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Abstract

In this paper, we discuss the implementation of a low latencydecoding algorithm for turbo codes and

repeat accumulate codes and compare the implementation results in terms of maximum available clock

speed, resource consumption, error correction performance, and the data (information bit) rate. In order

to decrease the latency a parallellised decoder structure is introduced for these mentioned codes and

the results are obtained by implementing the decoders on a field programmable gate array. The memory

collision problem is avoided by using collision-free interleavers. Through a proposed quantisation scheme

and normalisation in forward/backward recursions, computational issues are handled for overcoming the

overflow and underflow issues in a fixed point arithmetic. Also, the effect of different implementation

styles are observed.

Index Terms

Turbo codes, repeat accumulate codes, parallellised turbodecoding, BCJR, FPGA, metric quantisa-

tion.
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I. I NTRODUCTION

In wireless communications, channel coding has an important role on enhancing the communication

reliability and quality of service. Turbo codes, introduced in [1], have shown a great performance in

additive white Gaussian (AWGN) channels. After the great achievement of the turbo structure, the same

idea has been applied to different coding schemes. Turbo-like codes, explained in detail in [2], is the

result of that idea. Following the improvements in wirelesscommunications, high speed data transmission

became a great necessity. There are mainly three sources of latency in data transmission at the physical

layer: encoding latency, transmission latency, decoding latency. The former one is relatively very small

and usually neglected. Since transmission latency depends drectly on the transmission bandwidth, the

main bottleneck stands as the decoding latency which is the main focus of this article. Both turbo and

turbo-like codes introduce huge decoding latencies since they operate in an iterative manner.

To overcome the latency problem, numerous techniques have been applied. One of the foremost

techniques is parallel processing. Running multiple decoders concurrently enabled by the sliding window

technique significantly reduces decoding latency ([3]–[5] and references therein). Another approach that

enables concurrent operation of multiple decoders is parallellisation imposed to the encoder side which

results in a neat parallel decoder structure as proposed in [6] and studied here. In our structure, decoding

and encoding time is reduced by the number of simultaneouslyoperating blocks.

Another idea is to reduce the latency of the component marginal a posteriori (MAP) decoders by

applying an algorithm called “centre to top” (CTT) [3], [4], [7]. In CTT, the forward and backward

recursions of decoding run concurrently and decoding latency is halved at the expense of computational

resources. This technique will be utilised here as well.

A main bottleneck in all parallelised turbo decoders is the interleaving operation and the accompanying

memory collision problem. When the component decoders attempt at accessing the memory elements in

the same memory block, a memory collision problem occurs. This problem is circumvented in various

ways. One of the methods is algebraic interleaver construction specific to parallellised decoders (see [5],

[8] and references therein) where some contraints have to beinflicted on the interleaver. Another approach

is to obtain a solution via special routing based on parallelcomputing theory [9] for ASIC systems with

added hardware complexity. We make use of specially designed interleavers called row-column S-random

interleavers [10] in this study due to their simplicity. By the parallelisation at the encoder side, the use

of parallel interleavers is possible. When these interleavers are read/written in rows or columns, memory

access problems are fully avoided in an easy way as explainedin [10].
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Another issue in the design of turbo decoders is the use of fixedpoint aritmetic preferred over floating

point arithmetic in practice. The limited number of bits causes overflow and underflow problems while

computing the variables utilised in decoding. In the forward and backward recursions, to be described in

Section II, the variables keep on increasing or decreasing unless special precautions are taken. Amongst

other techniques ([7] and references therein), the variables are compared to a threshold in [7] and then

a subtraction/addition operation is performed based on thecomparison. We take a simpler approach in

this study where the variables are normalised in relation tothe maximum at each step of the decoding

algorithm. This does not add a significant latency or hardware complexity and performs very well.

Another important issue is the handling of incoming channelobservations and how they will be used

in the decoding algorithm. In this study, the channel observations are directly mapped to probability

quantised in a fixed number of bits at some granularity dependent on SNR. Although many turbo decoder

implementation articles propose an ad hoc quantisation rule, we will derive a quantisation step based

on analysis. All the probability variables of the decoding algorithm are kept with the same number of

bits and quantisation step as the channel observation probability. This results in a uniformity within the

decoder that simplifies the design and enables higher clock rates.

Our aim in this paper is to compare some parallellised turbo decoder architectures and show detailed

implementation strategies to decrease decoding latency. The effects of design choices in FPGA imple-

mentation will be examined in regard to maximum clock speed,number of slices used, maximum data

rate, and error rate performance. In particular, turbo codes and repeat-accumulate codes will be inspected

in terms of the mentioned parameters. The strategies utilised throughout this study are not specific to

an FPGA implementation and can be easily applied to an application-specific integrated circuit (ASIC)

design.

The paper consists of the following sections. In Section II, wepresent the mathematical expressions

for the BCJR algorithm. Section III describes the idea of parallellisation introduced for turbo codes. In

Section IV, we explain the parallellised repeat-accumulatecodes. In Section V, we provide the details

of implementation and optimisations applied during the realisation of the proposed systems on an FPGA

board. Some numerical results are presented in Section VI and conclusion follows in Section VII.

II. BCJR ALGORITHM

The BCJR algorithm [11] is the most popular MAP decoding algorithm. It aims to minimize the bit

error rate (BER) by maximizing the marginal a posteriori probabilities. In practice, the BCJR algorithm

usually calculates thea posteriori log-likelihood ratio (a posteriori L-value) of an information bit where



4

log-domain operation usually simplifies decoder operation.Since derivation of the algoritgm can be found

in many standard textbooks such as [12], we will briefly overview some of the issues for sake of reference

in the subsequent sections of the paper.

The log-likelihood ratio (LL) of an information bitul can be calculated as

LL(ul) = ln

[
p(ul = +1|y)

p(ul = −1|y)

]
, (1)

for a received signal sequencey. Using this a posteriori L-value, a hard decision corresponding to ul can

be found by

ûl =






+1, LL(ul) > 0

−1, LL(ul) < 0
. (2)

The branch metric at time l is the probability of having a state transition from states′ to s at time l

and defined as

γl(s
′, s) = ln p(sl+1 = s,yl|sl = s′), (3)

whereyl is the received signal vector at timel consisting of both data and parity observations. In an

AWGN channel, branch metrics can be written as

γl(s
′, s) =

La(ul)

2
ul +

Lc

2
(yl · vl), (4)

whereLa(ul) is the a priori bit probability1, Lc is the channel reliability factor which is equal to4Es/N0,

andvl denotes the output vector consisting of data and parity signals for transition from states′ to s.

The dot product(rl ·vl) gives the correlation between the hypothesised transmitted and received vectors.

Scaling this distance withLc means that the observations are more reliable when SNR is highand a

priori values are trusted more when SNR is low.

The BCJR algorithm determines the bit likelihoods based on forward and backward recursions

αl+1(s) = ln
∑

s′∈σl

e[γl(s′,s)+αl(s′)], (5)

βl(s
′) = ln

∑

s∈σl+1

e[γl(s′,s)+βl+1(s)], (6)

with initial conditions in case of trellis termination

α0(s) =






0, s = 0

−∞, s 6= 0
, βN (s) =






0, s = 0

−∞, s 6= 0
. (7)

1It must be noted that theLa values for the termination bits are always0.
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The log-likelihood ratio in (1) can be written using the variables described above as [12]

LL(ul) = ln





∑

(s′,s)∈Σ+

l

e[αl(s′)+γl(s′,s)+βl+1(s)]






− ln





∑

(s′,s)∈Σ−
l

e[αl(s′)+γl(s′,s)+βl+1(s)]




 (8)

whereΣ+
l andΣ−

l are the sets of transitions with the information bit is 0 and 1, respectively.

It can easily be seen that calculations can be simplified more by defining amax∗ operation

max∗(x, y) = ln(ex + ey) = max(x, y) + ln(1 + e−|x−y|), (9)

where the second term is usually called thecorrection term.

III. PARALLEL DECODABLE TURBO CODES

Turbo codes were first introduced by Berrou et. al. [1] in 1993.A turbo code’s (TC) encoder consists

of two convolutional encoders operating in parallel. Whilethe upper encoder encodes the information

bits in the given order, the lower one operates on an interleaved version of the information bits. A TC

decoder consists of two MAP decoders operating iteratively. ComputedLL values out of one decoder

are used in the other, and vice versa. By subtracting the input LL values from the computed ones, the

extrinsic information is obtained, which is the actual estimation of that decodingstep [1].

However, using an iterative decoding scheme may suffer fromhuge decoding latencies and degrade

the transmission rate in real time operations. To overcome this drawback in a simple way, parallellisation

is introduced on both the encoder and decoder sides [6] as shown in Figures 1 and 2. In the parallel

decodable turbo code (PDTC) decoder structure, there exist decoder clusters instead of single component

decoders. These two clusters operate iteratively, while thedecoders in each cluster operate simultaneously

and independently. This architecture decreases the decoding latency byN , whereN is the number of

parallel decoders in a cluster2. While TC decoders operate on a block ofK information bits, each decoder

in PDTC operates onK/N information bits in parallel.

To implement this parallel structure, an architecture suitable for parallel processing is needed. For

that reason, FPGA is chosen here to investigate the PDTC performance. In our studies, we have used 4

parallel decoders in each cluster without loss of generality which is a good degree of parallellisation and

does not overload the FPGA platform used herein.

2The number of decoders in each cluster may be different in general.
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IV. PARALLEL DECODABLE REPEAT ACCUMULATE CODES

Repeat Accumulate (RA) codes are in the class of turbo-like codes. After the invention of turbo

codes, Divsalar et. al [2] applied the random-like interleaver structure to a set of coding schemes.

Repeat accumulate codes are obtained by the concatenation of a repetition code encoder and a2-state

convolutional encoder. The decoding latency issue surfacesalso in RA codes and hence the parallelisation

idea may be applied. The parallel concatenated repeaters repeat the uncoded data bitsL times and forward

the results to the rate-1 convolutional encoders after passing through an interleaver. Hence, the overall

rate of the encoder becomes1/L which is the same as that of the repetition encoder.

Although factor-graph based decoding is usually preferredfor RA codes, we will utilise convolutional

decoders along with repetition decoders so that similar architectures will be compared. In the decoding

process, decoders operating in parallel are utilised in order to decrease latency as in PDTC decoders.

The parallellised decoder structure is shown in Figure 4.

V. FPGA IMPLEMENTATION

We have implemented our system on a Xilinx ML402 Virtex-4 SX Evaluation Platform and produced

test results by working on it. This platform has a medium sizedFPGA with number of available slices

15000. Its architecture enables building parallel processing blocks. However, implementing a soft-in soft-

out (SISO) decoder on an FPGA inherently faces some problems since it has limited resources which do

not let one easily use floating-point arithmetic or large fixed-point arithmetic. Throughout this section,

we will describe our solutions to the problems and optimisations we have applied. BPSK modulation is

assumed throughout and other constellations can be similarly applied.

A. The Centre to Top Algorithm

When the metric calculations in (5) and (6) are considered, it can be seen that the two operations are

independent of each other. This gives the ability to calculate α andβ metrics simultaneously assuming

that all of the received values are available for branch metric calculations. This assumption is valid for

the iterative decoding schemes (like of turbo codes as in ourcase) since decoding process can begin

after receiving the whole packet. By this algorithm, the decoding time can be halved. Consider a decoder

running on42 bits (40 information bits and2 termination bits) as will be used throughout this study for

each branch of the parallelised encoder/decoder. At time0 the metric values are initialised as defined in

(7). α andβ values are calculated without computing any LL value up to time 21. At time 21, both of

α21, β22 andα20, β21 values are available together with the branch metrics for the time,γ21 andγ20. So,
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LL(u21) andLL(u20) are computed and given out. That process, starting from the centre of the frame,

continues to the end and simultaneously to the beginning of the frame. That is why this algorithm is

named as “centre to top” [3]. It must be noted thatα andβ metric values do not have to be written to

memory after the midpoint, sinceLL values are calculated simultaneously. So, not only the decoding

time but also the memory usage is halved by this algorithm.

B. Memory Collision-Free Interleavers

Block RAMs are the most widely used storage elements on FPGA projects. Starting from that fact, we

have used block RAMs to store observations and calculatedLL values. However, using RAMs introduces

some difficulties because of their limited accessibility. Even in the dual port block RAMs, there are only

two available ports to read or write at the same time.

As described in Section III, each decoder in a cluster operatein parallel to each other. This means

that each receive the observation values and inputLL values at the same time instants. Since block

RAMs storing these values can serve to only one decoder for the desired address, 4 parallel decoders

must be assigned to work on different RAMs. If two (or more) decoders try to work on (especially

for “writing” operation) the same RAM, there will occur a memory collision. To prevent this problem,

memory collision-free interleavers of [10] have been used.

C. Observation Quantisation

In the conventional mathematical model, a+1 or−1 is assumed to be transmitted for BPSK, appropriate

noise is added and calculations are carried on with these assignments. An AWGN channel for BPSK

modulation can be modeled as

yk = hkxk + nk, (10)

for any time instantk where yk is the received symbol,hk is the channel gain (
√

Es in an AWGN

channel withEs being the signal energy),xk is the transmitted bit (xk = ∓1) and nk is a circularly

symmetric complex Gaussian random variable with mean0 and varianceN0.

The conditional probability of a received symbolyk can be expressed as
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f(yk|hk, x) =
1

πN0
e
− |yk−hkx|2

N0 , (11)

ln(f(yk|hk, x)) = − ln(πN0) −
|yk|2
N0

− |hk|2|xk|2
N0

+
2

N0
ℜ{ykh

∗
kx

∗}, (12)

= C +
2

N0
ℜ{ykh

∗
kx

∗}, (13)

whereC is a constant and has no effect on the MAP calculations. Hence, the function can be redefined

as

ln(f(yk|hk, x))=̇
2

N0
ℜ{ykh

∗
kx

∗}, (14)

where=̇ denotes equality with a constant.

As we use fixed-point arithmetic, the metric values in the BCJRalgorithm are represented by a fixed

number of bits,K. However, the decoder is not guaranteed to work properly with this representation

unless the channel observations (input of the decoder) are carefully quantised. For that reason, we need

to quantize observations by a quantisation factor,q, such that the represented observations lay in a setS

smaller than the set of numbers represented byK bits. After that, the quantised observation probability

for x = 1 is used in decoding with

Qk = Q(ln(f(yk|hk, x = 1))) =

⌊
2/N0ℜ(ykh

∗
k)

q

⌋
. (15)

If we apply the AWGN channel model given in (10) on (15) for a BPSKmodulation, we get

Qk =

⌊
2
√

Es/N0ℜ{yk}
q

⌋

, (16)

=

⌊
2
√

Es/N0ℜ{(
√

Es + nk)}
q

⌋

, (17)

=

⌊
2Es

N0q
+

2
√

Es

N0q
nI

⌋

, (18)

wherenI is the real part of the complex Gaussian noise with mean 0 and varianceN0/2.

Recalling that a finite number of bits are used in representingnumbers, the question is how to chooseq.

If q is chosen to be very small,Qk’s will be large and the formulas such as (8) will not functionproperly

due to overflow. Ifq is chosen to be very large, then the difference in noise values of the observations will

not be properly passed to the decoder and then soft decoding will suffer. We resolve the problem above

by the compromise that the packet is normalised with respectto its absolute maximum symbol value,
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ObsMax. If we represent that value with a predefined value,NormMax (absolute maximum value after

the quantisation is performed) then we get a setS = {−NormMax,−NormMax+1, . . . , NormMax−
1, NormMax} for decoder’s input sequence. This information can be combined with a well known

property of the Gaussian distribution that, in a normally distributed set with meanµ and varianceσ2,

obtaining a numberp such that|p| > µ + 3σ has a probability of about1/1000. To be able to apply that

property, we need to identify the mean and variance of the random variableA = 2Es

N0q
+ 2

√
Es

N0q
nI .

E{A} =
2Es

N0q
(19)

σA =
2
√

Es

N0q
σnI

=
2
√

Es

N0q

√
N0√
2

=

√
2Es

N0q

1√
q

=

√
E{A}√

q
(20)

After the quantisation of the packet, it is known that symbols greater than+NormMax or smaller

than−NormMax can occur in the packet with a small probability. If we neglect the small probability

of 1/1000, we can defineNormMax as

NormMax = E{A} + 3σA (21)

= E{A} + 3

√
E{A}√

q
(22)

By replacing (19) in (22), we get

NormMax =
2Es

N0q
+ 3

√
2Es

N0q

1√
q
. (23)

By solving this equation,q can be calculated as

q =

2Es

N0
+ 3

√
2Es

N0

NormMax
. (24)

As it is obvious in (24),q is a function of theSNR (Es/N0) for a selectedNormMax value. Instead

of calculating theq value for each packet, a look-up table (LUT) can be used. In our design, we have

used a relatively large LUT that stores theq values in8 bits, 3 for integer part and5 for the decimal

part. That gives a precision of1/25 and yields a satisfactory performance.

D. max∗ Approximation

The correction term inmax∗ operation causes problems when it is needed to be expressed in fixed-point

arithmetic. It is not possible to easily realize theln function fully in such a system. For that reason, some
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approximations must be made to implement themax∗ operation. There are basically two approximations

in the literature. These two different approaches result inlog-MAP with tables andmax-log-MAP.

If the decoder is a log-MAP decoder thenmax∗ calculation is a more difficult subject, because the

correction term,ln(1 + e(−|x−y|)), should be calculated. Since the hardware implementation ofsuch a

function is complicated, this term is handled by construction of a LUT in practice. As described in the

previous part, the observations are in quantised form, therefore LUT values also have to be quantised

accordingly. That is, if the inputs to themax∗ function are in a quantised fashion, the other terms

generated in the function also should be quantised in parallel with the inputs. The LUT construction

function is,

LUT (i) =

⌊
ln(1 + e−iq)

q

⌋

(25)

wherei is the absolute value of the difference of the inputs of themax∗ function. The LUT sizes are

usually quite small (around 5-6 entries) with reasonableNormMax values.

In a max-log-MAP decoder, the correction term is neglected,that ismax∗ operation is the same with

ordinarymax operation. So, the quantisation term,q, is useless for this method. In other words, it can

be said that decoder does not need an exact SNR estimation to operate properly. Studies in [13] and [14]

have shown that max-log-MAP decoders work without any need on SNR estimation.

E. Fixed-Point Summation and Subtraction

Using a restricted set ([−(2K−1 −1), 2K−1 −1] whereK is the metric size) to represent metric values

forces us to introduce new summation and subtraction operations with the closure property in the given

set. The operationclipsum, denoted by⊕, replaces with the regular summation. Under the assumption

of plus−inf = 2K−1 − 1 andminus−inf = −plus−inf ,

a ⊕ b =






plus−inf, a ≥ plus−inf or b ≥ plus−inf

minus−inf, a ≤ minus−inf or b ≤ minus−inf

plus−inf, a + b ≥ plus−inf

minus−inf, a + b ≤ minus−inf

a + b, else.

(26)

Similarly, a new subtraction operationclipsubtract (⊖) is introduced as

a ⊖ b = a ⊕ (−b). (27)
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F. Node (α, β) Metric Normalisation

In (5) and (6) it has been shown thatα and β values are updated in a recursive manner. As the

computations go further, these metric values may overflow (> plus−inf ) or underflow (< minus−inf ).

To solve this problem,α andβ values are normalised at each trellis step. After each forward recursion,

maximum of the newly generated forward metric values is subtracted from these values andα metrics

are updated with these normalised values. The same is appliedto theβ metrics. After the normalisation

process, we get a maximum value of0 for α andβ metrics at each time instant and prevent underflow

and overflow cases. Another approach to node metric normalisation can be found in [15].

G. Memory Complexity

Before the decoding process, the observations have to be stored in different memories in order to use

them in the parallel decoder structure. For that reason, a memory structure is defined. That structure

differs for PDTC and PDRAC decoders.

1) PDTC memory structure: If there areN decoders operating in parallel, then there must beN

independent memory blocks for data bit observations (d in Figure 2). Accordingly,N memory blocks

are used for parity observations andN memory blocks for interleaved parity observations (p1 andp2 in

Figure 2, respectively). In addition to these,N memory blocks are also defined for interleaver (memory

collision-free interleavers) tables.

2) PDRAC memory structure: For N parallel MAP decoders, the observations are stored intoN

memory blocks. Different than the PDTC case, there are no data observations. Similar to the PDTC case,

N memory blocks are used to store the interleaver tables.

Log-likelihood values are stored in RAMs, too. Each decoder needs an a priori probability (La) and

generates log-likelihood ratio (LL) andextrinsic information (Le), where in our designLe’s are calculated

within the MAP decoder3. TheseLe andLa notations are eligible for the decoders running in the first

cluster. In the second cluster, decoders useLe values asLa and generates theLe values which will be

used asLa in the next iteration. The word “cluster” is used just for imaging which defines half of an

iteration. In fact, decoders only change their state to switch the input and output log-likelihood ratios

(La and Le). SinceLL values are final results, they are updated (overwritten) after eachcluster run.

3The extrinsic information is generated inside the decoder to decrease the system complexity at the expense of maximum

clock speed.
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That structure brings out a memory usage of3N memory blocks for log-likelihood ratio storage in both

PDTC and PDRAC decoders.

Summing up all yields a usage of7N number of memory blocks for PDTC decoder and5N for

PDRAC decoder.

VI. RESULTS

In this section, the effects of the implementation choices will be shown and the performances of

parallellised decoder structures will be compared. Our results are produced with the choices given in

the remainder of this paragraph. The parallel decoder architectures are constructed by using 4 parallel

MAP decoders. This choice was a good compromise between a gooddegree of paralellisation and not

overloading the FPGA so that problems arising from fitting a tight design into a limited FPGA are avoided.

Each MAP decoder is responsible for decoding 42 bits. 40 bits of these corresponds to information and

2 corresponds to termination bits. Hence, the initial and final values ofα andβ values are respectively

known due to trellis termination. Since each decoder decodes40 information bits, a packet consists of

4× 4 = 160 information bits in total. In detail, 160 bits of information is embedded in a 512-bit packet

with 160 information bits, 160 parity bits, 160 interleavedparity bits where the remaining 32 bits are

the termination bits for4 parallel decoders. The overall code is slightly smaller than1/3. Furthermore,

the number of iterations is chosen as 4 for PDTC and 8 for PDRAC which are close to average iteration

numbers with early-stop procedures ([16] and references therein) for SNR of interest. In the memory

collision-free interleavers of [10], 4 different S-random interleavers of size 40 are needed here. Without

any optimisation of the interleavers, 4 different interleavers with the S value of5 are generated and used

in all simulations.

The choice for the numberNormMax (explained in Section V-C) affects the performance of decoder

such that choosing a high value results in saturation in metric calculations while choosing a small value

causes a loss in representing observation values. This effect on performance has been shown in Figures

7, 8, and 9. The figures are obtained by observing6000 packets with each containing160 information

bits for Eb/N0 = 2.6 dB. The optimumNormMax values for eachK and decoding algorithm can be

obtained from these figures. Also, in the figures it can be seen that as theK value increases, so does the

number of available optimumNormMax values.

Another parameter that affects the performance of the decoders is the selection of theK value. Choosing

a largeK results in a better performance while at the same time causesthe decoder to consume more

resources on FPGA and to work on a lower clock speed. So, there is atradeoff between the performance,
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resource consumption, and the speed. The performance results are given in Figures 10, 11, and 12. It

must be noted that these comparisons are made by using the best resultingNormMax values for each

decoder structure andK value after2000 runs on a160 bit information packet (equally512-bit packet)

with a fixed iteration number (4 for PDTCs and8 for PDRAC).

Figures 10-12 suggest that larger values of K enable better performance. That is why the selection of

the K value in a design must be done carefully to match the BER requirement. In these figures, it can

be seen that the performance does not improve significantly beyond K = 6. So, the choice ofK as 6

seems to be a good choice for these decoder structures. That brings a performance within0.5 dB from

the floating-point for the PDTC decoders and0.3 dB for the PDRAC decoder.

In this study, we have used two different architectures for implementing PDTC decoders, namely

Architecture-A and Architecture-B. The difference between these two architectures can be explained as

follows. Architecture-A uses combinatorial logic operations heavily in the BCJR decoder implementation.

All the numerical calculations are carried on in one clock cycle, i.e.,α/β calculation,α/β normalisation,

α, β, γ summation andLL computations are done in one clock cycle. Decoding a42-bit length sequence

(42 data bits,42 parity bits) takes42 cycles onArchitecture-A. On the other hand,Architecture-B uses a

pipelining structure in some calculations where independent computations are pipelined. The calculation

and normalisation ofα/β metrics are done in one cycle. The summations in (8) are done ina separate

cycle (concurrent with the calculation and normalisation of alpha/beta metrics for the subsequent trellis

stage) andLL values are calculated in yet another clock cycle. The extrinsic values are determined in

another cycle as well. Lastly the computed extrinsic information is forwarded to the output of the decoder

in one cycle. This architecture aims to divide the combinatorial logic operations into smaller pipelined

blocks to reduce the gate delays. Since independent operations are pipelined, all the operations continue

still simultaneously except for an extra latency of4 clock cycles. By this architecture decoding a42-bit

length sequence takes46 cycles. The resource consumptions for these two architectures are given in

Tables I and II together with the speed considerations for different K values. In Table III, the synthesis

results for PDRAC decoder is given4. It can be observed that pipelining can enable significantly larger

clock speeds at the expense of a small increase in percentageof slices used.

The distinct difference between log-MAP and max-log-MAP algorithms is that the former uses a LUT.

As described in Section V-C, LUT is generated by using theq value. In our design RA code uses the

log-MAP algorithm. That is why, theq calculating circuit is included in these two codes and it consumes

4Due to the speed advantage ofArchitecture-B, it is used on PDRAC decoder implementation.
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TABLE I

SYNTHESIS RESULTS OF PDTC DECODER WITH MAX-LOG-MAP ALGORITHM

metric size
Slices used

Slice usage Max. clock speed

(bits) (%) (MHz)

Architecture-A

4 6070 39 50.3

5 6104 39 49.8

6 6570 42 47.6

7 7174 46 43.8

Architecture-B

4 6347 41 87.2

5 6501 42 86.9

6 6994 45 86.9

7 7537 49 85.7

some additional resources. These extra resources are included in the results given in Tables II and III.

It is obvious that LUT insertion degrades the design performance in terms of both resource usage and

maximum clock speed. The reason of that can be explained as follows. LUT can be thought as a large

multiplexer which is controlled by theq value and the inputs of themax∗ operation. Additionally the

results of the LUT have to be added in themax∗ operation in order thatmax∗ result can be ready at

the next clock cycle, that is, a combinatorially operating large multiplexer degrades the resource usage

and combinatorial addition degrades the maximum operatingfrequency. Also, it must be noted that the

slice usage increases almost linearly withN .

It must be noted that maximum achievable clock speeds given in Tables I,II and III are the predicted

clock speeds of the Xilinx sysnthesis tool (XST). It is our observation that a carefully constrained design

can often achieve even higher clock speeds when programmed onto an FPGA.

Large decoding latencies in turbo and turbo-like codes are often the drawback of these algorithms.

By making them operate in parallel, a decrease in their decoding latencies is expected. To observe that

decrease, decoding latencies are better to give in a formula. The decoding latency,τ , for our parallel
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TABLE II

SYNTHESIS RESULTS OF PDTC DECODER WITH LOG-MAP ALGORITHM

metric size
Slices used

Slice usage Max. clock speed

(bits) (%) (MHz)

Architecture-A

5 8179 53 36.2

6 10628 69 31.5

7 11309 73 31.3

Architecture-B

5 8663 56 65.5

6 10595 68 60.0

7 10807 70 55.4

TABLE III

SYNTHESIS RESULTS OF PDRAC DECODER

metric size
Slices used

Slice usage Max. clock speed

(bits) (%) (MHz)

5 5019 32 68.7

6 6046 39 68.1

7 6219 40 64.2

decodable turbo code decoder stucture (both log-MAP and max-log-MAP) is

τ =
D

N
2I, for Architecture-A and (28)

τ =

(
D

N
+ 6

)
2I, for Architecture-B, (29)

whereD is the number of information (data) bits in the packet,N is the number of parallel decoders in

a cluster andI is the iteration number. TheD
N

term is the decoding latency of a BCJR decoder operating

with the CTT algorithm. The addition by6 in (29) is the result of the latency in BCJR (4) and interleaver

structure (2) due to pipelining inArchitecture-B. The reason of multiplying by2I is that in each iteration

the BCJR decoders run twice, one for the uninterleaved form of data and one for the interleaved.
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Similarly for PDRAC decoders the decoding latency can be expressed as

τ =

(
D

NR
+

D

2NR
+ 6

)
I (30)

=

(
3D

2NR
+ 6

)
I (31)

whereR is the code rate. The termD
NR

in (30) is the latency introduced by the BCJR decoders and theterm

D
2NR

is the latency introduced by the accumulate decoders. Although not performed here, different number

of parallellised blocks for BCJR and accumulate decoders can be utilised for optimisation purposes.

During the decoding latency calculations, we have assumed that aping-pong buffer structure is used

in the receiver side. While a packet is being received, the observations are stored in a memory in

the quantised form. After that,ping memories are filled as described in Section V-G ford, p1 and p2

observations and decoders begin to run. If another packet arrives during the decoding process, thed, p1

and p2 observations are stored inpong memories. In this case, the decoding process is not affectedby

the reception of the new packet. When the decoders finish theirjob, they operate on thepong memories

and this time theping memories are free for another packet storage. This structuredoubles the memory

usage in the system for storing observations.

At this point, we can make a final comparison between all the proposed structures in terms of maximum

available data rates. If we denote the data rate byυ, we can formulate it as,

υ =
D x f

τ
, (32)

wheref is the maximum available frequency andτ is the decoding latecy. To find the exact data rate, we

need to decide on the architecture, number of data bits in a packet (D),metric representation width (K),

iteration number (I), the number of constituent decoders in a cluster (N ), and the code rate (R). In data

rate calculation, thef value can be obtained by checking the Tables I, II, and III forthe selectedK value.

Similarly, τ value can be obtained from (28), (29), or (31) for the decidedstructure and architecture.

After observing the BER performances and FPGA resource usage, we have decided to useK = 6 for

log-MAP and max-log-MAP PDTC decoders with both architectures andK = 7 for PDRAC decoder.

Herein we used packets containing160 data bits, that isD = 160. Using the Tables I, II, III and Figures

10, 11, 12 with the design choices listed above, we can generate Table IV that gives all the information

and comparisons needed. In this table, the clock frequencies are adjusted in such a way that oscillators

can be found in the market easily.

As seen in Table IV,N values differ for each decoder structure. The idea of using different N values

can be explained as follows. It is remarked before that the resource consumption increases approximately
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TABLE IV

COMPARISON OF THE PROPOSED DECODER STRUCTURES

Decoder & Architecture N I
K Clock speed

SNR for BER = 10
−3

Bit Rate

(bits) (MHz) (Mbps)

PDTC with max-log-MAP inArchitecture-A 8 4 6 48 ∼2.2 dB 48

PDTC with max-log-MAP inArchitecture-B 8 4 6 80 ∼2.2 dB 61.54

PDTC with log-MAP inArchitecture-A 6 4 6 30 ∼2.0 dB 22.5

PDTC with log-MAP inArchitecture-B 6 4 6 60 ∼2.0 dB 36.73

PDRAC with log-MAP 10 8 7 60 ∼2.7 dB 15.4

linearly asN increases. Working on that assumption, maximum availableN value is calculated for the

usage of the all FPGA resources. In [17], it is stated that increasing theN value does not affect the

performance of the PDTC decoder.I stands for the number of iterations carried on in parallel decoder

structure andK shows the number of bits that the observations are represented by. By these provided

results, it is not hard to say that a PDTC decoder with log-MAP architecture inArchitecture-B is the best

in terms of error performance. However, max-log-MAP decoder may be preferred in terms of resource

consumption and data rate but with a0.2 dB performance degradation. On the other hand, PDRAC

decoder structure with parallellised MAP decoders does notpresent a satisfactory performance among

the proposed architectures.

VII. C ONCLUSION

Decoding latency is an important issue in iterative decoding algorithms which may be overcome

with parallellisation. In this paper we implemented a parallellised encoder/decoder structure for turbo

and repeat-accumulate codes. A new and simple metric quantisation scheme was proposed and used

to avoid problems of decoding in fixed point arithmetic. Combinatorial logic and pipelining based

architectures were separately implemented for comparisonpurposes. Comparisons were made in terms

of error performance, FPGA resource usage, FPGA clock speed, anddata rate. Max-log-MAP with

pipelining provided the best result when all issues are taken into account. PDRAC does not perform well

in comparison to any of the turbo decoders at the same data rate.
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Fig. 5. α andβ values are updated with noLL computation upto the midpoint
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Fig. 6. Whileα andβ values are updated,LL values are being computed and given out at the same time
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Fig. 7. The effect ofNormMax value on a rate-1/3 PDTC decoder using the max-log-MAP algorithm.
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Fig. 8. The effect ofNormMax value on a rate-1/3 PDTC decoder using the log-MAP algorithm.
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Fig. 10. Performance of PDTC decoder with max-log-MAP algorithm.
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Fig. 11. Performance of PDTC decoder with log-MAP algorithm.



30

−0.5 0 0.5 1 1.5 2 2.5 3
10

−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

0
 (dB)

 

 

floating-point

K = 7

K = 6

K = 5

Fig. 12. Performance of PDRAC decoder.


