

P The permutation matrix satisfying the equation L*U = P*X.

lu

947

 0.1429 1.0000 0
 0.5714 0.5000 1.0000

U =

 7.0000 8.0000 0
 0 0.8571 3.0000
 0 0 4.5000

P =

 0 0 1
 1 0 0
 0 1 0

To verify that L*U is a permuted version of A, compute L*U and subtract it from
P*A:

P*A - L*U

The inverse of the example matrix, X = inv(A), is actually computed from the
inverses of the triangular factors:

X = inv(U)*inv(L)

The determinant of the example matrix is

d = det(A)

d =

 27

It is computed from the determinants of the triangular factors:

d = det(L)*det(U)

The solution to Ax = b is obtained with matrix division:

x = A\b

The solution is actually computed by solving two triangular systems:

y = L\b, x = U\y

lu

948

Algorithm lu uses the subroutines DGETRF (real) and ZGETRF (complex) from LAPACK.

See Also cond, det, inv, luinc, qr, rref

The arithmetic operators \ and /

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
LAPACK User’s Guide, Third Edition, SIAM, Philadelphia, 1999.

luinc

949

1luincPurpose Incomplete LU matrix factorizations

Syntax luinc(X,'0')
[L,U] = luinc(X,'0')
[L,U,P] = luinc(X,'0')
luinc(X,droptol)
luinc(X,options)
[L,U] = luinc(X,options)
[L,U] = luinc(X,droptol)
[L,U,P] = luinc(X,options)
[L,U,P] = luinc(X,droptol)

Description luinc produces a unit lower triangular matrix, an upper triangular matrix,
and a permutation matrix.

luinc(X,'0') computes the incomplete LU factorization of level 0 of a square
sparse matrix. The triangular factors have the same sparsity pattern as the
permutation of the original sparse matrix X, and their product agrees with the
permuted X over its sparsity pattern. luinc(X,'0') returns the strict lower
triangular part of the factor and the upper triangular factor embedded within
the same matrix. The permutation information is lost, but
nnz(luinc(X,'0')) = nnz(X), with the possible exception of some zeros due
to cancellation.

[L,U] = luinc(X,'0') returns the product of permutation matrices and a
unit lower triangular matrix in L and an upper triangular matrix in U. The
exact sparsity patterns of L, U, and X are not comparable but the number of
nonzeros is maintained with the possible exception of some zeros in L and U due
to cancellation:

 nnz(L)+nnz(U) = nnz(X)+n, where X is n-by-n.

The product L*U agrees with X over its sparsity pattern. (L*U).*spones(X)-X
has entries of the order of eps.

[L,U,P] = luinc(X,'0') returns a unit lower triangular matrix in L, an
upper triangular matrix in U and a permutation matrix in P. L has the same
sparsity pattern as the lower triangle of the permuted X

 spones(L) = spones(tril(P*X))

luinc

950

with the possible exceptions of 1s on the diagonal of L where P*X may be zero,
and zeros in L due to cancellation where P*X may be nonzero. U has the same
sparsity pattern as the upper triangle of P*X

 spones(U) = spones(triu(P*X))

with the possible exceptions of zeros in U due to cancellation where P*X may be
nonzero. The product L*U agrees within rounding error with the permuted
matrix P*X over its sparsity pattern. (L*U).*spones(P*X)-P*X has entries of
the order of eps.

luinc(X,droptol) computes the incomplete LU factorization of any sparse
matrix using a drop tolerance. droptol must be a non-negative scalar.
luinc(X,droptol) produces an approximation to the complete LU factors
returned by lu(X). For increasingly smaller values of the drop tolerance, this
approximation improves, until the drop tolerance is 0, at which time the
complete LU factorization is produced, as in lu(X).

As each column j of the triangular incomplete factors is being computed, the
entries smaller in magnitude than the local drop tolerance (the product of the
drop tolerance and the norm of the corresponding column of X)

 droptol*norm(X(:,j))

are dropped from the appropriate factor.

The only exceptions to this dropping rule are the diagonal entries of the upper
triangular factor, which are preserved to avoid a singular factor.

luinc(X,options) specifies a structure with up to four fields that may be used
in any combination: droptol, milu, udiag, thresh. Additional fields of options
are ignored.

droptol is the drop tolerance of the incomplete factorization.

If milu is 1, luinc produces the modified incomplete LU factorization that
subtracts the dropped elements in any column from the diagonal element of the
upper triangular factor. The default value is 0.

If udiag is 1, any zeros on the diagonal of the upper triangular factor are
replaced by the local drop tolerance. The default is 0.

luinc

951

thresh is the pivot threshold between 0 (forces diagonal pivoting) and 1, the
default, which always chooses the maximum magnitude entry in the column to
be the pivot. thresh is desribed in greater detail in lu.

luinc(X,options) is the same as luinc(X,droptol) if options has droptol as
its only field.

[L,U] = luinc(X,options) returns a permutation of a unit lower triangular
matrix in L and an upper trianglar matrix in U. The product L*U is an
approximation to X. luinc(X,options) returns the strict lower triangular part
of the factor and the upper triangular factor embedded within the same matrix.
The permutation information is lost.

[L,U] = luinc(X,options) is the same as luinc(X,droptol) if options has
droptol as its only field.

[L,U,P] = luinc(X,options) returns a unit lower triangular matrix in L, an
upper triangular matrix in U, and a permutation matrix in P. The nonzero
entries of U satisfy

 abs(U(i,j)) >= droptol*norm((X:,j)),

with the possible exception of the diagonal entries which were retained despite
not satisfying the criterion. The entries of L were tested against the local drop
tolerance before being scaled by the pivot, so for nonzeros in L

abs(L(i,j)) >= droptol*norm(X(:,j))/U(j,j).

The product L*U is an approximation to the permuted P*X.

[L,U,P] = luinc(X,options) is the same as [L,U,P] = luinc(X,droptol) if
options has droptol as its only field.

Remarks These incomplete factorizations may be useful as preconditioners for solving
large sparse systems of linear equations. The lower triangular factors all have
1s along the main diagonal but a single 0 on the diagonal of the upper
triangular factor makes it singular. The incomplete factorization with a drop
tolerance prints a warning message if the upper triangular factor has zeros on
the diagonal. Similarly, using the udiag option to replace a zero diagonal only
gets rid of the symptoms of the problem but does not solve it. The
preconditioner may not be singular, but it probably is not useful and a warning
message is printed.

luinc

952

Limitations luinc(X,'0') works on square matrices only.

Examples Start with a sparse matrix and compute its LU factorization.

load west0479;
S = west0479;
LU = lu(S);

Compute the incomplete LU factorization of level 0.

[L,U,P] = luinc(S,'0');
D = (L*U).*spones(P*S)-P*S;

spones(U) and spones(triu(P*S)) are identical.

spones(L) and spones(tril(P*S)) disagree at 73 places on the diagonal,
where L is 1 and P*S is 0, and also at position (206,113), where L is 0 due to
cancellation, and P*S is -1. D has entries of the order of eps.

0 100 200 300 400

0

100

200

300

400

nz = 1887

S = west0479

0 100 200 300 400

0

100

200

300

400

nz = 16777

lu(S)

luinc

953

[IL0,IU0,IP0] = luinc(S,0);
[IL1,IU1,IP1] = luinc(S,1e-10);
 .
 .
 .

A drop tolerance of 0 produces the complete LU factorization. Increasing the
drop tolerance increases the sparsity of the factors (decreases the number of
nonzeros) but also increases the error in the factors, as seen in the plot of drop
tolerance versus norm(L*U-P*S,1)/norm(S,1) in the second figure below.

0 100 200 300 400

0

100

200

300

400

nz = 1244

L: luinc(S,’0’)

0 100 200 300 400

0

100

200

300

400

nz = 1121

U: luinc(S,’0’)

0 100 200 300 400

0

100

200

300

400

nz = 1887

P*S

0 100 200 300 400

0

100

200

300

400

nz = 3097

L*U

luinc

954

0 100 200 300 400

0

100

200

300

400

nz = 11679

luinc(S,1e−8)

0 100 200 300 400

0

100

200

300

400

nz = 8004

luinc(S,1e−4)

0 100 200 300 400

0

100

200

300

400

nz = 4229

luinc(S,1e−2)

0 100 200 300 400

0

100

200

300

400

nz = 397

luinc(S,1)

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

0

5000

10000

15000
Drop tolerance vs nnz(luinc(S,droptol))

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
−15

10
−10

10
−5

10
0

Drop tolerance vs norm(L*U−P*S)/norm(S)

luinc

955

Algorithm luinc(X,'0') is based on the “KJI” variant of the LU factorization with partial
pivoting. Updates are made only to positions which are nonzero in X.

luinc(X,droptol) and luinc(X,options) are based on the column-oriented lu
for sparse matrices.

See Also lu, cholinc, bicg

References Saad, Yousef, Iterative Methods for Sparse Linear Systems, PWS Publishing
Company, 1996, Chapter 10 - Preconditioning Techniques.

magic

956

1magicPurpose Magic square

Syntax M = magic(n)

Description M = magic(n) returns an n-by-n matrix constructed from the integers 1
through n^2 with equal row and column sums. The order n must be a scalar
greater than or equal to 3.

Remarks A magic square, scaled by its magic sum, is doubly stochastic.

Examples The magic square of order 3 is

M = magic(3)

M =

 8 1 6
 3 5 7
 4 9 2

This is called a magic square because the sum of the elements in each column
is the same.

 sum(M) =

 15 15 15

And the sum of the elements in each row, obtained by transposing twice, is the
same.

 sum(M')' =

 15
 15
 15

This is also a special magic square because the diagonal elements have the
same sum.

sum(diag(M)) =

 15

magic

957

The value of the characteristic sum for a magic square of order n is

sum(1:n^2)/n

which, when n = 3, is 15.

Algorithm There are three different algorithms:

• one for odd n

• one for even n not divisible by four

• one for even n divisible by four.

To make this apparent, type:

for n = 3:20
 A = magic(n);
 plot(A,'-');
 r(n) = rank(A);
end
r

Limitations If you supply n less than 3, magic returns either a nonmagic square, or else the
degenerate magic squares 1 and [].

See Also ones, rand

mat2str

958

1mat2strPurpose Convert a matrix into a string

Syntax str = mat2str(A)
str = mat2str(A,n)

Description str = mat2str(A) converts matrix A into a string, suitable for input to the
eval function, using full precision.

str = mat2str(A,n) converts matrix A using n digits of precision.

Limitations The mat2str function is intended to operate on scalar, vector, or rectangular
array inputs only. An error will result if A is a multidimensional array.

Examples Consider the matrix:

A =
 1 2
 3 4

The statement

b = mat2str(A)

produces:

b =
[1 2 ;3 4]

where b is a string of 11 characters, including the square brackets, spaces, and
a semicolon.

eval(mat2str(A)) reproduces A.

See Also int2str, sprintf, str2num

material

959

1materialPurpose Controls the reflectance properties of surfaces and patches

Syntax material shiny
material dull
material metal
material([ka kd ks])
material([ka kd ks n])
material([ka kd ks n sc])
material default

Description material sets the lighting characteristics of surface and patch objects.

material shiny sets the reflectance properties so that the object has a high
specular reflectance relative the diffuse and ambient light and the color of the
specular light depends only on the color of the light source.

material dull sets the reflectance properties so that the object reflects more
diffuse light, has no specular highlights, but the color of the reflected light
depends only on the light source.

material metal sets the reflectance properties so that the object has a very
high specular reflectance, very low ambient and diffuse reflectance, and the
color of the reflected light depends on both the color of the light source and the
color of the object.

material([ka kd ks]) sets the ambient/diffuse/specular strength of the
objects.

material([ka kd ks n]) sets the ambient/diffuse/specular strength and
specular exponent of the objects.

material([ka kd ks n sc]) sets the ambient/diffuse/specular strength,
specular exponent, and specular color reflectance of the objects.

material default sets the ambient/diffuse/specular strength, specular
exponent, and specular color reflectance of the objects to their defaults.

Remarks The material command sets the AmbientStrength, DiffuseStrength,
SpecularStrength, SpecularExponent, and SpecularColorReflectance

material

960

properties of all surface and patch objects in the axes. There must be visible
light objects in the axes for lighting to be enabled. Look at the materal.m M-file
to see the actual values set (enter the command: type material).

See Also light, lighting, patch, surface

matlab

961

1matlabPurpose Start MATLAB (UNIX systems only)

Syntax matlab [-h|-help] | [-n] [-arch | -ext | -arch/ext]
[-c licensefile] [-display Xdisplay | -nodisplay]
[-nosplash] [-mwvisual visualid] [-debug]
[-nodesktop | -nojvm] [-runtime] [-check_malloc]
[-r MATLAB_command] [-Ddebugger [options]]

Description matlab is a Bourne shell script that starts the MATLAB executable. (In this
document, matlab refers to this script; MATLAB refers to the application
program). The script determines, filters, and passes information to the
executable through two mechanisms:

• Arguments to the executable

• Variables passed through the environment to the executable

There are three ways in which you can control these two mechanisms:

• By specifying command-line options to the script

• By assigning values in the MATLAB startup file .matlab6rc.sh

• By assigning values to environment variables before executing the script

All arguments that ultimately get passed to the executable must be passed in
as arguments to the script.

To affect the values of variables passed through the environment can be more
complicated. Not all variables can be affected in the same way. The following
decision hierarchy (from highest to lowest precedence) is used whenever
possible to determine the final values of the environment variables passed to
the MATLAB executable.

1 An argument has been passed to the script that controls the variable.

2 The variable is assigned in the .matlab6rc.sh startup file.

3 The variable is assigned in the environment before the script was executed.

4 The variable is assigned a default value in the script.

When invoked, matlab looks for the first occurrence of .matlab6rc.sh in the
current directory, in the home directory ($HOME) and in the $MATLAB/bin
directory, where the template version of .matlab6rc.sh is located.

matlab

962

You can edit the template file to redefine information used by the matlab script.
If you do not want your changes applied system wide, copy the edited version
of the script to your current or home directory. Ensure that you edit the section
that applies to your machine architecture.

The following table lists essential environment variables and standard
assignment behavior. See the comments and the code in the .matlab6rc.sh file
for more information relevant to the affect this file has on these variables. Note
that not all variables are referenced in the shipping .matlab6rc.sh.

Variable Definition and Standard Assignment
Behavior

ARCH The machine architecture.
The value ARCH passed in with the -arch or
-arch/ext argument to the script is tried
first, then the value of the environment
variable MATLAB_ARCH is tried next, and finally
it is computed. The first one that gives a valid
architecture is used.

AUTOMOUNT_MAP Path prefix map for automounting.
The value set in .matlab6rc.sh (initially by
the installer) is used unless the value differs
from that determined by the script. In which
case the value in the environment is used.

DISPLAY The hostname of the X Window display
MATLAB uses for output.
The value of Xdisplay passed with the
-display argument to the script is used
otherwise the value in the environment.
DISPLAY is ignored by MATLAB if the
-nodisplay argument is passed.

matlab

963

LD_LIBRARY_PATH Final Load library path. The name
LD_LIBRARY_PATH is platform dependent.
The final value is normally a colon separated
list of five sublists each of which could be
empty. The first sublist is defined in
.matlab6rc.sh as LDPATH_PREFIX. The second
sublist is computed in the script and includes
directories inside the MATLAB root directory
and relevant Java directories. The third
sublist contains any nonempty value of
LD_LIBRARY_PATH from the environment
possibly augmented in .matlab6rc.sh. The
fourth sublist contains system libraries. The
final sublist is defined in .matlab6rc.sh as
LDPATH_SUFFIX.

LM_LICENSE_FILE The FLEXlm license variable.
The license file passed with the -c argument
to the script is used, otherwise the value set in
.matlab6rc.sh. In general, the final value is a
colon separated list of license files and/or
port@host entries. The shipping
.matlab6rc.sh file starts out the value by
prepending LM_LICENSE_FILE in the
environment to a default license file.
Later in the MATLAB script, if the -c option
is not used, the $MATLAB/etc directory is
searched for the files that start with
license.dat.DEMO. These files are assumed to
contain demo licenses and are added
automatically to end of the current list.

Variable Definition and Standard Assignment
Behavior

matlab

964

MATLAB The MATLAB root directory.
The default computed by the script is used
unless MATLABdefault is reset in
.matlab6rc.sh.
MATLABdefault is not reset in the shipping
.matlab6rc.sh.

MATLAB_DEBUG Normally set to the name of debugger.
The -Ddebugger argument passed in to the
script sets this variable. Otherwise, a
nonempty value in the environment is used.

MATLAB_JAVA The path to the root of the Java Runtime
Environment.
The default set in the script is used unless
MATLAB_JAVA is already set. Any nonempty
value from .matlab6rc.sh is used first then
any nonempty value from the environment.
There is no value set in the shipping
.matlab6rc.sh so that environment alone is
used.

MATLAB_MEM_MGR Turns on MATLAB memory integrity
checking.
The -check_malloc argument passed in to the
script sets this variable to 'debug'.
Otherwise, a nonempty value set in
.matlab6rc.sh is used, or a nonempty value
in the environment is used. If a nonempty
value is not found, the variable is not exported
to the environment.

MATLABPATH The MATLAB search path.
The final value is a colon separated list with
the MATLABPATH from the environment
prepended to a list of computed defaults.

Variable Definition and Standard Assignment
Behavior

matlab

965

The matlab script determines the path of the MATLAB root directory as one
level up the directory tree from the location of the script. Information in the
AUTOMOUNT_MAP variable is used to fix the path so that it is correct to force a
mount. This may involve deleting part of the pathname from the front of the
MATLAB root path. The MATLAB variable is then used to locate all files
within the MATLAB directory tree.

SHELL The shell to use when "!" or a Unix command
is issued in MATLAB.
This is taken from the environment unless
SHELL is reset in .matlab6rc.sh. SHELL is not
reset in the shipping .matlab6rc.sh. If SHELL
is empty or not defined then MATLAB uses /
bin/sh internally.

TOOLBOX Path of the toolbox directory.
A nonempty value in the environment is used
first. Otherwise, $MATLAB/toolbox, computed
by the script is used, unless TOOLBOX is reset
in .matlab6rc.sh. TOOLBOX is not reset in the
shipping .matlab6rc.sh.

XAPPLRESDIR The X application resource directory.
A nonempty value in the environment is used
first unless XAPPLRESDIR is reset in
.matlab6rc.sh. Otherwise,
$MATLAB/X11/app-defaults, computed by the
script is used.

XKEYSYMDB The X keysym database file.
A nonempty value in the environment is used
first unless XKEYSYMDB is reset in
.matlab6rc.sh. Otherwise,
$MATLAB/X11/app-defaults/XKeysymDB,
computed by the script is used.

Variable Definition and Standard Assignment
Behavior

matlab

966

Options The following table describes matlab command line options, grouped by
function.

Option Function

Diagnostic Options

-h |-help Display matlab command usage. MATLAB is
not started when you specify this option.

-n Display all the final values of the environment
variables and arguments passed to the
MATLAB executable as well as other
diagnostic information.
MATLAB is not started when you specify this
option.

Select Which MATLAB Executable to Run

-arch Run MATLAB assuming architecture arch.

-ext Run the version of MATLAB with extension
ext, if it exists.

-arch/ext Run the version of MATLAB with extension
ext, if it exists, assuming arch identifies the
architecture.

Affect the Environment Variables Passed to the MATLAB Executable

-c licensefile Set the value of the LM_LICENSE_FILE
environment variable to licensefile.
licensefile can be a colon separated list of
files or port@host entries, or both. For more
information, see LM_LICENSE_FILE in the
variable table.

matlab

967

-check_malloc Set the value of the MATLAB_MEM_MGR
environment variable to 'debug'. This turns on
MATLAB memory integrity checking. For
more information, see MATLAB_MEM_MGR in the
variable table.

-display Xserver Define the X display used for MATLAB
output, Xserver has the form
hostname:display. For example,

matlab -display falstaff:0
causes MATLAB output to be displayed on the
host named falstaff. This setting supersedes
the value of the DISPLAY environment
variable and the value of the DISPLAY variable
defined in .matlab5rc.sh.

Passed Without Change to the MATLAB Executable

-debug Provide debugging information, especially for
X-based problems. Note that you should use
this option only in conjunction with a
Technical Support representative from The
MathWorks, Inc.

-mwvisual visualid The default X visual to use for figure windows.

-nodesktop Do not start the MATLAB desktop. Use the
current window for commands. The Java
Virtual Machine (JVM) will be started.

-nojvm Shut off all Java support by not starting the
Java Virtual Machine (JVM). In particular,
the MATLAB desktop will not be started.

-nosplash Do not display the splash screen during
startup.

Option Function

matlab

968

Any arguments that the matlab script cannot recognize are passed without
change to the MATLAB executable. If the MATLAB executable does not
recognize the arguments they will be ignored without warning.

If you are debugging, these arguments should be used as part of a command
inside the debugger like run and not used when running the matlab script. If
any of the options are placed before the -Ddebugger argument, they will be
handled as if they were part of the options after the -Ddebugger argument and
will be treated as illegal options by most debuggers.

See Also mex

-r MATLAB_command Start MATLAB and execute the MATLAB
command. An arbitrary MATLAB command
string can be used here. You will have to use
proper quoting to make the input legal for
both the shell and MATLAB.

-runtime Run MATLAB in Runtime Server mode.
Required only if MATLAB is run from the
Runtime Development Kit.

Debugging

-Ddebugger [options] Start MATLAB with the specified debugger
(e.g. dbx, gdb, dde, xdb, cvd). A full path can be
specified for debugger. The options cover
ONLY those that go after the executable to be
debugged in the syntax of the actual debug
command and for most debuggers this is very
limited. To customize your debugging session
use a startup file. See your debugger
documentation for details. The MATLAB_DEBUG
environment variable is set to the filename
part of the debugger argument. For more
information, see MATLAB_DEBUG in the variable
table above.

Option Function

matlabrc

969

1matlabrcPurpose MATLAB startup M-file

Description At startup time, MATLAB automatically executes the master M-file
matlabrc.m and, if it exists, startup.m. On multiuser or networked systems,
matlabrc.m is reserved for use by the system manager. The file matlabrc.m
invokes the file startup.m if it exists on MATLAB’s search path.

As an individual user, you can create a startup file in your own MATLAB
directory. Use the startup file to define physical constants, engineering
conversion factors, graphics defaults, or anything else you want predefined in
your workspace.

Algorithm Only matlabrc is actually invoked by MATLAB at startup. However,
matlabrc.m contains the statements:

if exist('startup') == 2
 startup
end

that invoke startup.m. Extend this process to create additional startup
M-files, if required.

Remarks You can also start MATLAB using options you define at the Command Window
prompt or in your Windows shortcut for MATLAB.

Examples Example – Turning Off the Figure Window Toolbar
If you do not want the toolbar to appear in the figure window, remove the
comment marks from the following line in the matlabrc.m file, or create a
similar line in your own startup.m file.

% set(0,'defaultfiguretoolbar','none')

See Also quit, startup
“Startup Options” in “Working Environment for MATLAB”

matlabroot

970

1matlabrootPurpose Return root directory of MATLAB installation

Syntax matlabroot
rd = matlabroot

Description matlabroot returns the name of the directory in which the MATLAB software
is installed.

rd = matlabroot returns the name of the directory in which the MATLAB
software is installed and assigns it to rd.

Examples fullfile(matlabroot,'toolbox','matlab','general','')

produces a full path to the toolbox/matlab/general directory that is correct
for the platform it is executed on.

max

971

1maxPurpose Maximum elements of an array

Syntax C = max(A)
C = max(A,B)
C = max(A,[],dim)
[C,I] = max(...)

Description C = max(A) returns the largest elements along different dimensions of an
array.

If A is a vector, max(A) returns the largest element in A.

If A is a matrix, max(A) treats the columns of A as vectors, returning a row
vector containing the maximum element from each column.

If A is a multidimensional array, max(A) treats the values along the first
non-singleton dimension as vectors, returning the maximum value of each
vector.

C = max(A,B) returns an array the same size as A and B with the largest
elements taken from A or B.

C = max(A,[],dim) returns the largest elements along the dimension of A
specified by scalar dim. For example, max(A,[],1) produces the maximum
values along the first dimension (the rows) of A.

[C,I] = max(...) finds the indices of the maximum values of A, and returns
them in output vector I. If there are several identical maximum values, the
index of the first one found is returned.

Remarks For complex input A, max returns the complex number with the largest
modulus, computed with max(abs(A)). The max function ignores NaNs.

See Also isnan, mean, median, min, sort

mean

972

1meanPurpose Average or mean value of arrays

Syntax M = mean(A)
M = mean(A,dim)

Description M = mean(A) returns the mean values of the elements along different
dimensions of an array.

If A is a vector, mean(A) returns the mean value of A.

If A is a matrix, mean(A) treats the columns of A as vectors, returning a row
vector of mean values.

If A is a multidimensional array, mean(A) treats the values along the first
non-singleton dimension as vectors, returning an array of mean values.

M = mean(A,dim) returns the mean values for elements along the dimension of
A specified by scalar dim.

Examples A = [1 2 4 4; 3 4 6 6; 5 6 8 8; 5 6 8 8];
mean(A)
ans =
 3.5000 4.5000 6.5000 6.5000

mean(A,2)
ans =
 2.7500
 4.7500
 6.7500
 6.7500

See Also corrcoef, cov, max, median, min, std

median

973

1medianPurpose Median value of arrays

Syntax M = median(A)
M = median(A,dim)

Description M = median(A) returns the median values of the elements along different
dimensions of an array.

If A is a vector, median(A) returns the median value of A.

If A is a matrix, median(A) treats the columns of A as vectors, returning a row
vector of median values.

If A is a multidimensional array, median(A) treats the values along the first
nonsingleton dimension as vectors, returning an array of median values.

M = median(A,dim) returns the median values for elements along the
dimension of A specified by scalar dim.

Examples A = [1 2 4 4; 3 4 6 6; 5 6 8 8; 5 6 8 8];
median(A)

ans =

 4 5 7 7

median(A,2)

ans =

 3
 5
 7
 7

See Also corrcoef, cov, max, mean, min, std

memory

974

1memoryPurpose Help for memory limitations

Description If the out of memory error message is encountered, there is no more room in
memory for new variables. You must free up some space before you may
proceed. One way to free up space is to use the clear function to remove some
of the variables residing in memory. Another is to issue the pack command to
compress data in memory. This opens up larger contiguous blocks of memory
for you to use.

Here are some additional system specific tips:

 Windows: Increase virtual memory by using System in the Control Panel.

 UNIX: Ask your system manager to increase your swap space.

See Also clear, pack

menu

975

1menuPurpose Generate a menu of choices for user input

Syntax k = menu('mtitle','opt1','opt2',...,'optn')

Description k = menu('mtitle','opt1','opt2',...,'optn') displays the menu whose
title is in the string variable 'mtitle' and whose choices are string variables
'opt1', 'opt2', and so on. menu returns the value you entered.

Remarks To call menu from another ui-object, set that object’s Interruptible property to
'yes'. For more information, see the MATLAB Graphics Guide.

Examples k = menu('Choose a color','Red','Green','Blue') displays

After input is accepted, use k to control the color of a graph.

color = ['r','g','b']
plot(t,s,color(k))

See Also input, uicontrol

mesh, meshc, meshz

976

1mesh, meshc, meshzPurpose Mesh plots

Syntax mesh(X,Y,Z)
mesh(Z)
mesh(...,C)
mesh(...,'PropertyName',PropertyValue,...)
meshc(...)
meshz(...)
h = mesh(...)
h = meshc(...)
h = meshz(...)

Description mesh, meshc, and meshz create wireframe parametric surfaces specified by X, Y,
and Z, with color specified by C.

mesh(X,Y,Z) draws a wireframe mesh with color determined by Z, so color is
proportional to surface height. If X and Y are vectors, length(X) = n and
length(Y) = m, where [m,n] = size(Z). In this case,
are the intersections of the wireframe grid lines; X and Y correspond to the
columns and rows of Z, respectively. If X and Y are matrices,

 are the intersections of the wireframe grid lines.

mesh(Z) draws a wireframe mesh using X = 1:n and Y = 1:m, where [m,n] =
size(Z). The height, Z, is a single-valued function defined over a rectangular
grid. Color is proportional to surface height.

mesh(...,C) draws a wireframe mesh with color determined by matrix C.
MATLAB performs a linear transformation on the data in C to obtain colors
from the current colormap. If X, Y, and Z are matrices, they must be the same
size as C.

mesh(...,'PropertyName',PropertyValue,...) sets the value of the
specified surface property. Multiple property values can be set with a single
statement.

meshc(...) draws a contour plot beneath the mesh.

meshz(...) draws a curtain plot (i.e., a reference plane) around the mesh.

X j() Y i() Z i j,(), ,()

X i j,() Y i j,() Z i j,(), ,()

mesh, meshc, meshz

977

h = mesh(...), h = meshc(...), and h = meshz(...) return a handle to a
surface graphics object.

Remarks A mesh is drawn as a surface graphics object with the viewpoint specified by
view(3). The face color is the same as the background color (to simulate a
wireframe with hidden-surface elimination), or none when drawing a standard
see-through wireframe. The current colormap determines the edge color. The
hidden command controls the simulation of hidden-surface elimination in the
mesh, and the shading command controls the shading model.

Examples Produce a combination mesh and contour plot of the peaks surface:

[X,Y] = meshgrid(–3:.125:3);
Z = peaks(X,Y);
meshc(X,Y,Z);
axis([–3 3 –3 3 –10 5])

Generate the curtain plot for the peaks function:

[X,Y] = meshgrid(–3:.125:3);
Z = peaks(X,Y);

−3
−2

−1
0

1
2

3

−3
−2

−1
0

1
2

3
−10

−5

0

5

mesh, meshc, meshz

978

meshz(X,Y,Z)

Algorithm The range of X, Y, and Z, or the current setting of the axes XLimMode, YLimMode,
and ZLimMode properties determine the axis limits. axis sets these properties.

The range of C, or the current setting of the axes CLim and CLimMode properties
(also set by the caxis function), determine the color scaling. The scaled color
values are used as indices into the current colormap.

The mesh rendering functions produce color values by mapping the z data
values (or an explicit color array) onto the current colormap. MATLAB’s default
behavior computes the color limits automatically using the minimum and
maximum data values (also set using caxis auto). Theminimum data value
maps to the first color value in the colormap and the maximum data value
maps to the last color value in the colormap. MATLAB performs a linear
transformation on the intermediate values to map them to the current
colormap.

meshc calls mesh, turns hold on, and then calls contour and positions the
contour on the x-y plane. For additional control over the appearance of the

−3
−2

−1
0

1
2

3

−4

−2

0

2

4
−10

−5

0

5

10

mesh, meshc, meshz

979

contours, you can issue these commands directly. You can combine other types
of graphs in this manner, for example surf and pcolor plots.

meshc assumes that X and Y are monotonically increasing. If X or Y is irregularly
spaced, contour3 calculates contours using a regularly spaced contour grid,
then transforms the data to X or Y.

See Also contour, hidden, meshgrid, sruface, surf, surfc, surfl, waterfall

The functions axis, caxis, colormap, hold, shading, and view all set graphics
object properties that affect mesh, meshc, and meshz.

For a discussion of parametric surfaces plots, refer to surf.

meshgrid

980

1meshgridPurpose Generate X and Y matrices for three-dimensional plots

Syntax [X,Y] = meshgrid(x,y)
[X,Y] = meshgrid(x)
[X,Y,Z] = meshgrid(x,y,z)

Description [X,Y] = meshgrid(x,y) transforms the domain specified by vectors x and y
into arrays X and Y, which can be used to evaluate functions of two variables
and three-dimensional mesh/surface plots. The rows of the output array X are
copies of the vector x; columns of the output array Y are copies of the vector y.

[X,Y] = meshgrid(x) is the same as [X,Y] = meshgrid(x,x).

[X,Y,Z] = meshgrid(x,y,z) produces three-dimensional arrays used to
evaluate functions of three variables and three-dimensional volumetric plots.

Remarks The meshgrid function is similar to ndgrid except that the order of the first two
input and output arguments is switched. That is, the statement

[X,Y,Z] = meshgrid(x,y,z)

produces the same result as

[Y,X,Z] = ndgrid(y,x,z)

Because of this, meshgrid is better suited to problems in two- or
three-dimensional Cartesian space, while ndgrid is better suited to
multidimensional problems that aren’t spatially based.

meshgrid is limited to two- or three-dimensional Cartesian space.

Examples [X,Y] = meshgrid(1:3,10:14)

X =

1 2 3
 1 2 3
 1 2 3
 1 2 3
 1 2 3

meshgrid

981

Y =

10 10 10
 11 11 11
 12 12 12
 13 13 13
 14 14 14

See Also griddata, mesh, ndgrid, slice, surf

methods

982

1methodsPurpose Display method names

Syntax n = methods class_name
n = methods class_name -full

Description n = methods('class_name') returns, in a cell array of strings, the names of
all methods for the MATLAB or Java class with the name class_name.

n = methods('class_name',’-full’) returns, in a cell array of strings, the
full description of the methods defined for the class, including inheritance
information and, for Java methods, attributes and signatures. For any
overloaded method, the returned array includes a description of each of its
signatures. If class_name represents a MATLAB class, then inheritance
information is returned only if that class has been instantiated.

Examples To display a full description of all methods on Java object java.awt.Dimension

methods java.awt.Dimension -full

Methods for class java.awt.Dimension:
Dimension()
Dimension(java.awt.Dimension)
Dimension(int,int)
java.lang.Class getClass() % Inherited from java.lang.Object
int hashCode() % Inherited from java.lang.Object
boolean equals(java.lang.Object)
java.lang.String toString()
void notify() % Inherited from java.lang.Object
void notifyAll() % Inherited from java.lang.Object
void wait(long) throws java.lang.InterruptedException % Inherited
from java.lang.Object
void wait(long,int) throws java.lang.InterruptedException %
Inherited from java.lang.Object
void wait() throws java.lang.InterruptedException % Inherited
from java.lang.Object
java.awt.Dimension getSize()
void setSize(java.awt.Dimension)
void setSize(int,int)

methods

983

See Also methodsview, help, what, which

methodsview

984

1methodsviewPurpose Displays information on all methods implemented by a class.

Syntax methodsview package_name.class_name
methodsview class_name

Description methodsview package_name.class_name displays information describing the
Java class, class_name, that is available from the package of Java classes,
package_name.

methodsview class_name displays information describing the imported Java
or MATLAB class, class_name.

MATLAB creates a new window in response to the methodsview command.
This window displays all of the methods defined in the specified class. For each
of these methods, the following additional information is supplied:

• Name of the method

• Method type qualifiers (for example, abstract or synchronized)

• Data type returned by the method

• Arguments passed to the method

• Possible exceptions thrown

• Parent of the specified class

Examples The following command lists information on all methods in the
java.awt.MenuItem class.

methodsview java.awt.MenuItem

mexext

985

1mexextPurpose Return the MEX-filename extension

Syntax ext = mexext

Description ext = mexext returns the filename extension for the current platform.

Examples ext = mexext

ext =
dll

mfilename

986

1mfilenamePurpose The name of the currently running M-file

Syntax mfilename

Description mfilename returns a string containing the name of the most recently invoked
M-file. When called from within an M-file, it returns the name of that M-file,
allowing an M-file to determine its name, even if the filename has been
changed.

When called from the command line, mfilename returns an empty matrix.

min

987

1minPurpose Minimum elements of an array

Syntax C = min(A)
C = min(A,B)
C = min(A,[],dim)
[C,I] = min(...)

Description C = min(A) returns the smallest elements along different dimensions of an
array.

If A is a vector, min(A) returns the smallest element in A.

If A is a matrix, min(A) treats the columns of A as vectors, returning a row
vector containing the minimum element from each column.

If A is a multidimensional array, min operates along the first nonsingleton
dimension.

C = min(A,B) returns an array the same size as A and B with the smallest
elements taken from A or B.

C = min(A,[],dim) returns the smallest elements along the dimension of A
specified by scalar dim. For example, min(A,[],1) produces the minimum
values along the first dimension (the rows) of A.

[C,I] = min(...) finds the indices of the minimum values of A, and returns
them in output vector I. If there are several identical minimum values, the
index of the first one found is returned.

Remarks For complex input A, min returns the complex number with the smallest
modulus, computed with min(abs(A)). The min function ignores NaNs.

See Also max, mean, median, sort

minres

988

1minresPurpose Minimum Residual method

Syntax x = minres(A,b)
minres(A,b,tol)
minres(A,b,tol,maxit)
minres(A,b,tol.maxit,M)
minres(A,b,tol,maxit,M1,M2)
minres(A,b,tol,maxit,M1,M2,x0)
minres(afun,b,tol,maxit,mifun,m2fun,x0,p1,p2,...)
[x,flag] = minres(A,b,...)
[x,flag,relres] = minres(A,b,...)
[x,flag,relres,iter] = minres(A,b,...)
[x,flag,relres,iter,resvec] = minres(A,b,...)
[x,flag,relres,iter,resvec,resveccg] = minres(A,b,...)

Description x = minres(A,b) attempts to find a minimum norm residual solution x to the
system of linear equations A*x=b. The n-by-n coefficient matrix A must be
symmetric but need not be positive definite. The column vector b must have
length n. A can be a function afun such that afun(x) returns A*x.

If minres converges, a message to that effect is displayed. If minres fails to
converge after the maximum number of iterations or halts for any reason, a
warning message is printed displaying the relative residual norm(b-A*x)/
norm(b) and the iteration number at which the method stopped or failed.

minres(A,b,tol) specifies the tolerance of the method. If tol is [], then
minres uses the default, 1e-6.

minres(A,b,tol,maxit) specifies the maximum number of iterations. If
maxit is [], then minres uses the default, min(n,20).

minres(A,b,tol,maxit,M) and minres(A,b,tol,maxit,M1,M2) use
symmetric positive definite preconditioner M or M = M1*M2 and effectively solve
the system inv(sqrt(M))*A*inv(sqrt(M))*y = inv(sqrt(M))*b for y and
then return x = inv(sqrt(M))*y. If M is [] then minres applies no
preconditioner. M can be a function that returns M\x.

minres(A,b,tol,maxit,M1,M2,x0) specifies the initial guess. If x0 is [], then
minres uses the default, an all-zero vector.

minres

989

minres(afun,b,tol,maxit,m1fun,m2fun,x0,p1,p2,...) passes parameters
p1,p2,... to functions afun(x,p1,p2,...), m1fun(x,p1,p2,...), and
m2fun(x,p1,p2,...).

[x,flag] = minres(A,b,...) also returns a convergence flag.

Whenever flag is not 0, the solution x returned is that with minimal norm
residual computed over all the iterations. No messages are displayed if the
flag output is specified.

[x,flag,relres] = minres(A,b,...) also returns the relative residual
norm(b-A*x)/norm(b). If flag is 0, relres <= tol.

[x,flag,relres,iter] = minres(A,b,...) also returns the iteration
number at which x was computed, where 0 <= iter <= maxit.

[x,flag,relres,iter,resvec] = minres(A,b,...) also returns a vector of
estimates of the minres residual norms at each iteration, including
norm(b-A*x0).

[x,flag,relres,iter,resvec,resveccg] = minres(A,b,...) also returns a
vector of estimates of the Conjugate Gradients residual norms at each
iteration.

Examples Example 1.

Flag Convergence

0 minres converged to the desired tolerance tol within
maxit iterations.

1 minres iterated maxit times but did not converge.

2 Preconditioner M was ill-conditioned.

3 minres stagnated. (Two consecutive iterates were the
same.)

4 One of the scalar quantities calculated during minres
became too small or too large to continue computing.

minres

990

n = 100; on = ones(n,1);
A = spdiags([-2*on 4*on -2*on],-1:1,n,n);
b = sum(A,2);
tol = 1e-10;
maxit = 50;
M1 = spdiags(4*on,0,n,n);

x = minres(A,b,tol,maxit,M1,[],[]);
minres converged at iteration 49 to a solution with relative
residual 4.7e-014

Alternatively, use this matrix-vector product function

function y = afun(x,n)
y = 4 * x;
y(2:n) = y(2:n) - 2 * x(1:n-1);
y(1:n-1) = y(1:n-1) - 2 * x(2:n);

as input to minres.

x1 = minres(@afun,b,tol,maxit,M1,[],n);

Example 2.

Use a symmetric indefinite matrix that fails with pcg.

A = diag([20:-1:1, -1:-1:-20]);
b = sum(A,2); % The true solution is the vector of all ones.
x = pcg(A,b); % Errors out at the first iteration.
pcg stopped at iteration 1 without converging to the desired
tolerance 1e-006 because a scalar quantity became too small or too
large to continue computing.
The iterate returned (number 0) has relative residual 1

However, minres can handle the indefinite matrix A.

x = minres(A,b,1e-6,40);
minres converged at iteration 39 to a solution with relative
residual 1.3e-007

See Also bicg, bicgstab, cgs, cholinc, gmres, lsqr, pcg, qmr, symmlq

@ (function handle), / (slash),

minres

991

References [1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.

[2] Paige, C. C. and M. A., “Solution of Sparse Indefinite Systems of Linear
Equations.” SIAM J. Numer. Anal., Vol.12, 1975, pp. 617-629.

mislocked

992

1mislockedPurpose True if M-file cannot be cleared

Syntax mislocked
mislocked(fun)

Description mislocked by itself is 1 if the currently running M-file is locked and 0
otherwise.

mislocked(fun) is 1 if the function named fun is locked in memory and 0
otherwise. Locked M-files cannot be removed with the clear function.

See Also mlock, munlock

mkdir

993

1mkdirPurpose Make a new directory

Graphical
Interface

As an alternative to the mkdir function, you can use the Current Directory
browser to create new folders. To open it, select Current Directory from the
View menu in the MATLAB desktop.

Syntax mkdir dirname
mkdir parentdir dirname
status = mkdir(...,'dirname')
[status,msg] = mkdir(...,'dirname')

Description mkdir dirname creates the directory dirname in the current directory. It
returns a status of 1 if the new directory is created successfully, 2 if it already
exists. Otherwise, it returns 0.

mkdir parentdir dirname creates the directory dirname in the existing
directory parentdir.

status = mkdir(...,'dirname') returns status and also returns a
nonempty error message string in msg when an error occurs.

[status,msg] = mkdir(...,'dirname') returns status and also returns a
nonempty error message string in msg when an error occurs.

Examples To create a subdirectory of testdata called newdir,

mkdir ..\testdata newdir

This second attempt to create the same directory fails with an error message.

[status,msg] = mkdir('..\testdata','newdir')
status =
 2
msg =
Directory or file newdir already exists in ..\testdata

See Also copyfile, filebrowser

mlock

994

1mlockPurpose Prevent M-file clearing

Syntax mlock

Description mlock locks the currently running M-file in memory so that subsequent clear
functions do not remove it.

Use the munlock function to return the M-file to its normal, clearable state.

Locking an M-file in memory also prevents any persistent variables defined
in the file from getting reinitialized.

 Examples The function testfun begins with an mlock statement.

function testfun
mlock
 .
 .

When you execute this function, it becomes locked in memory. This can be
checked using the mislocked function.

testfun

mislocked('testfun')
ans =
 1

Using munlock, you unlock the testfun function in memory. Checking its
status with mislocked shows that it is indeed unlocked at this point.

munlock('testfun')

mislocked('testfun')
ans =
 0

See Also mislocked, munlock, persistent

mod

995

1modPurpose Modulus (signed remainder after division)

Syntax M = mod(X,Y)

Definition mod(x,y) is x mod y.

Description M = mod(X,Y) returns the remainder X - Y.*floor(X./Y) for nonzero Y, and
returns X otherwise. mod(X,Y) always differs from X by a multiple of Y.

Remarks So long as operands X and Y are of the same sign, the function mod(X,Y) returns
the same result as does rem(X,Y). However, for positive X and Y,

mod(-x,y) = rem(-x,y)+y

The mod function is useful for congruence relationships:
x and y are congruent (mod m) if and only if mod(x,m) == mod(y,m).

Examples mod(13,5)

ans =
 3

mod([1:5],3)

ans =
 1 2 0 1 2

mod(magic(3),3)

ans =
 2 1 0
 0 2 1
 1 0 2

Limitations Arguments X and Y should be integers. Due to the inexact representation of
floating-point numbers on a computer, real (or complex) inputs may lead to
unexpected results.

See Also rem

more

996

1morePurpose Control paged output for the Command Window

Syntax more off
more on
more(n)

Description more off disables paging of the output in the MATLAB Command Window.

more on enables paging of the output in the MATLAB Command Window.

more(n) displays n lines per page.

When you have enabled more and are examining output, you can do the
following.

By default, more is disabled. When enabled, more defaults to displaying 23 lines
per page.

See Also diary

Press the... To...

Return key Advance to the next line of output.

Space bar Advance to the next page of output.

q (for quit) key Terminate display of the text.

movegui

997

1moveguiPurpose Move GUI figure to specified location on screen

Syntax movegui(h,'position')
movegui('position')
movegui(h)
movegui

Description movegui(h,'position') moves the figure identified by handle h to the
specified screen location, preserving the figure’s size. The position argument
can be any of the following strings:

• north – top center edge of screen

• south – bottom center edge of screen

• east – right center edge of screen

• west – left center edge of screen

• northeast – top right corner of screen

• northwest – top left corner of screen

• southeast – bottom right corner of screen

• southwest – bottom left corner

• center – center of screen

• onscreen – nearest location with respect to current location that is on screen

The position argument can also be a two-element vector [h,v], where
depending on sign, h specifies the figure's offset from the left or right edge of
the screen, and v specifies the figure's offset from the top or bottom of the
screen, in pixels. The following table summarizes the possible values.

h (for h >= 0) offset of left side from left edge of screen

h (for h < 0) offset of right side from right edge of screen

v (for v >= 0) offset of bottom edge from bottom of screen

v (for v < 0) offset of top edge from top of screen

movegui

998

movegui('position') move the callback figure (gcbf) or the current figure
(gcf) to the specified position.

movegui(h) moves the figure identified by the handle h to the onscreen
position.

movegui moves the callback figure (gcbf) or the current figure (gcf) to the
onscreen position. This is useful as a string-based CreateFcn callback for a
saved figure. It ensures the figure appears on screen when reloaded, regardless
of its saved position.

Examples This example demonstrates the usefulness of movegui to ensure that saved
GUIs appear on screen when reloaded, regardless of the target computer’s
screen sizes and resolution. It creates a figure off the screen, assigns movegui
as its CreateFcn callback, then saves and reloads the figure.

f = figure('Position',[10000,10000,400,300]);
set(f,'CreateFcn','movegui')
hgsave(f,'onscreenfig')
close(f)
f2 = hgload('onscreenfig');

See Also guide

Creating GUIs

movie

999

1moviePurpose Play recorded movie frames

Syntax movie(M)
movie(M,n)
movie(M,n,fps)
movie(h,...)
movie(h,M,n,fps,loc)

Description movie plays the movie defined by a matrix whose columns are movie frames
(usually produced by getframe).

movie(M) plays the movie in matrix M once.

movie(M,n) plays the movie n times. If n is negative, each cycle is shown
forward then backward. If n is a vector, the first element is the number of times
to play the movie, and the remaining elements comprise a list of frames to play
in the movie. For example, if M has four frames then n = [10 4 4 2 1] plays
the movie ten times, and the movie consists of frame 4 followed by frame 4
again, followed by frame 2 and finally frame 1.

movie(M,n,fps) plays the movie at fps frames per second. The default is 12
frames per second. Computers that cannot achieve the specified speed play as
fast as possible.

movie(h,...) plays the movie in the figure or axes identified by the handle h.

movie(h,M,n,fps,loc) specifies a four-element location vector, [x y 0 0],
where the lower-left corner of the movie frame is anchored (only the first two
elements in the vector are used). The location is relative to the lower-left corner
of the figure or axes specified by handle and in units of pixels, regardless of the
object’s Units property.

Remarks The movie function displays each frame as it loads the data into memory, and
then plays the movie. This eliminates long delays with a blank screen when you
load a memory-intensive movie. The movie’s load cycle is not considered one of
the movie repetitions.

Examples Animate the peaks function as you scale the values of Z:

movie

1000

Z = peaks; surf(Z);
axis tight
set(gca,'nextplot','replacechildren');

% Record the movie
for j = 1:20

surf(sin(2∗pi∗j/20)∗Z,Z)
F(j) = getframe;

end

% Play the movie twenty times
movie(F,20)

See Also getframe, frame2im, im2frame

guide

Creating GUIs

movie2avi

1001

1movie2avi

Purpose Create an Audio Video Interleaved (AVI) movie from MATLAB movie

Syntax movie2avi(mov,filename)
movie2avi(mov,filename,param,value,param,value...)

Description movie2avi(mov,filename) creates the AVI movie filename from the MATLAB
movie mov.

movie2avi(mov,filename,param,value,param,value...) creates the AVI
movie filename from the MATLAB movie MOV using the specified parameter
settings.

Parameter Value Default

'colormap' An m-by-3 matrix defining the colormap
to be used for indexed AVI movies,
where m must be no greater than 256
(236 if using Indeo compression).

There is no
default
colormap.

'compression' A text string specifying which
compression codec to use.

On Windows:
'Indeo3'
'Indeo5'
'Cinepak'
'MSVC'
'RLE'
'None'

On Unix:
'None'

'Indeo3',
on
Windows.
'None' on
Unix.

To use a custom compression codec,
specify the four-character code that
identifies the codec (typically included
in the codec documentation). The
addframe function reports an error if it
can not find the specified custom
compressor.

movie2avi

1002

See Also avifile, aviread, aviinfo, movie

'fps' A scalar value specifying the speed of
the AVI movie in frames per second
(fps).

15 fps

'keyframe' For compressors that support temporal
compression, this is the number of key
frames per second.

2 key
frames per
second.

'name' A descriptive name for the video
stream. This parameter must be no
greater than 64 characters long.

The default
is the
filename.

'quality' A number between 0 and 100. This
parameter has no effect on
uncompressed movies. Higher quality
numbers result in higher video quality
and larger file sizes. Lower quality
numbers result in lower video quality
and smaller file sizes.

75

Parameter Value Default

moviein

1003

1movieinPurpose Allocate matrix for movie frames

Syntax M = moviein(n)
M = moviein(n,h)
M = moviein(n,h,rect)

Description moviein allocates an appropriately sized matrix for the getframe function.

M = moviein(n) creates matrix M having n columns to store n frames of a movie
based on the size of the current axes.

M = moviein(n,h) specifies a handle for a valid figure or axes graphics object
on which to base the memory requirement. You must use the same handle with
getframe. If you want to capture the axis in the frames, specify h as the handle
of the figure.

M = moviein(n,h,rect) specifies the rectangular area from which to copy the
bitmap, relative to the lower-left corner of the figure or axes graphics object
identified by h. rect = [left bottom width height], where left and bottom
specify the lower-left corner of the rectangle, and width and height specify the
dimensions of the rectangle. Components of rect are in pixel units. You must
use the same handle and rectangle with getframe.

Remarks moviein is no longer meeded as of MATLAB Release 11 (5.3). In earlier
versions, pre-allocating a movie increased performance, but there is no longer
a need to do this.

See Also getframe, movie

msgbox

1004

1msgboxPurpose Display message box

Syntax msgbox(message)
msgbox(message,title)
msgbox(message,title,'icon')
msgbox(message,title,'custom',iconData,iconCmap)
msgbox(...,'createMode')
h = msgbox(...)

Description msgbox(message) creates a message box that automatically wraps message to
fit an appropriately sized figure. message is a string vector, string matrix, or
cell array.

msgbox(message,title) specifies the title of the message box.

msgbox(message,title,'icon') specifies which icon to display in the message
box. 'icon’ is 'none', 'error', 'help', 'warn', or 'custom'. The default is
'none'.

msgbox(message,title,'custom',iconData,iconCmap) defines a customized
icon. iconData contains image data defining the icon; iconCmap is the colormap
used for the image.

msgbox(...,'createMode') specifies whether the message box is modal or
nonmodal, and if it is nonmodal, whether to replace another message box with
the same title. Valid values for 'createMode' are 'modal', 'non-modal', and
'replace'.

h = msgbox(...) returns the handle of the box in h, which is a handle to a
Figure graphics object.

See Also dialog, errordlg, inputdlg, helpdlg, questdlg, textwrap, warndlg

Error Icon Help Icon Warning Icon

mu2lin

1005

1mu2linPurpose Convert mu-law audio signal to linear

Syntax y = mu2lin(mu)

Description y = mu2lin(mu) converts mu-law encoded 8-bit audio signals, stored as
“flints” in the range 0 ≤ mu ≤ 255, to linear signal amplitude in the range
-s < Y < s where s = 32124/32768 ~= .9803. The input mu is often obtained
using fread(...,'uchar') to read byte-encoded audio files. “Flints” are
MATLAB's integers - floating-point numbers whose values are integers.

See Also auread, lin2mu

munlock

1006

1munlockPurpose Allow M-file clearing

Syntax munlock
munlock fun
munlock('fun')

Description munlock unlocks the currently running M-file in memory so that subsequent
clear functions can remove it.

munlock fun unlocks the M-file named fun from memory. By default, M-files
are unlocked so that changes to the M-file are picked up. Calls to munlock are
needed only to unlock M-files that have been locked with mlock.

munlock('fun') is the function form of munlock.

Examples The function testfun begins with an mlock statement.

function testfun
mlock
 .
 .

When you execute this function, it becomes locked in memory. This can be
checked using the mislocked function.

testfun

mislocked testfun
ans =
 1

Using munlock, you unlock the testfun function in memory. Checking its
status with mislocked shows that it is indeed unlocked at this point.

munlock testfun

mislocked testfun
ans =
 0

See Also mlock, mislocked, persistent

NaN

1007

1NaNPurpose Not-a-Number

Syntax NaN

Description NaN returns the IEEE arithmetic representation for Not-a-Number (NaN).
These result from operations which have undefined numerical results.

Examples These operations produce NaN:

• Any arithmetic operation on a NaN, such as sqrt(NaN)

• Addition or subtraction, such as magnitude subtraction of infinities as
(+Inf)+(-Inf)

• Multiplication, such as 0*Inf

• Division, such as 0/0 and Inf/Inf

• Remainder, such as rem(x,y) where y is zero or x is infinity

Remarks Logical operations involving NaNs always return false, except ~= (not equal).
Consequently, the statement NaN ~= NaN is true while the statement NaN == NaN
is false.

See Also Inf

nargchk

1008

1nargchkPurpose Check number of input arguments

Syntax msg = nargchk(low,high,number)

Description The nargchk function often is used inside an M-file to check that the correct
number of arguments have been passed.

msg = nargchk(low,high,number) returns an error message if number is less
than low or greater than high. If number is between low and high (inclusive),
nargchk returns an empty matrix.

Arguments Input arguments to nargchk are

Examples Given the function foo:

function f = foo(x,y,z)
error(nargchk(2,3,nargin))

Then typing foo(1) produces:

Not enough input arguments.

See Also nargin, nargout

low, high The minimum and maximum number of input arguments that
should be passed.

number The number of arguments actually passed, as determined by the
nargin function.

nargin, nargout

1009

1nargin, nargoutPurpose Number of function arguments

Syntax n = nargin
n = nargin('fun')
n = nargout
n = nargout('fun')

Description In the body of a function M-file, nargin and nargout indicate how many input
or output arguments, respectively, a user has supplied. Outside the body of a
function M-file, nargin and nargout indicate the number of input or output
arguments, respectively, for a given function. The number of arguments is
negative if the function has a variable number of arguments.

nargin returns the number of input arguments specified for a function.

nargin('fun') returns the number of declared inputs for the M-file function
fun or -1 if the function has a variable of input arguments.

nargout returns the number of output arguments specified for a function.

nargout('fun') returns the number of declared outputs for the M-file function
fun.

Examples This example shows portions of the code for a function called myplot, which
accepts an optional number of input and output arguments:

function [x0,y0] = myplot(fname,lims,npts,angl,subdiv)
% MYPLOT Plot a function.
% MYPLOT(fname,lims,npts,angl,subdiv)
% The first two input arguments are
% required; the other three have default values.
 ...
if nargin < 5, subdiv = 20; end
if nargin < 4, angl = 10; end
if nargin < 3, npts = 25; end
 ...
if nargout == 0
 plot(x,y)
else
 x0 = x;

nargin, nargout

1010

 y0 = y;
end

See Also inputname, nargchk

nargoutchk

1011

1nargoutchkPurpose Validate number of output arguments

Syntax msg = nargoutchk(low,high,n)

Description msg = nargoutchk(low,high,n) returns an appropriate error message if n is
not between low and high. If the number of output arguments is within the
specified range, nargoutchk returns an empty matrix.

Examples You can use nargoutchk to determine if an M-file has been called with the
correct number of output arguments. This example uses nargout to return the
number of output arguments specified when the function was called. The
function is designed to be called with one, two, or three output arguments. If
called with no arguments or more than three arguments, nargoutchk returns
an error message.

function [s,varargout] = mysize(x)
msg = nargoutchk(1,3,nargout);
if isempty(msg)
 nout = max(nargout,1)-1;
 s = size(x);
 for i=1:nout, varargout(i) = {s(i)}; end
else
 disp(msg)
end

See Also inputname, nargchk, nargin, nargout, varargout

nchoosek

1012

1nchoosekPurpose Binomial coefficient or all combinations

Syntax C = nchoosek(n,k)
C = nchoosek(v,k)

Description C = nchoosek(n,k) where n and k are nonnegative integers, returns n! /
((n-k)! k!). This is the number of combinations of n things taken k at a time.

C = nchoosek(v,k), where v is a row vector of length n, creates a matrix whose
rows consist of all possible combinations of the n elements of v taken k at a
time. Matrix C contains n! / ((n-k)! k!) rows and k columns.

Examples The command nchoosek(2:2:10,4) returns the even numbers from two to ten,
taken four at a time:

 2 4 6 8
 2 4 6 10
 2 4 8 10
 2 6 8 10
 4 6 8 10

Limitations This function is only practical for situations where n is less than about 15.

See Also perms

ndgrid

1013

1ndgridPurpose Generate arrays for multidimensional functions and interpolation

Syntax [X1,X2,X3,...] = ndgrid(x1,x2,x3,...)
[X1,X2,...] = ndgrid(x)

Description [X1,X2,X3,...] = ndgrid(x1,x2,x3,...) transforms the domain specified
by vectors x1,x2,x3... into arrays X1,X2,X3... that can be used for the
evaluation of functions of multiple variables and multidimensional
interpolation. The ith dimension of the output array Xi are copies of elements
of the vector xi.

[X1,X2,...] = ndgrid(x) is the same as [X1,X2,...] = ndgrid(x,x,...).

Examples Evaluate the function over the range -2 < x1 < 2; -2 < x2 < 2.

[X1,X2] = ndgrid(-2:.2:2, -2:.2:2);
Z = X1 .* exp(-X1.^2 - X2.^2);
mesh(Z)

Remarks The ndgrid function is like meshgrid except that the order of the first two input
arguments are switched. That is, the statement

[X1,X2,X3] = ndgrid(x1,x2,x3)

produces the same result as

[X2,X1,X3] = meshgrid(x2,x1,x3).

Because of this, ndgrid is better suited to multidimensional problems that
aren’t spatially based, while meshgrid is better suited to problems in two- or
three-dimensional Cartesian space.

See Also meshgrid, interpn

x1e
x1

2– x2
2–

ndims

1014

1ndimsPurpose Number of array dimensions

Syntax n = ndims(A)

Description n = ndims(A) returns the number of dimensions in the array A. The number of
dimensions in an array is always greater than or equal to 2. Trailing singleton
dimensions are ignored. A singleton dimension is any dimension for which
size(A,dim) = 1.

Algorithm ndims(x) is length(size(x)).

See Also size

newplot

1015

1newplotPurpose Determine where to draw graphics objects

Syntax newplot
h = newplot

Description newplot prepares a figure and axes for subsequent graphics commands.

h = newplot prepares a figure and axes for subsequent graphics commands
and returns a handle to the current axes.

Remarks Use newplot at the beginning of high-level graphics M-files to determine which
figure and axes to target for graphics output. Calling newplot can change the
current figure and current axes. Basically, there are three options when
drawing graphics in existing figures and axes:

• Add the new graphics without changing any properties or deleting any
objects.

• Delete all existing objects whose handles are not hidden before drawing the
new objects.

• Delete all existing objects regardless of whether or not their handles are
hidden and reset most properties to their defaults before drawing the new
objects (refer to the following table for specific information).

The figure and axes NextPlot properties determine how nextplot behaves.
The following two tables describe this behavior with various property values.

First, newplot reads the current figure’s NextPlot property and acts
accordingly.

NextPlot What Happens

add Draw to the current figure without clearing any
graphics objects already present.

replacechildren Remove all child objects whose HandleVisibility
property is set to on and reset figure NextPlot
property to add.
This clears the current figure and is equivalent to
issuing the clf command.

newplot

1016

After newplot establishes which figure to draw in, it reads the current axes’
NextPlot property and acts accordingly.

See Also axes, cla, clf, figure, hold, ishold, reset

The NextPlot property for figure and axes graphics objects.

replace Remove all child objects (regardless of the setting of
the HandleVisibility property) and reset figure
properties to their defaults, except:

• NextPlot is reset to add regardless of user-defined
defaults)

• Position, Units, PaperPosition, and PaperUnits
are not reset

This clears and resets the current figure and is
equivalent to issuing the clf reset command.

NextPlot Description

add Draw into the current axes, retaining all graphics
objects already present.

replacechildren Remove all child objects whose HandleVisibility
property is set to on, but do not reset axes properties.
This clears the current axes like the cla command.

replace Removes all child objects (regardless of the setting of
the HandleVisibility property) and resets axes
properties to their defaults, except Position and
Units
This clears and resets the current axes like the cla
reset command.

NextPlot What Happens

nextpow2

1017

1nextpow2Purpose Next power of two

Syntax p = nextpow2(A)

Description p = nextpow2(A) returns the smallest power of two that is greater than or
equal to the absolute value of A. (That is, p that satisfies 2^p ≥ abs(A)).

This function is useful for optimizing FFT operations, which are most efficient
when sequence length is an exact power of two.

If A is non-scalar, nextpow2 returns the smallest power of two greater than or
equal to length(A).

Examples For any integer n in the range from 513 to 1024, nextpow2(n) is 10.

For a 1-by-30 vector A, length(A) is 30 and nextpow2(A) is 5.

See Also fft, log2, pow2

nnls

1018

1nnlsPurpose Nonnegative least squares

Note The nnls function was replaced by lsqnonneg in Release 11 (MATLAB
5.3). In Release 12 (MATLAB 6.0), nnls displays a warning message and calls
lsqnonneg.

Syntax x = nnls(A,b)
x = nnls(A,b,tol)
[x,w] = nnls(A,b)
[x,w] = nnls(A,b,tol)

Description x = nnls(A,b) solves the system of equations Ax = b in a least squares sense,
subject to the constraint that the solution vector x has nonnegative elements:
xj > 0, j = 1, 2, ... n . The solution x minimizes subject to x ≥ 0.

x = nnls(A,b,tol) solves the system of equations, and specifies a tolerance
tol. By default, tol is: max(size(A))*norm(A,1)*eps.

[x,w] = nnls(A,b) also returns the dual vector w, where wi ≤ 0 when xi = 0
and wi ≅ 0 when xi > 0.

[x,w] = nnls(A,b,tol) solves the system of equations, returns the dual
vector w, and specifies a tolerance tol.

Examples Compare the unconstrained least squares solution to the nnls solution for a
4-by-2 problem:

A =
 0.0372 0.2869
 0.6861 0.7071
 0.6233 0.6245
 0.6344 0.6170

b =

 0.8587
 0.1781
 0.0747

Ax b=()

nnls

1019

 0.8405

[A\b nnls(A,b)] =

-2.5627 0
 3.1108 0.6929

[norm(A*(a\b)-b) norm(A*nnls(a,b)-b)] =

0.6674 0.9118

The solution from nnls does not fit as well, but has no negative components.

Algorithm The nnls function uses the algorithm described in [1], Chapter 23. The
algorithm starts with a set of possible basis vectors, computes the associated
dual vector w, and selects the basis vector corresponding to the maximum value
in w to swap out of the basis in exchange for another possible candidate, until
w ≤ 0.

See Also \ Matrix left division (backslash)

References [1] Lawson, C. L. and R. J. Hanson, Solving Least Squares Problems,
Prentice-Hall, 1974, Chapter 23.

nnz

1020

1nnzPurpose Number of nonzero matrix elements

Syntax n = nnz(X)

Description n = nnz(X) returns the number of nonzero elements in matrix X.

The density of a sparse matrix is nnz(X)/prod(size(X)).

Examples The matrix

 w = sparse(wilkinson(21));

is a tridiagonal matrix with 20 nonzeros on each of three diagonals, so
nnz(w) = 60.

See Also find, isa, nonzeros, nzmax, size, whos

noanimate

1021

1noanimatePurpose Change EraseMode of all objects to normal

Syntax noanimate(state,fig_handle)
noanimate(state)

Description noanimate(state,fig_handle) sets the EraseMode of all image, line, patch
surface, and text graphics object in the specified figure to normal. state can be
the following strings:

• 'save' – set the values of the EraseMode properties to normal for all the
appropriate objects in the designated figure.

• 'restore' – restore the EraseMode properties to the previous values (i.e., the
values before calling noanimate with the 'save' argument).

noanimate(state) operates on the current figure.

noanimate is useful if you want to print the figure to a Tiff or JPEG format.

See Also print

nonzeros

1022

1nonzerosPurpose Nonzero matrix elements

Syntax s = nonzeros(A)

Description s = nonzeros(A) returns a full column vector of the nonzero elements in A,
ordered by columns.

This gives the s, but not the i and j, from [i,j,s] = find(A). Generally,

length(s) = nnz(A) ≤ nzmax(A) ≤ prod(size(A))

See Also find, isa, nnz, nzmax, size, whos

norm

1023

1normPurpose Vector and matrix norms

Syntax n = norm(A)
n = norm(A,p)

Description The norm of a matrix is a scalar that gives some measure of the magnitude of
the elements of the matrix. The norm function calculates several different types
of matrix norms:

n = norm(A) returns the largest singular value of A, max(svd(A)).

n = norm(A,p) returns a different kind of norm, depending on the value of p:

When A is a vector, slightly different rules apply:

Remarks To obtain the root-mean-square (RMS) value, use norm(A)/sqrt(n). Note that
norm(A), where A is an n-element vector, is the length of A.

See Also cond, condest, normest, rcond, svd

If p is... Then norm returns...

1 The 1-norm, or largest column sum of A,
max(sum(abs((A))).

2 The largest singular value (same as norm(A)).

inf The infinity norm, or largest row sum of A,
max(sum(abs(A'))).

'fro' The Frobenius-norm of matrix A,
sqrt(sum(diag(A'∗A))).

norm(A,p) Returns sum(abs(A).^p)^(1/p), for any 1 ≤ p ≤ ∞.

norm(A) Returns norm(A,2).

norm(A,inf) Returns max(abs(A)).

norm(A,-inf) Returns min(abs(A)).

normest

1024

1normestPurpose 2-norm estimate

Syntax nrm = normest(S)
nrm = normest(S,tol)
[nrm,count] = normest(...)

Description This function is intended primarily for sparse matrices, although it works
correctly and may be useful for large, full matrices as well.

nrm = normest(S) returns an estimate of the 2-norm of the matrix S.

nrm = normest(S,tol) uses relative error tol instead of the default tolerance
1.e-6. The value of tol determines when the estimate is considered
acceptable.

[nrm,count] = normest(...) returns an estimate of the 2-norm and also
gives the number of power iterations used.

Examples The matrix W = gallery('wilkinson',101) is a tridiagonal matrix. Its order,
101, is small enough that norm(full(W)), which involves svd(full(W)), is
feasible. The computation takes 4.13 seconds (on one computer) and produces
the exact norm, 50.7462. On the other hand, normest(sparse(W)) requires
only 1.56 seconds and produces the estimated norm, 50.7458.

Algorithm The power iteration involves repeated multiplication by the matrix S and its
transpose, S'. The iteration is carried out until two successive estimates agree
to within the specified relative tolerance.

See Also cond, condest, norm, rcond, svd

now

1025

1nowPurpose Current date and time

Syntax t = now

Description t = now returns the current date and time as a serial date number. To return
the time only, use rem(now,1). To return the date only, use floor(now).

Examples t1 = now, t2 = rem(now,1)

t1 =

 7.2908e+05

t2 =

 0.4013

See Also clock, date, datenum

null

1026

1nullPurpose Null space of a matrix

Syntax B = null(A)

Description B = null(A) returns an orthonormal basis for the null space of A.

Remarks B'*B = I, A*B has negligible elements, and (if B is not equal to the empty
matrix) the number of columns of B is the nullity of A.

Example A =
 1 2 3
 1 2 3
 1 2 3

null(A)

ans =
 -0.1559 0.9509
 -0.7971 -0.2809
 0.5834 -0.1297

null(A,'r')

ans =
 -2 -3
 1 0
 0 1

See Also orth, qr, svd

num2cell

1027

1num2cellPurpose Convert a numeric array into a cell array

Syntax c = num2cell(A)
c = num2cell(A,dims)

Description c = num2cell(A) converts the matrix A into a cell array by placing each
element of A into a separate cell. Cell array c will be the same size as matrix A.

c = num2cell(A,dims) converts the matrix A into a cell array by placing the
dimensions specified by dims into separate cells. C will be the same size as A
except that the dimensions matching dims will be 1.

Examples The statement

num2cell(A,2)

places the rows of A into separate cells. Similarly

num2cell(A,[1 3])

places the column-depth pages of A into separate cells.

See Also cat

num2str

1028

1num2strPurpose Number to string conversion

Syntax str = num2str(A)
str = num2str(A,precision)
str = num2str(A,format)

Description The num2str function converts numbers to their string representations. This
function is useful for labeling and titling plots with numeric values.

str = num2str(a) converts array A into a string representation str with
roughly four digits of precision and an exponent if required.

str = num2str(a,precision) converts the array A into a string
representation strwith maximum precision specified by precision. Argument
precision specifies the number of digits the output string is to contain. The
default is four.

str = num2str(A,format) converts array A using the supplied format. By
default, this is '%11.4g', which signifies four significant digits in exponential
or fixed-point notation, whichever is shorter. (See fprintf for format string
details).

Examples num2str(pi) is 3.142.

num2str(eps) is 2.22e-16.

num2str(magic(2)) produces the string matrix

1 3
4 2

See Also fprintf, int2str, sprintf

numel

1029

1numelPurpose Number of elements in a matrix

Syntax n = numel(a)

Description n = numel(a) returns the scalar count, n, of the number of elements in the
matrix, a.

numel(a) gives the same answer as prod(size(a)). However, if the size
function has been overloaded, prod(size(a)) may not provide an accurate
count.

Note It is strongly recommended that you not overload the numel function.

numel can also be used with subsref to determine the number of values that
will be returned from a particular call to subsref. See the second example
below to see how to use this.

Examples Create a 4-by-4-by-2 matrix. numel counts 32 elments in the matrix.

a = magic(4);
a(:,:,2) = a'

a(:,:,1) =
 16 2 3 13
 5 11 10 8
 9 7 6 12
 4 14 15 1

a(:,:,2) =
 16 5 9 4
 2 11 7 14
 3 10 6 15
 13 8 12 1

numel(a)
ans =
 32

numel

1030

In this example, numel indicates that stockobj(3) references six values. The
indexed reference to stockobj is made using subsref.

n = numel(stockobj(3))
n =
 6

Calling subsref on stockobj(3) does indeed return six values.

stockobj(3)
ans =
 1.0417 5.2000
 7.0000 39.0400
 4.2200 56.4340

See Also size, prod, subsref

nzmax

1031

1nzmaxPurpose Amount of storage allocated for nonzero matrix elements

Syntax n = nzmax(S)

Description n = nzmax(S) returns the amount of storage allocated for nonzero elements.

Often, nnz(S) and nzmax(S) are the same. But if S is created by an operation
which produces fill-in matrix elements, such as sparse matrix multiplication or
sparse LU factorization, more storage may be allocated than is actually
required, and nzmax(S) reflects this. Alternatively, sparse(i,j,s,m,n,nzmax)
or its simpler form, spalloc(m,n,nzmax), can set nzmax in anticipation of later
fill-in.

See Also find, isa, nnz, nonzeros, size, whos

If S is a sparse matrix... nzmax(S) is the number of storage locations
allocated for the nonzero elements in S.

If S is a full matrix... nzmax(S) = prod(size(S)).

ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb

1032

1ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tbPurpose Solve initial value problems for ordinary differential equations (ODEs)

Syntax [T,Y] = solver(odefun,tspan,y0)
[T,Y] = solver(odefun,tspan,y0,options)
[T,Y] = solver(odefun,tspan,y0,options,p1,p2...)
[T,Y,TE,YE,IE] = solver(odefun,tspan,y0,options)

where solver is one of ode45, ode23, ode113, ode15s, ode23s, ode23t, or
ode23tb.

Arguments

Description [T,Y] = solver(odefun,tspan,y0) with tspan = [t0 tf] integrates the
system of differential equations from time t0 to tf with initial
conditions y0. Function f = odefun(t,y), for a scalar t and a column vector y,
must return a column vector f corresponding to . Each row in solution
array Y corresponds to a time returned in column vector T. To obtain solutions
at the specific times t0, t1,...,tf (all increasing or all decreasing), use
tspan = [t0,t1,...,tf].

[T,Y] = solver(odefun,tspan,y0,options) solves as above with default
integration parameters replaced by property values specified in options, an
argument created with the odeset function. Commonly used properties include

odefun A function that evaluates the right-hand side of the differential
equations. All solvers solve systems of equations in the form

 or problems that involve a mass matrix,
. The ode23s solver can solve only equations with

constant mass matrices. ode15s and ode23t can solve problems
with a mass matrix that is singular, i.e., differential-algebraic
equations (DAEs).

tspan A vector specifying the interval of integration, [t0 tf]. To obtain
solutions at specific times (all increasing or all decreasing), use
tspan = [t0,t1,...,tf].

y0 A vector of initial conditions.

options Optional integration argument created using the odeset function.
See odeset for details.

p1,p2... Optional parameters to be passed to odefun.

y′ f t y,()=
M t y,() y′ f t y,()=

y′ f t y,()=

f t y,()

ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb

1033

a scalar relative error tolerance RelTol (1e-3 by default) and a vector of
absolute error tolerances AbsTol (all components are 1e-6 by default). See
odeset for details.

[T,Y] = solver(odefun,tspan,y0,options,p1,p2...) solves as above,
passing the additional parameters p1,p2... to the function odefun, whenever
it is called. Use options = [] as a place holder if no options are set.

[T,Y,TE,YE,IE] = solver(odefun,tspan,y0,options) solves as above while
also finding where functions of , called event functions, are zero. For each
event function, you specify whether the integration is to terminate at a zero
and whether the direction of the zero crossing matters. This is done by setting
the Events property to, say, @EVENTS, and creating a function
[value,isterminal,direction] = EVENTS(t,y). For the ith event function:

• value(i) is the value of the function.

• isterminal(i) = 1 if the integration is to terminate at a zero of this event
function and 0 otherwise.

• direction(i) = 0 if all zeros are to be computed (the default), +1 if only the
zeros where the event function increases, and -1 if only the zeros where the
event function decreases.

Corresponding entries in TE, YE, and IE return, respectively, the time at which
an event occurs, the solution at the time of the event, and the index i of the
event function that vanishes.

If you specify an output function as the value of the OutputFcn property, the
solver will call it with the computed solution after each time step. Four output
functions are provided: odeplot, odephas2, odephas3, odeprint. When the
solver is called with no output arguments, it calls the default odeplot to plot
the solution as it is computed. odephas2 and odephas3 produce two- and
three-dimnesional phase plane plots, respectively. odeprint displays the
solution components on the screen. By default, all components of the solution
are passed to the output function, but you can pass only specific components by
providing a vector of indices as the value of the OutputSel property. For
example, if you call the solver with no output arguments and set the value of
OutputSel to [1,3], the solver plots solution components 1 and 3 as they are
computed.

t y(,)

ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb

1034

For the stiff solvers ode15s, ode23s, ode23t, and ode23tb, the Jacobian matrix
 is critical to reliability and efficiency. Use odeset to set Jacobian to

@FJAC if FJAC(T,Y) returns the Jacobian or to the matrix if the
Jacobian is constant. If the Jacobian property is not set (the default), is
approximated by finite differences. Set the Vectorized property 'on' if the ODE
function is coded so that odefun(T,[Y1,Y2 ...]) returns
[odefun(T,Y1),odefun(T,Y2) ...]. If is a sparse matrix, set the JPattern
property to the sparsity pattern of , i.e., a sparse matrix S with S(i,j) =
1 if the ith component of depends on the jth component of , and 0
otherwise.

The solvers of the ODE suite can solve problems of the form ,
with time- and state-dependent mass matrix . (The ode23s solver can solve
only equations with constant mass matrices.) If a problem has a mass matrix,
create a function M = MASS(t,y) that returns the value of the mass matrix, and
use odeset to set the Mass property to @MASS. If the mass matrix is constant,
the matrix should be used as the value of the Mass property. Problems with
state-dependent mass matrices are more difficult:

• If the mass matrix does not depend on the state variable and the function
MASS is to be called with one input argument, t, set the MStateDependence
property to 'none'.

• If the mass matrix depends weakly on , set MStateDependence to 'weak' (the
default) and otherwise, to 'strong'. In either case, the function MASS is called
with the two arguments (t,y).

If there are many differential equations, it is important to exploit sparsity:

• Return a sparse .

• Supply the sparsity pattern of using the JPattern property or a
sparse using the Jacobian property.

• For strongly state-dependent , set MvPattern to a sparse matrix S
with S(i,j) = 1 if for any k, the (i,k) component of depends on
component j of , and 0 otherwise.

If the mass matrix is singular, then is a differential
algebraic equation. DAEs have solutions only when is consistent, that is, if
there is a vector such that . The ode15s and
ode23t solvers can solve DAEs of index 1 provided that y0 is sufficiently close

∂f ∂y⁄
∂f ∂y⁄ ∂f ∂y⁄

∂f ∂y⁄

∂f ∂y⁄
∂f ∂y⁄

f t y,() y

M t y,() y′ f t y,()=
M

y

y

M t y,()

∂f ∂y⁄
∂f ∂y⁄

M t y,()
M t y,()

y

M M t y,() y′ f t y,()=
y0

y p0 M t0 y0,() y p0 f t0 y0,()=

ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb

1035

to being consistent. If there is a mass matrix, you can use odeset to set the
MassSingular property to 'yes', 'no', or 'maybe'. The default value of
'maybe' causes the solver to test whether the problem is a DAE. You can
provide yp0 as the value of the InitialSlope property. The default is the zero
vector. If a problem is a DAE, and y0 and yp0 are not consistent, the solver
treats them as guesses, attempts to compute consistent values that are close to
the guesses, and continues to solve the problem. When solving DAEs, it is very
advantageous to formulate the problem so that is a diagonal matrix (a
semi-explicit DAE).

The algorithms used in the ODE solvers vary according to order of accuracy [6]
and the type of systems (stiff or nonstiff) they are designed to solve. See
“Algorithms” on page 1-1038 for more details.

Options Different solvers accept different parameters in the options list. For more
information, see odeset and Improving ODE Solver Performance in the

M

Solver Problem
Type

Order of
Accuracy

When to Use

ode45 Nonstiff Medium Most of the time. This should be the first solver you
try.

ode23 Nonstiff Low If using crude error tolerances or solving moderately
stiff problems.

ode113 Nonstiff Low to high If using stringent error tolerances or solving a
computationally intensive ODE file.

ode15s Stiff Low to
medium

If ode45 is slow because the problem is stiff.

ode23s Stiff Low If using crude error tolerances to solve stiff systems
and the mass matrix is constant.

ode23t Moderately
Stiff

Low If the problem is only moderately stiff and you need
a solution without numerical damping.

ode23tb Stiff Low If using crude error tolerances to solve stiff systems.

ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb

1036

“Differential Equations” section of the Mathematical Analysis MATLAB
documentation.

Examples Example 1. An example of a nonstiff system is the system of equations
describing the motion of a rigid body without external forces.

To simulate this system, create a function rigid containing the equations

function dy = rigid(t,y)
dy = zeros(3,1); % a column vector

Parameters ode45 ode23 ode113 ode15s ode23s ode23t ode23tb

RelTol, AbsTol,
NormControl

√ √ √ √ √ √ √

OutputFcn,
OutputSel,
Refine, Stats

√ √ √ √ √ √ √

Events √ √ √ √ √ √ √

MaxStep,
InitialStep

√ √ √ √ √ √ √

Jacobian,
JPattern,
Vectorized

— — — √ √ √ √

Mass
MStateDependence
MvPattern
MassSingular

√
√
—
—

√
√
—
—

√
√
—
—

√
√
√
√

√
—
—
—

√
√
√
√

√
√
√
—

InitialSlope — — — √ — √ —

MaxOrder, BDF — — — √ — — —

y′1 y2 y3=

y′2 y1 y3–=

y′3 0.51 y1 y2–=

y1 0() 0=

y2 0() 1=

y3 0() 1=

ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb

1037

dy(1) = y(2) * y(3);
dy(2) = -y(1) * y(3);
dy(3) = -0.51 * y(1) * y(2);

In this example we change the error tolerances using the odeset command and
solve on a time interval of [0 12] with an initial condition vector [0 1 1] at
time 0.

options = odeset('RelTol',1e-4,'AbsTol',[1e-4 1e-4 1e-5]);
[T,Y] = ode45(@rigid,[0 12],[0 1 1],options);

Plotting the columns of the returned array Y versus T shows the solution

plot(T,Y(:,1),'-',T,Y(:,2),'-.',T,Y(:,3),'.')

Example 2. An example of a stiff system is provided by the van der Pol
equations in relaxation oscillation. The limit cycle has portions where the
solution components change slowly and the problem is quite stiff, alternating
with regions of very sharp change where it is not stiff.

0 2 4 6 8 10 12
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb

1038

To simulate this system, create a function vdp1000 containing the equations

function dy = vdp1000(t,y)
dy = zeros(2,1); % a column vector
dy(1) = y(2);
dy(2) = 1000*(1 - y(1)^2)*y(2) - y(1);

For this problem, we will use the default relative and absolute tolerances (1e-3
and 1e-6, respectively) and solve on a time interval of [0 3000] with initial
condition vector [2 0] at time 0.

[T,Y] = ode15s(@vdp1000,[0 3000],[2 0]);

Plotting the first column of the returned matrix Y versus T shows the solution

plot(T,Y(:,1),'-o'):

Algorithms ode45 is based on an explicit Runge-Kutta (4,5) formula, the Dormand-Prince
pair. It is a one-step solver – in computing y(tn), it needs only the solution at

y′1 y2=

y′2 1000 1 y1
2

–() y2 y1–=

y1 0() 0=

y2 0() 1=

0 500 1000 1500 2000 2500 3000
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb

1039

the immediately preceding time point, y(tn-1). In general, ode45 is the best
function to apply as a “first try” for most problems. [3]

ode23 is an implementation of an explicit Runge-Kutta (2,3) pair of Bogacki
and Shampine. It may be more efficient than ode45 at crude tolerances and in
the presence of moderate stiffness. Like ode45, ode23 is a one-step solver. [2]

ode113 is a variable order Adams-Bashforth-Moulton PECE solver. It may be
more efficient than ode45 at stringent tolerances and when the ODE file
function is particularly expensive to evaluate. ode113 is a multistep solver – it
normally needs the solutions at several preceding time points to compute the
current solution. [7]

The above algorithms are intended to solve nonstiff systems. If they appear to
be unduly slow, try using one of the stiff solvers below.

ode15s is a variable order solver based on the numerical differentiation
formulas (NDFs). Optionally, it uses the backward differentiation formulas
(BDFs, also known as Gear’s method) that are usually less efficient. Like
ode113, ode15s is a multistep solver. Try ode15s when ode45 fails, or is very
inefficient, and you suspect that the problem is stiff, or when solving a
differential-algebraic problem. [9], [10]

ode23s is based on a modified Rosenbrock formula of order 2. Because it is a
one-step solver, it may be more efficient than ode15s at crude tolerances. It can
solve some kinds of stiff problems for which ode15s is not effective. [9]

ode23t is an implementation of the trapezoidal rule using a “free” interpolant.
Use this solver if the problem is only moderately stiff and you need a solution
without numerical damping. ode23t can solve DAEs. [10]

ode23tb is an implementation of TR-BDF2, an implicit Runge-Kutta formula
with a first stage that is a trapezoidal rule step and a second stage that is a
backward differentiation formula of order two. By construction, the same
iteration matrix is used in evaluating both stages. Like ode23s, this solver may
be more efficient than ode15s at crude tolerances. [8], [1]

See Also @ (function_handle), odeset, odeget

References [1] Bank, R. E., W. C. Coughran, Jr., W. Fichtner, E. Grosse, D. Rose, and
R. Smith, “Transient Simulation of Silicon Devices and Circuits,” IEEE Trans.
CAD, 4 (1985), pp 436-451.

ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb

1040

[2] Bogacki, P. and L. F. Shampine, “A 3(2) pair of Runge-Kutta formulas,”
Appl. Math. Letters, Vol. 2, 1989, pp 1-9.

[3] Dormand, J. R. and P. J. Prince, “A family of embedded Runge-Kutta
formulae,” J. Comp. Appl. Math., Vol. 6, 1980, pp 19-26.

[4] Forsythe, G. , M. Malcolm, and C. Moler, Computer Methods for
Mathematical Computations, Prentice-Hall, New Jersey, 1977.

[5] Kahaner, D. , C. Moler, and S. Nash, Numerical Methods and Software,
Prentice-Hall, New Jersey, 1989.

[6] Shampine, L. F. , Numerical Solution of Ordinary Differential Equations,
Chapman & Hall, New York, 1994.

[7] Shampine, L. F. and M. K. Gordon, Computer Solution of Ordinary
Differential Equations: the Initial Value Problem, W. H. Freeman,
San Francisco, 1975.

[8] Shampine, L. F. and M. E. Hosea, “Analysis and Implementation of
TR-BDF2,” Applied Numerical Mathematics 20, 1996.

[9] Shampine, L. F. and M. W. Reichelt, “The MATLAB ODE Suite,” SIAM
Journal on Scientific Computing, Vol. 18, 1997, pp 1-22.

[10] Shampine, L. F., M. W. Reichelt, and J.A. Kierzenka, “Solving Index-1
DAEs in MATLAB and Simulink,” SIAM Review, Vol. 41, 1999, pp 538-552.

odefile

1041

1odefilePurpose Define a differential equation problem for ordinary differential equation (ODE)
solvers

Note This reference page describes the odefile and the syntax of the ODE
solvers used in MATLAB, Version 5. MATLAB, Version 6, supports the
odefile for backward compatibility, however the new solver syntax does not
use an ODE file. New functionality is available only with the new syntax. For
information about the new syntax, see any of the ODE solvers or odeset.

Description odefile is not a command or function. It is a help entry that describes how to
create an M-file defining the system of equations to be solved. This definition
is the first step in using any of MATLAB’s ODE solvers. In MATLAB
documentation, this M-file is referred to as an odefile, although you can give
your M-file any name you like.

You can use the odefile M-file to define a system of differential equations in
one of these forms

or

where:

• is a scalar independent variable, typically representing time.

• is a vector of dependent variables.

• is a function of and returning a column vector the same length as .

• is a time-and-state-dependent mass matrix.

The ODE file must accept the arguments t and y, although it does not have to
use them. By default, the ODE file must return a column vector the same
length as y.

All of the solvers of the ODE suite can solve , except ode23s,
which can only solve problems with constant mass matrices. The ode15s and

y′ f t y,()=

M t y,() y′ f t y,()=

t

y

f t y y

M t y,()

M t y,() y′ f t y,()=

odefile

1042

ode23t solvers can solve some differential-algebraic equations (DAEs) of the
form .

Beyond defining a system of differential equations, you can specify an entire
initial value problem (IVP) within the ODE M-file, eliminating the need to
supply time and initial value vectors at the command line (see Examples on
page 2-1044).

To Use the ODE File Template

• Enter the command help odefile to display the help entry.

• Cut and paste the ODE file text into a separate file.

• Edit the file to eliminate any cases not applicable to your IVP.

• Insert the appropriate information where indicated. The definition of the
ODE system is required information.

switch flag
 case '' % Return dy/dt = f(t,y).
 varargout{1} = f(t,y,p1,p2);
 case 'init' % Return default [tspan,y0,options].
 [varargout{1:3}] = init(p1,p2);
 case 'jacobian' % Return Jacobian matrix df/dy.
 varargout{1} = jacobian(t,y,p1,p2);
 case 'jpattern' % Return sparsity pattern matrix S.
 varargout{1} = jpattern(t,y,p1,p2);
 case 'mass' % Return mass matrix.
 varargout{1} = mass(t,y,p1,p2);
case 'events' % Return [value,isterminal,direction].
 [varargout{1:3}] = events(t,y,p1,p2);
 otherwise
 error(['Unknown flag ''' flag '''.']);
 end
% ---
function dydt = f(t,y,p1,p2)
 dydt = < Insert a function of t and/or y, p1, and p2 here. >
% ---
function [tspan,y0,options] = init(p1,p2)
 tspan = < Insert tspan here. >;
 y0 = < Insert y0 here. >;

M t() y′ f t y,()=

odefile

1043

 options = < Insert options = odeset(...) or [] here. >;
% --
function dfdy = jacobian(t,y,p1,p2)
 dfdy = < Insert Jacobian matrix here. >;
% --
function S = jpattern(t,y,p1,p2)
 S = < Insert Jacobian matrix sparsity pattern here. >;
% --
function M = mass(t,y,p1,p2)
 M = < Insert mass matrix here. >;
% --
function [value,isterminal,direction] = events(t,y,p1,p2)
 value = < Insert event function vector here. >
 isterminal = < Insert logical ISTERMINAL vector here.>;
 direction = < Insert DIRECTION vector here.>;

Notes

1 The ODE file must accept t and y vectors from the ODE solvers and must
return a column vector the same length as y. The optional input argument
flag determines the type of output (mass matrix, Jacobian, etc.) returned
by the ODE file.

2 The solvers repeatedly call the ODE file to evaluate the system of
differential equations at various times. This is required information – you
must define the ODE system to be solved.

3 The switch statement determines the type of output required, so that the
ODE file can pass the appropriate information to the solver. (See notes 4 - 9.)

4 In the default initial conditions ('init') case, the ODE file returns basic
information (time span, initial conditions, options) to the solver. If you omit
this case, you must supply all the basic information on the command line.

5 In the 'jacobian' case, the ODE file returns a Jacobian matrix to the
solver. You need only provide this case when you want to improve the
performance of the stiff solvers ode15s, ode23s, ode23t, and ode23tb.

6 In the 'jpattern' case, the ODE file returns the Jacobian sparsity pattern
matrix to the solver. You need to provide this case only when you want to
generate sparse Jacobian matrices numerically for a stiff solver.

odefile

1044

7 In the 'mass' case, the ODE file returns a mass matrix to the solver. You
need to provide this case only when you want to solve a system in the form

.

8 In the 'events' case, the ODE file returns to the solver the values that it
needs to perform event location. When the Events property is set to on, the
ODE solvers examine any elements of the event vector for transitions to,
from, or through zero. If the corresponding element of the logical
isterminal vector is set to 1, integration will halt when a zero-crossing is
detected. The elements of the direction vector are -1, 1, or 0, specifying
that the corresponding event must be decreasing, increasing, or that any
crossing is to be detected.

9 An unrecognized flag generates an error.

Examples The van der Pol equation, , is equivalent to a system
of coupled first-order differential equations.

The M-file

function out1 = vdp1(t,y)
out1 = [y(2); (1-y(1)^2)*y(2) - y(1)];

defines this system of equations (with µ = 1).

To solve the van der Pol system on the time interval [0 20] with initial values
(at time 0) of y(1) = 2 and y(2) = 0, use

[t,y] = ode45('vdp1',[0 20],[2; 0]);
plot(t,y(:,1),'-',t,y(:,2),'-.')

M t y,() y′ f t y,()=

y′′1 µ 1 y1
2

–() y′– y1+ 0=

y′1 y2=

y′2 µ 1 y1
2

–() y2 y1–=

odefile

1045

To specify the entire initial value problem (IVP) within the M-file, rewrite vdp1
as follows.

function [out1,out2,out3] = vdp1(t,y,flag)
if nargin < 3 | isempty(flag)
 out1 = [y(1).*(1-y(2).^2)-y(2); y(1)];
else
 switch(flag)
 case 'init' % Return tspan, y0, and options.
 out1 = [0 20];
 out2 = [2; 0];
 out3 = [];
 otherwise
 error(['Unknown request ''' flag '''.']);
 end
end

You can now solve the IVP without entering any arguments from the command
line.

[T,Y] = ode23('vdp1')

0 2 4 6 8 10 12 14 16 18 20
−3

−2

−1

0

1

2

3

odefile

1046

In this example the ode23 function looks to the vdp1 M-file to supply the
missing arguments. Note that, once you’ve called odeset to define options, the
calling syntax

[T,Y] = ode23('vdp1',[],[],options)

also works, and that any options supplied via the command line override
corresponding options specified in the M-file (see odeset).

See Also The MATLAB Version 5 help entries for the ODE solvers and their associated
functions: ode23, ode45, ode113, ode15s, ode23s, ode23t, ode23tb, odeget,
odeset

Type at the MATLAB command line: more on, type function, more off.
The Version 5 help follows the Version 6 help.

odeget

1047

1odegetPurpose Extract properties from options structure created with odeset

Syntax o = odeget(options,'name')
o = odeget(options,'name',default)

Description o = odeget(options,'name') extracts the value of the property specified by
string 'name' from integrator options structure options, returning an empty
matrix if the property value is not specified in options. It is only necessary to
type the leading characters that uniquely identify the property name. Case is
ignored for property names. The empty matrix [] is a valid options argument.

o = odeget(options,'name',default) returns o = default if the named
property is not specified in options.

Example Having constructed an ODE options structure,

options = odeset('RelTol',1e-4,'AbsTol',[1e-3 2e-3 3e-3]);

you can view these property settings with odeget.

odeget(options,'RelTol')
ans =

1.0000e-04

odeget(options,'AbsTol')
ans =

0.0010 0.0020 0.0030

See Also odeset

odeset

1048

1odesetPurpose Create or alter options structure for input to ordinary differential equation
(ODE) solvers

Syntax options = odeset('name1',value1,'name2',value2,...)
options = odeset(oldopts,'name1',value1,...)
options = odeset(oldopts,newopts)
odeset

Description The odeset function lets you adjust the integration parameters of the ODE
solvers. The ODE solvers can integrate systems of differential equations of one
of these forms

or

See below for information about the integration parameters.

options = odeset('name1',value1,'name2',value2,...) creates an
integrator options structure in which the named properties have the specified
values. Any unspecified properties have default values. It is sufficient to type
only the leading characters that uniquely identify a property name. Case is
ignored for property names.

options = odeset(oldopts,'name1',value1,...) alters an existing options
structure oldopts.

options = odeset(oldopts,newopts) alters an existing options structure
oldopts by combining it with a new options structure newopts. Any new
options not equal to the empty matrix overwrite corresponding options in
oldopts.

odeset with no input arguments displays all property names as well as their
possible and default values.

Properties The available properties depend on the ODE solver used. There are several
categories of properties:

• Error tolerance

y′ f t y,()=

M t y,() y′ f t y,()=

odeset

1049

• Solver output

• Jacobian matrix

• Event location

• Mass matrix and differential-algebraic equations (DAEs)

• Step size
• ode15s

Note This reference page describes the ODE properties for MATLAB,
Version 6. The Version 5 properties are supported only for backward
compatibility. For information on the Version 5 properties, type at the
MATLAB command line: more on, type odeset, more off.

Table 1-1: Error Tolerance Properties

Property Value Description

RelTol Positive
scalar {1e-3}

A relative error tolerance that applies to all
components of the solution vector. The
estimated error in each integration step
satisfies
e(i) ≤ max(RelTol*abs(y(i)),AbsTol(i)).

AbsTol Positive
scalar or
vector {1e-6}

The absolute error tolerance. If scalar, the
tolerance applies to all components of the
solution vector. Otherwise the tolerances
apply to corresponding components.

NormControl on | {off} Control error relative to norm of solution.
Set this property on to request that the
solvers control the error in each integration
step with
norm(e) ≤ max(RelTol*norm(y),AbsTol).
By default the solvers use a more stringent
component-wise error control.

odeset

1050

Table 1-2: Solver Output Properties

Property Value Description

OutputFcn Function Installable output function. The ODE solvers
provide sample functions that you can use or
modify:

odeplot Time series plotting (default)

odephas2 Two-dimensional phase plane
plotting

odephas3 Three-dimensional phase plane
plotting

odeprint Print solution as it is computed

To create or modify an output function, see ODE
Solver Output Properties in the “Differential
Equations” section of the MATLAB
documentation.

OutputSel Vector of
indices

Specifies the components of the solution vector
that the solver passes to the output function.

Refine Positive
integer

Produces smoother output, increasing the
number of output points by the specified factor.
The default value is 1 in all solvers except ode45,
where it is 4. Refine doesn’t apply if
length(tspan) > 2.

Stats on | {off} Specifies whether the solver should display
statistics about the computational cost of the
integration.

odeset

1051

Table 1-3: Jacobian Matrix Properties (for ode15s, ode23s, ode23t, and
ode23tb)

Property Value Description

Jacobian Function |
constant
matrix

Jacobian function. Set this property to @FJac
(if a function FJac(t,y) returns) or to
the constant value of .

JPattern Sparse
matrix of
{0,1}

Sparsity pattern. Set this property to a sparse
matrix with if component of

 depends on component of , and 0
otherwise.

Vectorized on | {off} Vectorized ODE function. Set this property on
to inform the stiff solver that the ODE
function F is coded so that F(t,[y1 y2 ...])
returns the vector [F(t,y1) F(t,y2) ...].
That is, your ODE function can pass to the
solver a whole array of column vectors at once.
A stiff function calls your ODE function in a
vectorized manner only if it is generating
Jacobians numerically (the default behavior)
and you have used odeset to set Vectorized
to on.

Table 1-4: Event Location Property

Property Value Description

Events Function Locate events. Set this property to @Events,
where Events is the event function. See the
ODE solvers for details.

∂f ∂y⁄
∂f ∂y⁄

S S i j,() 1= i
f t y,() j y

odeset

1052

Table 1-5: Mass Matrix and DAE-Related Properties

Property Value Description

Mass Constant
matrix |
function

For problems set this
property to the value of the constant
mass matrix . For problems

, set this property to
@Mfun, where Mfun is a function that
evaluates the mass matrix .

MStateDependence none |
{weak} |
strong

Dependence of the mass matrix on .
Set this property to none for problems

. Both weak and strong
indicate , but weak results in
implicit solvers using approximations
when solving algebraic equations. For
use with all solvers except ode23s.

MvPattern Sparse
matrix

 sparsity pattern. Set
this property to a sparse matrix
with if for any , the
component of depends on
component of , and 0 otherwise.
For use with the ode15s, ode23t, and
ode23tb solvers when
MStateDependence is strong.

MassSingular yes | no |
{maybe}

Indicates whether the mass matrix is
singular. The default value of 'maybe'
causes the solver to test whether the
problem is a DAE. For use with the
ode15s and ode23t solvers.

InitialSlope Vector Consistent initial slope , where
 satisfies .

For use with the ode15s and ode23t
solvers when solving DAEs.

My′ f t y,()=

m
M t y,() y′ f t y,()=

M t y,()

y

M t() y′ f t y,()=
M t y,()

M t y,()v()∂ ∂y⁄
S

S i j,() 1= k i k,()
M t y,()

j y

y p0
y p0 M t0 y0,() y p0 f t0 y0,()=

odeset

1053

In addition there are two options that apply only to the ode15s solver.

See Also @ (function_handle), odeget, ode45, ode23, ode23t, ode23tb, ode113, ode15s,
ode23s

Table 1-6: Step Size Properties

Property Value Description

MaxStep Positive
scalar

An upper bound on the magnitude of the
step size that the solver uses. The default is
one-tenth of the tspan interval.

InitialStep Positive
scalar

Suggested initial step size. The solver tries
this first, but if too large an error results,
the solver uses a smaller step size.

Table 1-7: ode15s Properties

Property Value Description

MaxOrder 1 | 2 | 3 | 4 | {5} The maximum order formula used.

BDF on | {off} Set on to specify that ode15s should use
the backward differentiation formulas
(BDFs) instead of the default numerical
differentiation formulas (NDFs).

ones

1054

1onesPurpose Create an array of all ones

Syntax Y = ones(n)
Y = ones(m,n)
Y = ones([m n])
Y = ones(d1,d2,d3...)
Y = ones([d1 d2 d3...])
Y = ones(size(A))

Description Y = ones(n) returns an n-by-n matrix of 1s. An error message appears if n is
not a scalar.

Y = ones(m,n) or Y = ones([m n]) returns an m-by-n matrix of ones.

Y = ones(d1,d2,d3...) or Y = ones([d1 d2 d3...]) returns an array of 1s
with dimensions d1-by-d2-by-d3-by-....

Y = ones(size(A)) returns an array of 1s that is the same size as A.

See Also eye, rand, randn, zeros

open

1055

1openPurpose Open files based on extension

Syntax open('name')

Description open('name') opens the file name, where the specific action upon opening
depends on the type of file that name is.

Remarks Behavior When name Does Not Have an Extension
If name does not contain a file extension, open opens the object returned by
which(name), where name is a variable, function, or model. If there is no
matching helper function found, open uses the default editor.

If name does not contain a file extension and there is a matching filename
without an extension, open opens the file in the editor. If it does not find a
matching file without an extension, open looks for an M-file with the same
name on the path, and if found, opens it in the editor.

To handle a variable, open calls the function openvar.

name Action

variable Open array name in the Array Editor (the array
must be numeric); open calls openvar

figure file (*.fig) Open figure in a figure window

HTML file (*.html) Open HTML document in Help browser

M-file (name.m) Open M-file name in M-file Editor

model (name.mdl) Open model name in Simulink

p-file (name.p) Open the corresponding M-file, name.m, if it exists,
in the Editor

other extensions
(name.custom)

Open name.custom by calling the helper function
opencustom, where opencustom is a user-defined
function.

open

1056

Create Custom open
Create your own opencustom functions to change the way standard file types
are handled or to set up handlers for new file types. open calls the opencustom
function it finds on the path.

Examples Example 1 – No File Extension Specified
If testdata exists on the path,

open('testdata')

opens testdata in the editor.

If testdata does not exist, but testdata.m is on the path,

open('testdata')

opens testdata.m in the editor.

Example 2 – No File Extension Specified, M-file and Model Files Present
If testdata.m and testdata.mdl are both present on the search path, and you
type

open('testdata')

testdata.mdl opens in Simulink. This is because model files take precedence
over M-files, which you can see by typing

which('testdata')

It returns the file that takes precedence, in this case

testdata.mdl

Example 3 – Customized open
open('mychart.cht') calls opencht('myfigure.cht'), where opencht is a
user-created function that uses .cht files.

See Also hgload, hgsave, load, openvar, save, saveas

openfig

1057

1openfigPurpose Open new copy or raise existing copy of saved figure

Syntax openfig('filename.fig','new')
openfig('filename.fig','reuse')
openfig('filename.fig')
figure_handle = openfig(...)

Description openfig is designed for use with GUI figures. Use this function to:

• Open the FIG-file creating the GUI and ensure it is displayed on screen. This
provides compatibility with different screen sizes and resolutions.

• Control whether MATLAB displays one or multiple instances of the GUI at
any given time.

• Return the handle of the figure created, which is typically hidden for GUIs
figures.

openfig('filename.fig','new') opens the figure contained in the FIG-file,
filename.fig, and ensures it is visible and positioned completely on screen.
You do not have to specify the full path to the FIG-file as long as it is on your
MATLAB path. The .fig extension is optional.

openfig('filename.fig','reuse') opens the figure contained in the FIG-file
only if a copy is not currently open; otherwise openfig brings the existing copy
forward, making sure it is still visible and completely on screen.

openfig('filename.fig') is the same as openfig('filename.fig','new').

figure_handle = openfig(...) returns the handle to the figure.

Remarks If the FIG-file contains an invisible figure, openfig returns its handle and
leaves it invisible. The caller should make the figure visible when appropriate.

See Also guide, guihandles, movegui, open, hgload, save

opengl

1058

1openglPurpose Change automatic selection mode of OpenGL rendering

Syntax opengl selection_mode

Description The OpenGL autoselection mode applies when the RendererMode of the figure
is auto. Possible values for selection_mode are:

• autoselect allows OpenGL to be automatically selected if OpenGL is
available and if there is graphics hardware on the host machine.

• neverselect disables auto selection of OpenGL.

• advise prints a message to the command window if OpenGL rendering is
advised, but RenderMode is set to manual.

opengl, by itself, returns the current auto selection state.

opengl info prints information with the version and vendor of the OpenGL on
your system.

Note that the auto selection state only specifies that OpenGL should or not be
considered for rendering, it does not explicitly set the rendering to OpenGL.
This can be done by setting the Renderer property of figure to OpenGL. For
example,

set(gcf,'Renderer','OpenGL')

openvar

1059

1openvarPurpose Open workspace variable in the Array Editor for graphical editing

Graphical
Interface

As an alternative to the openvar function, double-click on a variable in the
Workspace browser.

Syntax openvar('name')

Description openvar('name') opens the workspace variable name in the Array Editor for
graphical debugging. The array must be numeric.

See Also load, save, workspace

Change values of array elements Change the display format

Use the tabs to view different variables
you have open in the Array Editor

optimget

1060

1optimgetPurpose Get optimization options structure parameter values

Syntax val = optimget(options,'param')
val = optimget(options,'param',default)

Description val = optimget(options,'param') returns the value of the specified
parameter in the optimization options structure options. You need to type only
enough leading characters to define the parameter name uniquely. Case is
ignored for parameter names.

val = optimget(options,'param',default) returns default if the specified
parameter is not defined in the optimization options structure options. Note
that this form of the function is used primarily by other optimization functions.

Examples This statement returns the value of the Display optimization options
parameter in the structure called my_options.

val = optimget(my_options,'Display')

This statement returns the value of the Display optimization options
parameter in the structure called my_options (as in the previous example)
except that if the Display parameter is not defined, it returns the value
'final'.

optnew = optimget(my_options,'Display','final');

See Also optimset, fminbnd, fminsearch, fzero, lsqnonneg

optimset

1061

1optimsetPurpose Create or edit optimization options parameter structure

Syntax options = optimset('param1',value1,'param2',value2,...)
optimset
options = optimset
options = optimset(optimfun)
options = optimset(oldopts,'param1',value1,...)
options = optimset(oldopts,newopts)

Description options = optimset('param1',value1,'param2',value2,...) creates an
optimization options structure called options, in which the specified
parameters (param) have specified values. Any unspecified parameters are set
to [] (parameters with value [] indicate to use the default value for that
parameter when options is passed to the optimization function). It is sufficient
to type only enough leading characters to define the parameter name uniquely.
Case is ignored for parameter names.

optimset with no input or output arguments displays a complete list of
parameters with their valid values.

options = optimset (with no input arguments) creates an options structure
options where all fields are set to [].

options = optimset(optimfun) creates an options structure optionswith all
parameter names and default values relevant to the optimization function
optimfun.

options = optimset(oldopts,'param1',value1,...) creates a copy of
oldopts, modifying the specified parameters with the specified values.

options = optimset(oldopts,newopts) combines an existing options
structure oldopts with a new options structure newopts. Any parameters in
newopts with nonempty values overwrite the corresponding old parameters in
oldopts.

optimset

1062

Parameters Optimization parameters used by MATLAB functions and Optimization
Toolbox functions:

Optimization parameters used by Optimization Toolbox functions (for more
information about individual parameters, see “Optimization Options
Parameters” in the Optimization Toolbox User’s Guide, and the optimization
functions that use these parameters):

Parameter Value Description

Display 'off' | 'iter' |
'final' | 'notify'

Level of display. 'off' displays
no output; 'iter' displays output
at each iteration; 'final'
displays just the final output;
'notify' dislays output only if
the function does not converge.

MaxFunEvals positive integer Maximum number of function
evaluations allowed.

MaxIter positive integer Maximum number of iterations
allowed.

TolFun positive scalar Termination tolerance on the
function value.

TolX positive scalar Termination tolerance on .x

Property Value Description

DerivativeCheck 'on' | {'off'} Compare user-supplied analytic derivatives
(gradients or Jacobian) to finite differencing
derivatives.

Diagnostics 'on' | {'off'} Print diagnostic information about the
function to be minimized or solved.

DiffMaxChange positive scalar | {1e-1} Maximum change in variables for finite
difference derivatives.

optimset

1063

DiffMinChange positive scalar | {1e-8} Minimum change in variables for finite
difference derivatives.

GoalsExactAchieve positive scalar integer |
{0}

Number of goals to achieve exactly (do not
over- or underachieve).

GradConstr 'on' | {'off'} Gradients for nonlinear constraints defined
by the user.

GradObj 'on' | {'off'} Gradient(s) for objective function(s) defined
by the user.

Hessian 'on' | {'off'} Hessian for the objective function defined by
the user.

HessMult function | {[]} Hessian multiply function defined by the
user.

HessPattern sparse matrix |{sparse
matrix of all ones}

Sparsity pattern of the Hessian for finite
differencing. The size of the matrix is n-by-n,
where n is the number of elements in x0, the
starting point.

HessUpdate {'bfgs'} | 'dfp' |
'gillmurray' |
'steepdesc'

Quasi-Newton updating scheme.

Jacobian 'on' | {'off'} Jacobian for the objective function defined
by the user.

JacobMult function | {[]} Jacobian multiply function defined by the
user.

JacobPattern sparse matrix |{sparse
matrix of all ones}

Sparsity pattern of the Jacobian for finite
differencing. The size of the matrix is
m-by-n, where m is the number of values in
the first argument returned by the
user-specified function fun, and n is the
number of elements in x0, the starting point.

Property Value Description

optimset

1064

Examples This statement creates an optimization options structure called options in
which the Display parameter is set to 'iter' and the TolFun parameter is set
to 1e-8.

options = optimset('Display','iter','TolFun',1e-8)

This statement makes a copy of the options structure called options, changing
the value of the TolX parameter and storing new values in optnew.

LargeScale {'on'} | 'off' Use large-scale algorithm if possible.

LevenbergMarquardt 'on' | {'off'} Chooses Levenberg-Marquardt over
Gauss-Newton algorithm.

LineSearchType 'cubicpoly' |
{'quadcubic'}

Line search algorithm choice.

MaxPCGIter positive integer Maximum number of PCG iterations
allowed. The default is the greater of 1 and
floor(n/2)) where n is the number of
elements in x0, the starting point.

MeritFunction 'singleobj' |
{'multiobj'}

Use goal attainment/minimax merit function
(multiobjective) vs. fmincon (single
objective).

MinAbsMax positive scalar integer |
{0}

Number of to minimize the worst case
absolute values

PrecondBandWidth positive integer | {0} |
Inf

Upper bandwidth of preconditioner for PCG.

TolCon positive scalar Termination tolerance on the constraint
violation.

TolPCG positive scalar | {0.1} Termination tolerance on the PCG iteration.

TypicalX vector of all ones Typical x values. The length of the vector is
equal to the number of elements in x0, the
starting point.

Property Value Description

F x()

optimset

1065

optnew = optimset(options,'TolX',1e-4);

This statement returns an optimization options structure that contains all the
parameter names and default values relevant to the function fminbnd.

optimset('fminbnd')

See Also optimget, fminbnd, fminsearch, fzero, lsqnonneg

orient

1066

1orientPurpose Set paper orientation for printed output

Syntax orient
orient landscape
orient portrait
orient tall
orient(fig_handle), orient(simulink_model)
orient(fig_handle,orientation), orient(simulink_model,orientation)

Description orient returns a string with the current paper orientation, either portrait,
landscape, or tall.

orient landscape sets the paper orientation of the current figure to full-page
landscape, orienting the longest page dimension horizontally. The figure is
centered on the page and scaled to fit the page with a 0.25 inch border.

orient portrait sets the paper orientation of the current figure to portrait,
orienting the longest page dimension vertically. The portrait option returns
the page orientation to MATLAB’s default. (Note that the result of using the
portrait option is affected by changes you make to figure properties. See the
“Algorithm” section for more specific information.)

orient tall maps the current figure to the entire page in portrait orientation,
leaving a 0.25 inch border.

orient(fig_handle), orient(simulink_model) returns the current
orientation of the specified figure or Simulink model.

orient(fig_handle,orientation), orient(simulink_model,orientation)

sets the orientation for the specified figure or Simulink model to the specified
orientation (landscape, portrait, or tall).

Algorithm orient sets the PaperOrientation, PaperPosition, and PaperUnits
properties of the current figure. Subsequent print operations use these
properties. The result of using the portrait option can be affected by default
property values as follows:

• If the current figure PaperType is the same as the default figure PaperType
and the default figure PaperOrientation has been set to landscape, then

orient

1067

the orient portrait command uses the current values of PaperOrientation
and PaperPosition to place the figure on the page.

• If the current figure PaperType is the same as the default figure PaperType
and the default figure PaperOrientation has been set to landscape, then
the orient portrait command uses the default figure PaperPosition with
the x, y and width, height values reversed (i.e., [y,x,height,width]) to position
the figure on the page.

• If the current figure PaperType is different from the default figure
PaperType, then the orient portrait command uses the current figure
PaperPosition with the x, y and width, height values reversed (i.e.,
[y,x,height,width]) to position the figure on the page.

See Also print, set

PaperOrientation, PaperPosition, PaperSize, PaperType, and PaperUnits
properties of figure graphics objects.

orth

1068

1orthPurpose Range space of a matrix

Syntax B = orth(A)

Description B = orth(A) returns an orthonormal basis for the range of A. The columns of B
span the same space as the columns of A, and the columns of B are orthogonal,
so that B'*B = eye(rank(A)). The number of columns of B is the rank of A.

See Also null, svd, rank

otherwise

1069

1otherwisePurpose Default part of switch statement

Description otherwise is part of the switch statement syntax, which allows for conditional
execution. The statements following otherwise are executed only if none of the
preceding case expressions (case_expr) match the switch expression
(sw_expr).

Examples The general form of the switch statement is:

switch sw_expr
 case case_expr
 statement
 statement
 case {case_expr1,case_expr2,case_expr3}
 statement
 statement
 otherwise
 statement
 statement
end

See switch for more details.

See Also switch

otherwise

1070

I-1

Index

Symbols
& 928
../ref/axes_prope.html#ALim 761
../ref/figure_props.html#CreateFcn 998
../ref/is.html 844, 861
| 928
~ 928

Numerics
1-norm 1023
2-norm (estimate of) 1024

A
Adams-Bashforth-Moulton ODE solver 1039
aligning scattered data

multi-dimensional 1013
two-dimensional 702

alpha channel 780
AlphaData

image property 761
AlphaDataMapping

image property 761
and (M-file function equivalent for &) 928
anti-diagonal 718
arguments, M-file

checking number of input 1008
number of input 1009
number of output 1009

array
finding indices of 552
maximum elements of 971
mean elements of 972
median elements of 973
minimum elements of 987
of all ones 1054

structure 504, 683
swapping dimensions of 834

arrays
opening 1055

ASCII data
reading from disk 919

audio
signal conversion 894, 1005

autoselection of OpenGL 533
average of array elements 972
axis crossing See zero of a function

B
BackingStore, Figure property 515
base two operations

logarithm 925
next power of two 1017

big endian formats 582
binary

data
writing to file 637

files
reading 608

mode for opened files 582
binary data

reading from disk 919
bisection search 644
bit depth 782

querying 774
support

See also index entries for individual file
formats

supported bit depths 782
BMP 773, 779, 786

bit depths supported when writing 790

Index

I-2

browser
for help 724

BusyAction

Figure property 516
Image property 761
Light property 887
Line property 902

ButtonDownFcn

Figure property 516
Image property 762
Light property 887
Line property 902

C
case

upper to lower 936
CData

Image property 762
CDataMapping

Image property 764
cell array

conversion to from numeric array 1027
characters

conversion, in format specification string 596
escape, in format specification string 597

Children

Figure property 516
Image property 764
Light property 887
Line property 902

class, object See object classes
classes

field names 504
loaded 800

Clipping

Figure property 516

Image property 764
Light property 887
Line property 902

CloseRequestFcn, Figure property 516
closing

files 483
Color

Figure property 518
Light property 887
Line property 903

ColorMap, Figure property 518
combinations of n elements 1012
combs 1012
Command Window

cursor position 743
commands

help for 721, 729
common elements See set operations,

intersection
complex

logarithm 924, 926
numbers 745
See also imaginary

conditional execution See flow control
contents.m file 721
conversion

hexadecimal to decimal 732
hexadecimal to double precision 733
integer to string 810
matrix to string 958
numeric array to cell array 1027
numeric array to logical array 927
numeric array to string 1028
uppercase to lowercase 936

conversion characters in format specification
string 596

covariance

Index

I-3

least squares solution and 938
CreateFcn

Figure property 519
Image property 765
Light property 888
Line property 903

creating your own MATLAB functions 630
cubic interpolation 817

piecewise Hermite 812
cubic spline interpolation 812, 817, 820, 823
CurrentAxes 519
CurrentAxes, Figure property 519
CurrentCharacter, Figure property 519
CurrentMenu, Figure property (obsolete) 519
CurrentObject, Figure property 520
CurrentPoint

Figure property 520
cursor images 782
cursor position 743

D
data

ASCII
reading from disk 919

binary
writing to file 637

formatted
reading from files 619
writing to file 595

formatting 595
isosurface from volume data 856
reading binary from disk 919

data, aligning scattered
multi-dimensional 1013
two-dimensional 702

debugging

M-files 868
decomposition

orthogonal-triangular (QR) 938
DeleteFcn

Figure property 521
Image property 765
Light property 888

DeleteFcn, line property 903
density

of sparse matrix 1020
Detect 835
detecting

alphabetic characters 836
empty arrays 835
equal arrays 835
finite numbers 835
global variables 836
infinite elements 836
logical arrays 836
members of a set 847
NaNs 836
objects of a given class 839
prime numbers 836
real numbers 836

diagonal
anti- 718

dialog box
help 727
input 803
list 917
message 1004

differential equation solvers
defining an ODE problem 1041
ODE initial value problems 1032

adjusting parameters of 1048
extracting properties of 1047

Diophantine equations 672

Index

I-4

directories
creating 993
listing, on UNIX 937

directory
root 970

discontinuous problems 580
display format 588
displaying output in Command Window 996
Dithermap 521
Dithermap, Figure property 521
DithermapMode, Figure property 521
division

by zero 794
modulo 995

divisor
greatest common 672

documentation
displaying online 724

double click, detecting 535
DoubleBuffer, Figure property 522
dual vector 1018

E
eigenvalue

matrix logarithm and 932
multiple 635

end caps for isosurfaces 848
end-of-file indicator 487
EraseMode

Image property 765
Line property 903

error
catching 870
roundoff See roundoff error

error message
Index into matrix is negative or zero 927

retrieving last generated 870
errors

in file input/output 488
escape characters in format specification string

597
examples

calculating isosurface normals 854
isosurface end caps 848
isosurfaces 857

executing statements repeatedly 586
execution

conditional See flow control
expression, MATLAB 746
extension, filename

.m 630

F
factor 481
factorial 482
factorization

LU 945
factors, prime 481
fclose 483
fclose

serial port I/O 484
feather 485
feof 487
ferror 488
feval 489

using on function handles 632
fft 491
FFT See Fourier transform
fft2 495
fftn 496
fftshift 497
FFTW 493

Index

I-5

fgetl 498
fgetl

serial port I/O 499
fgets 501
fgets

serial port I/O 502
field names of a structure, obtaining 504
fields, noncontiguous, inserting data into 637
fig files 605
figflag 505
Figure

creating 506
defining default properties 507
properties 515

figure 506
figure windows, displaying 555
figures

opening 1055
file

extension, getting 542
position indicator

finding 626
setting 625
setting to start of file 618

file formats 779, 785
file size

querying 774
filebrowser 541
filename

building from parts 628
parts 542

filename extension
.m 630

fileparts 542, 559
files

beginning of, rewinding to 618, 778
closing 483

end of, testing for 487
errors in input or output 488
fig 605
finding position within 626
getting next line 498
getting next line (with line terminator) 501
MAT 920
mode when opened 582
opening 582, 1055
path, getting 542
reading

binary 608
formatted 619

reading image data from 779
rewinding to beginning of 618, 778
setting position within 625
startup 969
version, getting 542
writing binary data to 637
writing formatted data to 595
writing image data to 785
See also file

fill 543
fill3 545
filter 548
filter 548
filter2 551
find 552
findfigs 555
finding

indices of arrays 552
zero of a function 642
See also detecting

findobj 556
finite numbers

detecting 835
FIR filter See filter

Index

I-6

fix 560
FixedColors, Figure property 522
flints 1005
flipdim 561
fliplr 562
flipud 563
floor 565
flops 566
flow control

for 586
if 746
keyboard 868
otherwise 1069

fmin 568
fminbnd 571
fmins 574
fminsearch 577
F-norm 1023
fopen 581
fopen

serial port I/O 584
for 586
format

precision when writing 608
reading files 619

format 588
formats

big endian 582
little endian 582

formatted data
reading from file 619
writing to file 595

Fourier transform
algorithm, optimal performance of 493, 748,

749, 1017
discrete, n-dimensional 496
discrete, one-dimensional 491

discrete, two-dimensional 495
fast 491
as method of interpolation 822
inverse, n-dimensional 750
inverse, one-dimensional 748
inverse, two-dimensional 749
shifting the zero-frequency component of 497

fplot 591
fprintf 595
fprintf

serial port I/O 601
frame2im 604
frames for printing 605
fread 608
fread

serial port I/O 613
freqspace 617
frequency response

desired response matrix
frequency spacing 617

frequency vector 934
frewind 618
fscanf 619
fscanf

serial port I/O 622
fseek 625
ftell 626
full 627
fullfile 628
function

minimizing (several variables) 574
minimizing (single variable) 568

function 630, 634
functions

finding using keywords 935
help for 721, 729
in memory 800

Index

I-7

funm 635
fwrite 637
fwrite

serial port I/O 638
fzero 642

G
gallery 646
gamma 667
gamma function

(defined) 667
incomplete 667
logarithm of 667

gammainc 667
gammaln 667
Gaussian elimination

(as algorithm for solving linear equations) 830
LU factorization and 945

gca 669
gcbo 671
gcd 672
gcf 674
gco 675
get 677
get

serial port I/O 679
getfield 683
getframe 685
ginput 688
global 689
global variable

defining 689
gmres 691
gplot 695
gradient 697
gradient, numerical 697

graphics objects
Figure 506
getting properties 677
Image 754
Light 883
Line 895

graymon 700
greatest common divisor 672
grid

aligning data to a 702
grid 701
grid arrays

for volumetric plots 980
multi-dimensional 1013

griddata 702
griddata3 705
griddatan 706
gsvd 707
gtext 712

H
H1 line 722
hadamard 717
Hadamard matrix 717
HandleVisibility

Figure property 523
Image property 766
Light property 888
Line property 904

hankel 718
Hankel matrix 718
HDF 773, 779, 786

appending to when saving (WriteMode) 786
bit depths supported when writing 790
compression 786
reading with special imread syntax 782

Index

I-8

setting JPEG quality when writing 786
hdf 719
help

contents file 721
creating for M-files 722
keyword search in functions 935
online 721

help 721
Help browser 724
Help Window 729
helpbrowser 724
helpdesk 726
helpdlg 727
helpwin 729
Hermite transformations, elementary 672
hess 730
Hessenberg form of a matrix 730
hex2dec 732
hex2num 733
hidden 736
hilb 737
Hilbert matrix 737

inverse 833
hist 738
histc 741
HitTest

Figure property 524
Image property 767
Light property 889
Line property 904

hold 742
home 743
hsv2rgb 744
HTML browser

in MATLAB 724

I
i 737, 745
icon images 782
if 746
ifft 748
ifft2 749
ifftn 750
ifftshift 751
IIR filter See filter
im2frame 752
imag 753
Image

creating 754
defining default properties 758
properties 761

image 754
image types

querying 774
images

file formats 779, 785
reading data from files 779
returning information about 773
writing to files 785

imagesc 770
imaginary

part of complex number 753
parts of inverse FFT 748, 749
unit (sqrt(–1)) 745, 862
See also complex

imfinfo

returning file information 773
import 776
importdata 778
importing

Java class and package names 776
imread 779
imwrite 785, 785

Index

I-9

incomplete
gamma function (defined) 667

ind2sub 793
Index into matrix is negative or zero (error

message) 927
indexing

logical 927
indicator of file position 618
indices, array

finding 552
Inf 794
inferiorto 795
infinity 794, 836

norm 1023
info 796
information

returning file information 773
inline 797
inpolygon 801
input

checking number of M-file arguments 1008
name of array passed as 805
number of M-file arguments 1009
prompting users for 802, 975

input 802
inputdlg 803
installation, root directory of 970
instraction 807
instrfind 808
int2str 810
int8, int16, int32 811
interp1 812
interp2 817
interp3 820
interpft 822
interpn 823
interpolation

one-dimensional 812
two-dimensional 817
three-dimensional 820
multidimensional 823
cubic method 702, 812, 817, 820, 823
cubic spline method 812
FFT method 822
linear method 812, 817
nearest neighbor method 702, 812, 817, 820,

823
trilinear method 702, 820, 823

interpreter, MATLAB
search algorithm of 631

Interruptible

Figure property 524
Image property 767
Light property 889
Line property 905

intersect 829
inv 830
inverse

Fourier transform 748, 749, 750
Hilbert matrix 833
of a matrix 830

InvertHardCopy, Figure property 524
invhilb 833
ipermute 834
is* 835
isa 839
iscell 835
iscellstr 835
ischar 835
isempty 835
isequal 835
isfield 835
isfinite 835
isglobal 836

Index

I-10

ishandle 842
ishold 843
isinf 836
isletter 836
islogical 836
ismember 847
isnan 836
isnumeric 836
isobject 836
isonormals 854
isosurface

calculate data from volume 856
end caps 848
vertex normals 854

isosurface 856
isprime 836
isreal 836
isspace 837
issparse 837
isstr 859
isstruct 837
isstudent 837
isunix 837
isvalid 860
isvarname 861

J
j 862, 1032
Java

class names 776
objects 844

Java import list
adding to 776

java_method 629, 863, 864, 984
java_object 866
JPEG files 773, 779, 786

bit depths supported when writing 790
parameters that can be set when writing 787

JPEG quality
setting when writing a JPEG image 787
setting when writing an HDF image 786

K
K>> prompt 868
keyboard 868
keyboard mode 868
KeyPressFcn, Figure property 525
keyword search in functions 935
kron 869
Kronecker tensor product 869

L
labeling

plots (with numeric values) 1028
largest array elements 971
lasterr 870
lastwarn 872
Layout Editor

starting 715
lcm 873
least common multiple 873
least squares

problem 938
problem, nonnegative 1018

legend 874
legendre 877
Legendre functions

(defined) 877
Schmidt semi-normalized 877

length 879
length

Index

I-11

serial port I/O 880, 881
license 882
Light

creating 883
defining default properties 884
properties 887

light 883
Light object

positioning in spherical coordinates 892
lightangle 892
lighting 893
Line

creating 895
defining default properties 898
properties 902

line 895
linear audio signal 894, 1005
linear equation systems, methods for solving

least squares 1018
matrix inversion (inaccuracy of) 830

linear interpolation 812, 817
linearly spaced vectors, creating 916
LineSpec 910
LineStyle

Line property 906
LineWidth

Line property 906
linspace 916
listdlg 917
little endian formats 582
load 919
load

serial port I/O 921
loadobj 923
local variables 630, 689
locking M-files 994
log 924

log10 [log010] 926
log2 925
logarithm

base ten 926
base two 925
complex 924, 926
matrix (natural) 932
natural 924
of gamma function (natural) 667
plotting 930

logarithmically spaced vectors, creating 934
logical 927
logical array

converting numeric array to 927
detecting 836

logical indexing 927
logical operators 928
logical tests

See also detecting
loglog 930
logm 932
logspace 934
lookfor 935
lower 936
ls 937
lscov 938
lsqnonneg 939
lsqr 942
lu 945
LU factorization 945

storage requirements of (sparse) 1031
luinc 949

M
magic 956
magic squares 956

Index

I-12

Marker

Line property 906
MarkerEdgeColor

Line property 907
MarkerFaceColor

Line property 907
MarkerSize

Line property 907
mat2str 958
material 959
MAT-files 919
MATLAB

installation directory 970
startup 969

matlab 961
MATLAB interpreter

search algorithm of 631
matlab.mat 919
matlabrc 969
matlabroot 970
matrix

converting to formatted data file 595
evaluating functions of 635
flipping left-right 562
flipping up-down 563
Hadamard 717
Hankel 718
Hessenberg form of 730
Hilbert 737
inverse 830
inverse Hilbert 833
magic squares 956
permutation 945
poorly conditioned 737
Rosser 662
specialized 646
test 646

unimodular 672
writing as binary data 637
writing formatted data to 619

matrix functions
evaluating 635

max 971
mean 972
median 973
median value of array elements 973
menu 975
menu (of user input choices) 975
MenuBar, Figure property 525
mesh 976
meshc 976
meshgrid 980
meshz 976
M-file

debugging 868
function 630
naming conventions 630
programming 630
script 630

M-files
locking (preventing clearing) 994
opening 1055
unlocking (allowing clearing) 1006

min 987
MinColorMap, Figure property 525
minimizing, function

of one variable 568
of several variables 574

minres 988
mislocked 992
mkdir 993
mlock 994
mod 995
models

Index

I-13

opening 1055
modulo arithmetic 995
more 996, 1005
movie 999
movie2avi 1001
moviein 1003
msgbox 1004
mu-law encoded audio signals 894, 1005
multidimensional arrays

interpolation of 823
longest dimension of 879
number of dimensions of 1014
rearranging dimensions of 834
See also array

multiple
least common 873

multistep ODE solver 1039
munlock 1006

N
Name, Figure property 526
naming conventions

M-file 630
NaN 1007
NaN (Not-a-Number) 836, 1007
nargchk 1008
nargin 1009
nargout 1009
ndgrid 1013
ndims 1014
nearest neighbor interpolation 702, 812, 817
Nelder-Mead simplex search 576
newplot 1015
NextPlot

Figure property 526
nextpow2 1017

nnls 1018
nnz 1020
no derivative method 579
noncontiguous fields, inserting data into 637
nonzero entries (in sparse matrix)

allocated storage for 1031
number of 1020
vector of 1022

nonzeros 1022
norm

1-norm 1023
2-norm (estimate of) 1024
F-norm 1023
infinity 1023
matrix 1023
vector 1023

norm 1023
normal vectors, computing for volumes 854
normest 1024
not (M-file function equivalent for ~) 928
now 1025
null 1026
null space 1026
num2cell 1027
num2str 1028
number

of array dimensions 1014
numbers

complex 745
finite 835
imaginary 753
minus infinity 836
NaN 836, 1007
plus infinity 794, 836
prime 836
real 836

NumberTitle, Figure property 526

Index

I-14

numel 1029
numeric format 588
numeric precision

format reading binary data 608
numerical differentiation formula ODE solvers

1039
nzmax 1031

O
object

determining class of 839
object classes, list of predefined 839
objects

Java 844
ODE file template 1042
ODE See differential equation solvers
ode45 and other ODE solvers 1032
odefile 1041
odeget 1047
odeset 1048
off-screen figures, displaying 555
ones 1054
one-step ODE solver 1038
online documentation, displaying 724
online help 721
open 1055
OpenGL 530

autoselection criteria 533
opening files 582
openvar 1059
operators

logical 928
relational 927
symbols 721

optimget 1060
optimization parameters structure 1060, 1061

Optimization Toolbox 569, 575
optimset 1061
or (M-file function equivalent for |) 928
orient 1066
orth 1068
orthogonal-triangular decomposition 938
otherwise 1069
output

controlling display format 588
in Command Window 996
number of M-file arguments 1009

overflow 794

P
paging

of screen 723
paging in the Command Window 996
PaperOrientation, Figure property 526
PaperPosition, Figure property 526
PaperPositionMode, Figure property 527
PaperSize, Figure property 527
PaperType, Figure property 527
PaperUnits, Figure property 528
Parent

Figure property 529
Image property 767
Light property 889
Line property 908

Parlett’s method (of evaluating matrix functions)
636

path
building from parts 628

PCX 773, 779, 786
bit depths supported when writing 790

permutation
matrix 945

Index

I-15

plot, volumetric
generating grid arrays for 980

plotting
feather plots 485
function plots 591
histogram plots 738
isosurfaces 856
loglog plot 930
mesh plot 976

PNG
bit depths supported when writing 790
reading with special imread syntax 780
writing options for 787

alpha 789
background color 789
chromaticities 789
gamma 789
interlace type 788
resolution 789
significant bits 789
transparency 788

Pointer, Figure property 529
PointerShapeCData, Figure property 529
PointerShapeHotSpot, Figure property 529
polygon

detecting points inside 801
poorly conditioned

matrix 737
Position

Figure property 530
Light property 889

position indicator in file 626
power

of two, next 1017
precision 588

reading binary data writing 608
prime factors 481

dependence of Fourier transform on 494, 495,
496

prime numbers 836
print frames 605
printframe 605
PrintFrame Editor 605
printing

borders 605
with non-normal EraseMode 766, 904
with print frames 607

product
Kronecker tensor 869

K>> prompt 868
prompting users for input 802, 975
Property Inspector

starting 806

Q
QR decomposition 938
quotation mark

inserting in a string 599

R
randn 795
range space 1068
reading

binary files 608
formatted data from file 619

readme files, displaying 796
real numbers 836
rearranging arrays

swapping dimensions 834
rearranging matrices

flipping left-right 562
flipping up-down 563

Index

I-16

regularly spaced vectors, creating 916
relational operators 927
renderer

OpenGL 530
painters 530
zbuffer 530

Renderer, Figure property 530
RendererMode, Figure property 532
repeatedly executing statements 586
Resize, Figure property 533
ResizeFcn, Figure property 534
rewinding files to beginning of 618, 778
RMS See root-mean-square
root directory 970
root-mean-square

of vector 1023
Rosenbrock banana function 575, 578
Rosenbrock ODE solver 1039
Rosser matrix 662
round

towards minus infinity 565
towards zero 560

roundoff error
evaluating matrix functions 635
in inverse Hilbert matrix 833

Runge-Kutta ODE solvers 1038, 1039

S
scattered data, aligning

multi-dimensional 1013
two-dimensional 702

Schmidt semi-normalized Legendre functions
877

screen, paging 723
scrolling screen 723
search, string 558

Selected

Figure property 535
Image property 767
Light property 890
Line property 908

SelectionHighlight

Figure property 535
Image property 768
Light property 890
Line property 908

SelectionType, Figure property 535
set operations

intersection 829
membership 847

ShareColors, Figure property 536
simplex search 579
Simulink

printing diagram with frames 605
singular value

largest 1023
skipping bytes (during file I/O) 637
smallest array elements 987
sparse matrix

density of 1020
finding indices of nonzero elements of 552
number of nonzero elements in 1020
vector of nonzero elements 1022

sparse storage
criterion for using 627

special characters
descriptions 721

sphereical coordinates
defining a Light position in 892

spline interpolation (cubic) 812, 817, 820, 823
Spline Toolbox 816
startup files 969
Stateflow

Index

I-17

printing diagram with frames 605
storage

allocated for nonzero entries (sparse) 1031
string

converting matrix into 958, 1028
converting to lowercase 936
searching for 558

strings
inserting a quotation mark in 599

structure array
field names of 504
getting contents of field of 683

Style

Light property 890
subfunction 630
surface normals, computing for volumes 854
symbols

operators 721
syntaxes

of M-file functions, defining 630

T
table lookup See interpolation
Tag

Figure property 536
Image property 768
Light property 890
Line property 908

tensor, Kronecker product 869
test matrices 646
text mode for opened files 582
TIFF 773, 779, 786

bit depths supported when writing 790
compression 787
ImageDescription field 787
parameters that can be set when writing 787

reading with special imread syntax 780
resolution 787
writemode 787

Toolbox
Optimization 569, 575
Spline 816

transform, Fourier
discrete, n-dimensional 496
discrete, one-dimensional 491
discrete, two-dimensional 495
inverse, n-dimensional 750
inverse, one-dimensional 748
inverse, two-dimensional 749
shifting the zero-frequency component of 497

transformation
elementary Hermite 672

transparency 780
transparency chunk 780
tricubic interpolation 702
trilinear interpolation 702, 820, 823
truth tables (for logical operations) 928
Type

Figure property 536
Image property 768
Light property 890
Line property 908

U
UIContextMenu

Figure property 537
Image property 768
Light property 890
Line property 908

uint8 811
unconstrained minimization 577
undefined numerical results 1007

Index

I-18

unimodular matrix 672
Units

Figure property 537
unlocking M-files 1006
uppercase to lowercase 936
UserData

Figure property 537
Image property 768
Light property 890
Line property 908

V
variables

global 689
local 630, 689
name of passed 805
opening 1055, 1059

vector
dual 1018
frequency 934
length of 879

vectors, creating
logarithmically spaced 934
regularly spaced 916

Visible

Figure property 537
Image property 768
Light property 890
Line property 908

volumes
calculating isosurface data 856
computing isosurface normals 854
end caps 848

W
Web browser

displaying help in 724
white space characters, ASCII 837
WindowButtonDownFcn, Figure property 538
WindowButtonMotionFcn, Figure property 538
WindowButtonUpFcn, Figure property 538
WindowStyle, Figure property 538
workspace variables

reading from disk 919
writing

binary data to file 637
formatted data to file 595

X
XData

Image property 768
Line property 909

XDisplay, Figure property 539
XOR, printing 766, 904
XVisual, Figure property 539
XVisualMode, Figure property 540
XWD 773, 779, 786

bit depths supported when writing 790

Y
YData

Image property 769
Line property 909

Z
ZData

Line property 909
zero of a function, finding 642

Index

I-19

zero-padding
while converting hexadecimal numbers 733

zero-padding when reading binary files 611

Index

I-20

Index

I-21

Index

I-22

Index

I-23

Index

I-24

Index

I-25

Index

I-26

Index

I-27

Index

I-28

Index

I-29

Index

I-30

Index

I-31

Index

I-32

Index

I-33

Index

I-34

Index

I-35

Index

I-36

	Functions by Category
	General Purpose Commands
	Managing Commands and Functions
	Managing Variables and the Workspace
	Controlling the Command Window
	Working with Files and the Operating Environment
	Starting and Quitting MATLAB

	Operators and Special Characters
	Logical Functions
	Language Constructs and Debugging
	MATLAB as a Programming Language
	Control Flow
	Interactive Input
	Object-Oriented Programming
	Debugging
	Function Handles

	Elementary Matrices and Matrix Manipulation
	Elementary Matrices and Arrays
	Special Variables and Constants
	Time and Dates
	Matrix Manipulation
	Vector Functions

	Specialized Matrices
	Elementary Math Functions
	Specialized Math Functions
	Coordinate System Conversion
	Matrix Functions - Numerical Linear Algebra
	Matrix Analysis
	Linear Equations
	Eigenvalues and Singular Values
	Matrix Functions
	Low Level Functions

	Data Analysis and Fourier Transform Functions
	Basic Operations
	Finite Differences
	Correlation
	Filtering and Convolution
	Fourier Transforms

	Polynomial and Interpolation Functions
	Polynomials
	Data Interpolation

	Function Functions – Nonlinear Numerical Methods
	Sparse Matrix Functions
	Elementary Sparse Matrices
	Full to Sparse Conversion
	Working with Nonzero Entries of Sparse Matrices
	Visualizing Sparse Matrices
	Reordering Algorithms
	Norm, Condition Number, and Rank
	Sparse Systems of Linear Equations
	Sparse Eigenvalues and Singular Values
	Miscellaneous

	Sound Processing Functions
	General Sound Functions
	SPARCstation-Specific Sound Functions
	.WAV Sound Functions

	Character String Functions
	General
	String to Function Handle Conversion
	String Manipulation
	String to Number Conversion
	Radix Conversion

	File I/O Functions
	File Opening and Closing
	Unformatted I/O
	Formatted I/O
	File Positioning
	String Conversion
	Specialized File I/O

	Bitwise Functions
	Structure Functions
	MATLAB Object Functions
	MATLAB Interface to Java
	Cell Array Functions
	Multidimensional Array Functions
	Plotting and Data Visualization
	Basic Plots and Graphs
	Three-Dimensional Plotting
	Plot Annotation and Grids
	Surface, Mesh, and Contour Plots
	Volume Visualization
	Domain Generation
	Specialized Plotting
	View Control
	Lighting
	Transparency
	Color Operations
	Colormaps
	Printing
	Handle Graphics, General
	Working with Application Data
	Handle Graphics, Object Creation
	Handle Graphics, Figure Windows
	Handle Graphics, Axes
	Object Manipulation
	Interactive User Input
	Region of Interest

	Graphical User Interfaces
	Dialog Boxes
	User Interface Deployment
	User Interface Development
	User Interface Objects
	Other Functions

	Serial Port I/O
	Creating a Serial Port Object
	Writing and Reading Data
	Configuring and Returning Properties
	State Change
	General Purpose

	Volume 2 Reference
	factor
	factorial
	fclose
	fclose (serial)
	feather
	feof
	ferror
	feval
	fft
	fft2
	fftn
	fftshift
	fgetl
	fgetl (serial)
	fgets
	fgets (serial)
	fieldnames
	getfield, setfield, rmfield
	figflag
	figure
	Figure Properties
	filebrowser
	fileparts
	fill
	fill3
	filter
	filter2
	find
	findall
	findfigs
	findobj
	findstr
	finish
	fix
	flipdim
	fliplr
	flipud
	floor
	flops
	flow
	fmin
	fminbnd
	fmins
	fminsearch
	fopen
	fopen (serial)
	for
	format
	fplot
	fprintf
	fprintf (serial)
	frame2im
	frameedit
	fread
	fread (serial)
	freqspace
	frewind
	fscanf
	fscanf (serial)
	fseek
	ftell
	full
	fullfile
	func2str
	function
	function_handle (@)
	functions
	funm
	fwrite
	fwrite (serial)
	fzero
	gallery
	gamma, gammainc, gammaln
	gca
	gcbf
	gcbo
	gcd
	gcf
	gco
	genpath
	get
	get (serial)
	getappdata
	getenv
	getfield
	getframe
	ginput
	global
	gmres
	gplot
	gradient
	graymon
	grid
	griddata
	griddata3
	griddatan
	gsvd
	gtext
	guidata
	guide
	guihandles
	hadamard
	hankel
	hdf
	help
	helpbrowser
	helpdesk
	helpdlg
	helpwin
	hess
	hex2dec
	hex2num
	hgload
	hgsave
	hidden
	hilb
	hist
	histc
	hold
	home
	hsv2rgb
	i
	if
	ifft
	ifft2
	ifftn
	ifftshift
	im2frame
	imag
	image
	Image Properties
	imagesc
	imfinfo
	import
	importdata
	imread
	imwrite
	ind2rgb
	ind2sub
	Inf
	inferiorto
	info
	inline
	inmem
	inpolygon
	input
	inputdlg
	inputname
	inspect
	instraction
	instrfind
	int2str
	int8, int16, int32
	interp1
	interp2
	interp3
	interpft
	interpn
	interpstreamspeed
	intersect
	inv
	invhilb
	ipermute
	is*
	isa
	isappdata
	ishandle
	ishold
	isjava
	iskeyword
	ismember
	isocaps
	isocolors
	isonormals
	isosurface
	isstr
	isvalid
	isvarname
	j
	javaArray
	javaMethod
	javaObject
	keyboard
	kron
	lasterr
	lastwarn
	lcm
	legend
	legendre
	length
	length (serial)
	license
	light
	Light Properties
	lightangle
	lighting
	lin2mu
	line
	Line Properties
	LineSpec
	linspace
	listdlg
	load
	load (serial)
	loadobj
	log
	log2
	log10
	logical
	Logical Operators & | ~
	loglog
	logm
	logspace
	lookfor
	lower
	ls
	lscov
	lsqnonneg
	lsqr
	lu
	luinc
	magic
	mat2str
	material
	matlab
	matlabrc
	matlabroot
	max
	mean
	median
	memory
	menu
	mesh, meshc, meshz
	meshgrid
	methods
	methodsview
	mexext
	mfilename
	min
	minres
	mislocked
	mkdir
	mlock
	mod
	more
	movegui
	movie
	movie2avi
	moviein
	msgbox
	mu2lin
	munlock
	NaN
	nargchk
	nargin, nargout
	nargoutchk
	nchoosek
	ndgrid
	ndims
	newplot
	nextpow2
	nnls
	nnz
	noanimate
	nonzeros
	norm
	normest
	now
	null
	num2cell
	num2str
	numel
	nzmax
	ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb
	odefile
	odeget
	odeset
	ones
	open
	openfig
	opengl
	openvar
	optimget
	optimset
	orient
	orth
	otherwise

	Index

