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Abstract

In this paper, we discuss the implementation of a low latefesyoding algorithm for turbo codes and
repeat accumulate codes and compare the implementatioltsres terms of maximum available clock
speed, resource consumption, error correction perforayaarad the data (information bit) rate. In order
to decrease the latency a parallellised decoder structunstrioduced for these mentioned codes and
the results are obtained by implementing the decoders ondapiiegrammable gate array. The memory
collision problem is avoided by using collision-free inéavers. Through a proposed quantisation scheme
and normalisation in forward/backward recursions, comonal issues are handled for overcoming the
overflow and underflow issues in a fixed point arithmetic. Alge effect of different implementation

styles are observed.
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. INTRODUCTION

In wireless communications, channel coding has an impbrt@ie on enhancing the communication
reliability and quality of service. Turbo codes, introddcie [1], have shown a great performance in
additive white Gaussian (AWGN) channels. After the gredti@ement of the turbo structure, the same
idea has been applied to different coding schemes. Tukieododes, explained in detail in [2], is the
result of that idea. Following the improvements in wirelesmamunications, high speed data transmission
became a great necessity. There are mainly three sourcetentyan data transmission at the physical
layer: encoding latency, transmission latency, decoditgnicy. The former one is relatively very small
and usually neglected. Since transmission latency depermslydon the transmission bandwidth, the
main bottleneck stands as the decoding latency which is e focus of this article. Both turbo and
turbo-like codes introduce huge decoding latencies sineg operate in an iterative manner.

To overcome the latency problem, numerous techniques haea hpplied. One of the foremost
techniques is parallel processing. Running multiple dec®doncurrently enabled by the sliding window
technique significantly reduces decoding latency ([3]-I3d aeferences therein). Another approach that
enables concurrent operation of multiple decoders is lgdlishtion imposed to the encoder side which
results in a neat parallel decoder structure as proposei] emd studied here. In our structure, decoding
and encoding time is reduced by the number of simultaneaystyating blocks.

Another idea is to reduce the latency of the component makginposteriori (MAP) decoders by
applying an algorithm called “centre to top” (CTT) [3], [4],][7In CTT, the forward and backward
recursions of decoding run concurrently and decoding atés halved at the expense of computational
resources. This technique will be utilised here as well.

A main bottleneck in all parallelised turbo decoders is titerleaving operation and the accompanying
memory collision problem. When the component decodersnatt@t accessing the memory elements in
the same memory block, a memory collision problem occurss phoblem is circumvented in various
ways. One of the methods is algebraic interleaver construsipecific to parallellised decoders (see [5],
[8] and references therein) where some contraints have itaflied on the interleaver. Another approach
is to obtain a solution via special routing based on parat@hputing theory [9] for ASIC systems with
added hardware complexity. We make use of specially dedigrerleavers called row-column S-random
interleavers [10] in this study due to their simplicity. Byet parallelisation at the encoder side, the use
of parallel interleavers is possible. When these intedesare read/written in rows or columns, memory

access problems are fully avoided in an easy way as explangd].



Another issue in the design of turbo decoders is the use of pr@ut aritmetic preferred over floating
point arithmetic in practice. The limited number of bits cesi®verflow and underflow problems while
computing the variables utilised in decoding. In the forvand backward recursions, to be described in
Section Il, the variables keep on increasing or decreasitgssirspecial precautions are taken. Amongst
other techniques ([7] and references therein), the vaasabte compared to a threshold in [7] and then
a subtraction/addition operation is performed based orctimparison. We take a simpler approach in
this study where the variables are normalised in relatiothetomaximum at each step of the decoding
algorithm. This does not add a significant latency or hardwamaptexity and performs very well.
Another important issue is the handling of incoming charotetervations and how they will be used
in the decoding algorithm. In this study, the channel obattoms are directly mapped to probability
guantised in a fixed number of bits at some granularity depgrmie SNR. Although many turbo decoder
implementation articles propose an ad hoc quantisatios, mue will derive a quantisation step based
on analysis. All the probability variables of the decodidgosithm are kept with the same number of
bits and quantisation step as the channel observation lpititfaaThis results in a uniformity within the
decoder that simplifies the design and enables higher cldek.ra

Our aim in this paper is to compare some parallellised turbaoder architectures and show detailed
implementation strategies to decrease decoding laten®y.effects of design choices in FPGA imple-
mentation will be examined in regard to maximum clock spewanber of slices used, maximum data
rate, and error rate performance. In particular, turbo sad® repeat-accumulate codes will be inspected
in terms of the mentioned parameters. The strategies atilisughout this study are not specific to
an FPGA implementation and can be easily applied to an apipliicapecific integrated circuit (ASIC)
design.

The paper consists of the following sections. In Section Il,psesent the mathematical expressions
for the BCJR algorithm. Section Ill describes the idea of palimation introduced for turbo codes. In
Section IV, we explain the parallellised repeat-accumutatdes. In Section V, we provide the details
of implementation and optimisations applied during thdisation of the proposed systems on an FPGA

board. Some numerical results are presented in Section VI emdusion follows in Section VII.

Il. BCIJR ALGORITHM

The BCJR algorithm [11] is the most popular MAP decoding dthar. It aims to minimize the bit
error rate (BER) by maximizing the marginal a posteriori @oitities. In practice, the BCJR algorithm

usually calculates tha posteriori log-likelihood ratio (a posteriori L-value) of an information bit where



log-domain operation usually simplifies decoder operat®ince derivation of the algoritgm can be found
in many standard textbooks such as [12], we will briefly ovemwsome of the issues for sake of reference
in the subsequent sections of the paper.

The log-likelihood ratio {.) of an information bitu; can be calculated as

pu = +1|Y)}

LL(u;) =In { , 1

R =) .

for a received signal sequengeUsing this a posteriori L-value, a hard decision correspumntb «; can

be found by

R +1, LL(ul) >0

u; = . (2)
-1, LL(ul) <0

The branch metric at time! is the probability of having a state transition from statéo s at time!
and defined as

(s, s) =Inp(siy1 = s, yilsi = &), (3)

wherey; is the received signal vector at tinieconsisting of both data and parity observations. In an
AWGN channel, branch metrics can be written as

L L
aéul)ul + 70(}’1 V1),

(s’ s) = (4)

whereL,(u;) is the a priori bit probability, L. is the channel reliability factor which is equal4d, /N,
and v, denotes the output vector consisting of data and parityasgfor transition from state’ to s.
The dot productr, - v;) gives the correlation between the hypothesised trangiréitel received vectors.
Scaling this distance witl.. means that the observations are more reliable when SNR isarigha
priori values are trusted more when SNR is low.

The BCJR algorithm determines the bit likelihoods based owdod and backward recursions

04l+1(8) = In Z e['yl(s’,s)Jral(s/)}’ (5)
s'€oy

ﬁl(S/) — 1n Z 6[71(5/78)+61+1(S)]’ (6)
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with initial conditions in case of trellis termination
0, S = 0 07 S =

ap(s) = , Bn(s) = (7)
—00, §#0

It must be noted that thé,, values for the termination bits are always



The log-likelihood ratio in (1) can be written using the vates described above as [12]

(

s',s)ext
— 1n{ Z e[al(3')4"7!(5/75)"‘51“(5)}} (8)
(s',8)€X,
whereX;" and Y, are the sets of transitions with the information bit is 0 andebpectively.

It can easily be seen that calculations can be simplified mgréefining amaxz™* operation
maz*(z,y) = In(e® 4+ ¢¥) = max(z, y) + In(1 + e~ 1*7¥)), 9)

where the second term is usually called tioerection term.

IIl. PARALLEL DECODABLE TURBO CODES

Turbo codes were first introduced by Berrou et. al. [1] in 1993urbo code’s (TC) encoder consists
of two convolutional encoders operating in parallel. Whike upper encoder encodes the information
bits in the given order, the lower one operates on an integlbaersion of the information bits. A TC
decoder consists of two MAP decoders operating iterativéymputed L values out of one decoder
are used in the other, and vice versa. By subtracting thet ihjuvalues from the computed ones, the
extrinsic information is obtained, which is the actual estimation of that decoditegp [1].

However, using an iterative decoding scheme may suffer fnoige decoding latencies and degrade
the transmission rate in real time operations. To overcdmngedrawback in a simple way, parallellisation
is introduced on both the encoder and decoder sides [6] asnsho Figures 1 and 2. In the parallel
decodable turbo code (PDTC) decoder structure, there exisdéde clusters instead of single component
decoders. These two clusters operate iteratively, whilelémeders in each cluster operate simultaneously
and independently. This architecture decreases the dertatency byN, where N is the number of
parallel decoders in a clustetVhile TC decoders operate on a blockifinformation bits, each decoder
in PDTC operates otk /N information bits in parallel.

To implement this parallel structure, an architecture adlé for parallel processing is needed. For
that reason, FPGA is chosen here to investigate the PDTC perfoenén our studies, we have used 4
parallel decoders in each cluster without loss of gengralfiich is a good degree of parallellisation and

does not overload the FPGA platform used herein.

2The number of decoders in each cluster may be different in general.



IV. PARALLEL DECODABLE REPEAT ACCUMULATE CODES

Repeat Accumulate (RA) codes are in the class of turbo-likdes. After the invention of turbo
codes, Divsalar et. al [2] applied the random-like interégastructure to a set of coding schemes.
Repeat accumulate codes are obtained by the concatenditamepetition code encoder and2astate
convolutional encoder. The decoding latency issue surfalsesin RA codes and hence the parallelisation
idea may be applied. The parallel concatenated repeatezatriye uncoded data bifstimes and forward
the results to the raté-convolutional encoders after passing through an integleddence, the overall
rate of the encoder becomégL which is the same as that of the repetition encoder.

Although factor-graph based decoding is usually prefefoedRA codes, we will utilise convolutional
decoders along with repetition decoders so that similanitactures will be compared. In the decoding
process, decoders operating in parallel are utilised irerotd decrease latency as in PDTC decoders.

The parallellised decoder structure is shown in Figure 4.

V. FPGA IMPLEMENTATION

We have implemented our system on a Xilinx ML402 Virtex-4 SX bedilon Platform and produced
test results by working on it. This platform has a medium siE®GA with number of available slices
15000. Its architecture enables building parallel processirnghkd. However, implementing a soft-in soft-
out (SISO) decoder on an FPGA inherently faces some problems gihas limited resources which do
not let one easily use floating-point arithmetic or large fipeddt arithmetic. Throughout this section,
we will describe our solutions to the problems and optiniiset we have applied. BPSK modulation is

assumed throughout and other constellations can be diyndpplied.

A. The Centre to Top Algorithm

When the metric calculations in (5) and (6) are considereckn be seen that the two operations are
independent of each other. This gives the ability to caleulatind 8 metrics simultaneously assuming
that all of the received values are available for branch imetlculations. This assumption is valid for
the iterative decoding schemes (like of turbo codes as incase) since decoding process can begin
after receiving the whole packet. By this algorithm, theatbiog time can be halved. Consider a decoder
running on42 bits (@0 information bits and termination bits) as will be used throughout this study for
each branch of the parallelised encoder/decoder. At €irttee metric values are initialised as defined in
(7). « and g values are calculated without computing any LL value up tceetih. At time 21, both of

a1, Poo @andagg, P21 values are available together with the branch metrics fettithe,v»; and~yg. So,



LL(u21) and LL(ugy) are computed and given out. That process, starting from thiecef the frame,

continues to the end and simultaneously to the beginningh@fftame. That is why this algorithm is
named as “centre to top” [3]. It must be noted thatind 3 metric values do not have to be written to
memory after the midpoint, sinceéL values are calculated simultaneously. So, not only the degod

time but also the memory usage is halved by this algorithm.

B. Memory Collision-Free Interleavers

Block RAMs are the most widely used storage elements on FPGjqigo Starting from that fact, we
have used block RAMs to store observations and calculafegalues. However, using RAMs introduces
some difficulties because of their limited accessibility. iEve the dual port block RAMs, there are only
two available ports to read or write at the same time.

As described in Section Ill, each decoder in a cluster operafearallel to each other. This means
that each receive the observation values and irfplitvalues at the same time instants. Since block
RAMs storing these values can serve to only one decoder tod#sired address, 4 parallel decoders
must be assigned to work on different RAMs. If two (or morekrat#ers try to work on (especially
for “writing” operation) the same RAM, there will occur a mery collision. To prevent this problem,

memory collision-free interleavers of [10] have been used.

C. Observation Quantisation

In the conventional mathematical model-& or —1 is assumed to be transmitted for BPSK, appropriate
noise is added and calculations are carried on with theggrassnts. An AWGN channel for BPSK
modulation can be modeled as

Yk = hixy + ng, (10)

for any time instantt where y;, is the received symboly; is the channel gain\(E; in an AWGN
channel withE; being the signal energy);. is the transmitted bitay, = F1) and n, is a circularly
symmetric complex Gaussian random variable with me@amd varianceV,.

The conditional probability of a received symhgl can be expressed as
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whereC' is a constant and has no effect on the MAP calculations. Haheefunction can be redefined

as
1n<f<yk|hk,w))iﬁﬁ{whim*h (14)

where= denotes equality with a constant.

As we use fixed-point arithmetic, the metric values in the B@Igdrithm are represented by a fixed
number of bits, K. However, the decoder is not guaranteed to work properl its representation
unless the channel observations (input of the decoder)aefutly quantised. For that reason, we need
to quantize observations by a quantisation fagfpsuch that the represented observations lay in &set
smaller than the set of numbers representedsblits. After that, the quantised observation probability

for x = 1 is used in decoding with

@ = QUn(S (el = 1)) = | 2B 15)
If we apply the AWGN channel model given in (10) o_n (15) for a BPRiddulation, we get
Qr = 2@/121705}3{yk} 7 (16)
|V nk>}J | )
i q
- [ w

wheren; is the real part of the complex Gaussian noise with mean 0 andnceN, /2.

Recalling that a finite number of bits are used in represemtingbers, the question is how to choagse
If ¢ is chosen to be very smafl);’s will be large and the formulas such as (8) will not functimmoperly
due to overflow. Ifg is chosen to be very large, then the difference in noise gadfighe observations will
not be properly passed to the decoder and then soft decodihguffer. We resolve the problem above

by the compromise that the packet is normalised with resfmeds absolute maximum symbol value,



ObsMazx. If we represent that value with a predefined val¥eym M ax (absolute maximum value after
the quantisation is performed) then we get asset { —NormMax,—NormMax+1,..., NormMazx—

1, NormMax} for decoder’s input sequence. This information can be coetbiwith a well known
property of the Gaussian distribution that, in a normallgtibuted set with meap and variances?,

obtaining a numbep such thatp| > 1+ 30 has a probability of about/1000. To be able to apply that

property, we need to identify the mean and variance of thdaemnvariableA = 12\% + %En]

B} = 19)

2VE,  2J/E /N

Nog ™7 Noa V2

2Fs 1

Nog va

_ vEA (20)
V4

After the quantisation of the packet, it is known that synsbgteater than-NormMax or smaller

oA =

than —NormMax can occur in the packet with a small probability. If we neglége small probability

of 1/1000, we can defineVormMax as

NormMax = E{A}+ 304 (21)
- iy 5 e

By replacing (19) in (22), we get

2F, 3 285 1

NormMax = =+ . 23
Nogq Nog v/q (23)
By solving this equationg can be calculated as
2B, 2E,
1= "NormMaz

As it is obvious in (24)g4 is a function of theSN R (E,/Ny) for a selectedVorm M ax value. Instead
of calculating theg value for each packet, a look-up table (LUT) can be used. In esigd, we have
used a relatively large LUT that stores thevalues in8 bits, 3 for integer part and for the decimal

part. That gives a precision df/2° and yields a satisfactory performance.

D. max* Approximation

The correction term imnax™ operation causes problems when it is needed to be expresfred-point

arithmetic. It is not possible to easily realize tlaefunction fully in such a system. For that reason, some
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approximations must be made to implement #thex* operation. There are basically two approximations
in the literature. These two different approaches resulogaMAP with tables andmax-log-MAP.

If the decoder is a log-MAP decoder themaz* calculation is a more difficult subject, because the
correction termJn(1 4 e(=1*=¥D)), should be calculated. Since the hardware implementaticsuch a
function is complicated, this term is handled by constarctof a LUT in practice. As described in the
previous part, the observations are in quantised formether LUT values also have to be quantised
accordingly. That is, if the inputs to thewaz* function are in a quantised fashion, the other terms
generated in the function also should be quantised in ghraith the inputs. The LUT construction
function is,

LUT(i) = (25)

In(1 + %)
q
wherei is the absolute value of the difference of the inputs of #tlaex* function. The LUT sizes are

usually quite small (around 5-6 entries) with reasonable-m M ax values.

In a max-log-MAP decoder, the correction term is neglectiedt ismax* operation is the same with
ordinary max operation. So, the quantisation terg,is useless for this method. In other words, it can
be said that decoder does not need an exact SNR estimatioetateproperly. Studies in [13] and [14]

have shown that max-log-MAP decoders work without any nee@NR estimation.

E. Fixed-Point Summation and Subtraction

Using a restricted sef-{ (25! —1),2K-1 — 1] whereK is the metric size) to represent metric values
forces us to introduce new summation and subtraction dpagatvith the closure property in the given

set. The operationlipsum, denoted byd, replaces with the regular summation. Under the assumption

of plus_inf = 25-1 — 1 andminus_inf = —plus_inf,
plus_inf, a > plus_inf or b > plus_inf
minus_inf, a < minus_inf or b < minus_inf
a®b=1q plus_inf, a+b> plus_inf (26)
minus_inf, a+b < minus_inf
a+b, else.

Similarly, a new subtraction operatiatiipsubtract (&) is introduced as

aob=a® (-b). (27)
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F. Node («, (3) Metric Normalisation

In (5) and (6) it has been shown thatand  values are updated in a recursive manner. As the
computations go further, these metric values may overflowlf.s_in f) or underflow & minus_inf).
To solve this problemg and 8 values are normalised at each trellis step. After each fahsecursion,
maximum of the newly generated forward metric values is rsbgéd from these values amdmetrics
are updated with these normalised values. The same is ajplib@ 5 metrics. After the normalisation
process, we get a maximum value @for « and 3 metrics at each time instant and prevent underflow

and overflow cases. Another approach to node metric norrtialisean be found in [15].

G. Memory Complexity

Before the decoding process, the observations have to bedsto different memories in order to use
them in the parallel decoder structure. For that reason, mane structure is defined. That structure
differs for PDTC and PDRAC decoders.

1) PDTC memory structure: If there are N decoders operating in parallel, then there mustN\be
independent memory blocks for data bit observatiahén(Figure 2). Accordingly,N memory blocks
are used for parity observations ahdmemory blocks for interleaved parity observatiops &ndp, in
Figure 2, respectively). In addition to thes€, memory blocks are also defined for interleaver (memory
collision-free interleavers) tables.

2) PDRAC memory structure; For N parallel MAP decoders, the observations are stored i¥ito
memory blocks. Different than the PDTC case, there are no dereations. Similar to the PDTC case,
N memory blocks are used to store the interleaver tables.

Log-likelihood values are stored in RAMs, too. Each decodedsean a priori probabilityf{,) and
generates log-likelihood ratid.(C) andextrinsic information (L.), where in our desigil.’s are calculated
within the MAP decodet TheseL,. and L, notations are eligible for the decoders running in the first
cluster. In the second cluster, decoders fisesalues aslL, and generates the. values which will be
used asL, in the next iteration. The word “cluster” is used just for inmagwhich defines half of an
iteration. In fact, decoders only change their state todwithe input and output log-likelihood ratios

(L, and L.). Since LL values are final results, they are updated (overwritteny a&fdehcluster run.

3The extrinsic information is generated inside the decoder to decreasgdieenscomplexity at the expense of maximum

clock speed.
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That structure brings out a memory usage3®f memory blocks for log-likelihood ratio storage in both
PDTC and PDRAC decoders.

Summing up all yields a usage GV number of memory blocks for PDTC decoder ahyy for
PDRAC decoder.

VI. RESULTS

In this section, the effects of the implementation choicek e shown and the performances of
parallellised decoder structures will be compared. Ouultesare produced with the choices given in
the remainder of this paragraph. The parallel decoder aathites are constructed by using 4 parallel
MAP decoders. This choice was a good compromise between a dggrée of paralellisation and not
overloading the FPGA so that problems arising from fitting attigssign into a limited FPGA are avoided.
Each MAP decoder is responsible for decoding 42 bits. 40 lhiteese corresponds to information and
2 corresponds to termination bits. Hence, the initial andl fmiadues ofa and g values are respectively
known due to trellis termination. Since each decoder decd@eimformation bits, a packet consists of
4 x 4 = 160 information bits in total. In detail, 160 bits of informatids embedded in a 512-bit packet
with 160 information bits, 160 parity bits, 160 interleavpdrity bits where the remaining 32 bits are
the termination bits forl parallel decoders. The overall code is slightly smaller thah Furthermore,
the number of iterations is chosen as 4 for PDTC and 8 for PDRACHwaie close to average iteration
numbers with early-stop procedures ([16] and referencerei) for SNR of interest. In the memory
collision-free interleavers of [10], 4 different S-randomerleavers of size 40 are needed here. Without
any optimisation of the interleavers, 4 different inteviets with the S value of are generated and used
in all simulations.

The choice for the numbe¥ormMax (explained in Section V-C) affects the performance of decode
such that choosing a high value results in saturation inime#iculations while choosing a small value
causes a loss in representing observation values. Thig effieperformance has been shown in Figures
7, 8, and 9. The figures are obtained by obsernifig0 packets with each containings0 information
bits for E,/Ny = 2.6 dB. The optimumNormM ax values for eachk and decoding algorithm can be
obtained from these figures. Also, in the figures it can be sestraththeX value increases, so does the
number of available optimun¥ormM ax values.

Another parameter that affects the performance of the desas the selection of thE value. Choosing
a large K results in a better performance while at the same time cabsedecoder to consume more

resources on FPGA and to work on a lower clock speed. So, thereddeoff between the performance,
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resource consumption, and the speed. The performancesresaltgiven in Figures 10, 11, and 12. It
must be noted that these comparisons are made by using theebeling Norm M ax values for each
decoder structure an value after2000 runs on al60 bit information packet (equall$12-bit packet)
with a fixed iteration numberd(for PDTCs and8 for PDRAC).

Figures 10-12 suggest that larger values of K enable bettéorpeance. That is why the selection of
the K value in a design must be done carefully to match the BER remngnt. In these figures, it can
be seen that the performance does not improve significanylgrioeX’ = 6. So, the choice of’ as6
seems to be a good choice for these decoder structures. Tihgs lar performance within.5 dB from
the floating-point for the PDTC decoders ang dB for the PDRAC decoder.

In this study, we have used two different architectures foplementing PDTC decoders, namely
Architecture-A and Architecture-B. The difference between these two architectures can beiegglas
follows. Architecture-A uses combinatorial logic operations heavily in the BCJRodec implementation.
All the numerical calculations are carried on in one clockleyi.e.,a/s calculation,a/s normalisation,
«, (3, v summation and.L computations are done in one clock cycle. Decodin@-&it length sequence
(42 data bits,42 parity bits) takesl2 cycles onArchitecture-A. On the other handirchitecture-B uses a
pipelining structure in some calculations where indepahdemputations are pipelined. The calculation
and normalisation of./3 metrics are done in one cycle. The summations in (8) are domeseparate
cycle (concurrent with the calculation and normalisatiéralpha/beta metrics for the subsequent trellis
stage) andL L values are calculated in yet another clock cycle. The extrimalues are determined in
another cycle as well. Lastly the computed extrinsic infdrarais forwarded to the output of the decoder
in one cycle. This architecture aims to divide the combinatdogic operations into smaller pipelined
blocks to reduce the gate delays. Since independent opesatie pipelined, all the operations continue
still simultaneously except for an extra latency4o€lock cycles. By this architecture decodingt2bit
length sequence takel$ cycles. The resource consumptions for these two archiestare given in
Tables | and Il together with the speed considerations fiferdint X' values. In Table Ill, the synthesis
results for PDRAC decoder is givenlt can be observed that pipelining can enable significamtigdr
clock speeds at the expense of a small increase in perceotadjees used.

The distinct difference between log-MAP and max-log-MAPaaithms is that the former uses a LUT.
As described in Section V-C, LUT is generated by using ¢healue. In our design RA code uses the

log-MAP algorithm. That is why, the calculating circuit is included in these two codes and itstones

“Due to the speed advantage Artchitecture-B, it is used on PDRAC decoder implementation.
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TABLE |

SYNTHESIS RESULTS OF PDTC DECODER WITH MAX.OG-MAP ALGORITHM

metric size Slice usage| Max. clock speed
Slices used

(bits) (%) (MHz)

Architecture-A

4 6070 39 50.3
5 6104 39 49.8
6 6570 42 47.6
7 7174 46 43.8

Architecture-B

4 6347 41 87.2
5 6501 42 86.9
6 6994 45 86.9
7 7537 49 85.7

some additional resources. These extra resources are édcladhe results given in Tables Il and Il
It is obvious that LUT insertion degrades the design perfoiceain terms of both resource usage and
maximum clock speed. The reason of that can be explained lasvéILUT can be thought as a large
multiplexer which is controlled by the value and the inputs of thewaz* operation. Additionally the
results of the LUT have to be added in theiz* operation in order thathaz™* result can be ready at
the next clock cycle, that is, a combinatorially operatiagge multiplexer degrades the resource usage
and combinatorial addition degrades the maximum operdtgmuency. Also, it must be noted that the
slice usage increases almost linearly with

It must be noted that maximum achievable clock speeds givérables 1,11 and Il are the predicted
clock speeds of the Xilinx sysnthesis tool (XST). It is our alvadon that a carefully constrained design
can often achieve even higher clock speeds when programmtedaa FPGA.

Large decoding latencies in turbo and turbo-like codes arendahe drawback of these algorithms.
By making them operate in parallel, a decrease in their dagodtencies is expected. To observe that

decrease, decoding latencies are better to give in a forminla decoding latency;, for our parallel
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TABLE Il

SYNTHESIS RESULTS OF PDTC DECODER WITH LOBIAP ALGORITHM

metric size Slice usage| Max. clock speed
Slices used

(bits) (%) (MHz)

Architecture-A

5 8179 53 36.2
6 10628 69 315
7 11309 73 313

Architecture-B

5 8663 56 65.5

6 10595 68 60.0

7 10807 70 55.4
TABLE 1l

SYNTHESIS RESULTS OF PDRAC DECODER

metric size Slice usage| Max. clock speed
Slices used
(bits) (%) (MHz)
5 5019 32 68.7
6 6046 39 68.1
7 6219 40 64.2

decodable turbo code decoder stucture (both log-MAP andloMAP) is

T = %2[ , for Architecture-A and (28)
D :
o= (N + 6) 21, for Architecture-B, (29)

where D is the number of information (data) bits in the pack®tjs the number of parallel decoders in
a cluster and is the iteration number. Th% term is the decoding latency of a BCJR decoder operating
with the CTT algorithm. The addition by in (29) is the result of the latency in BCJR)(and interleaver
structure 2) due to pipelining inArchitecture-B. The reason of multiplying bgI is that in each iteration

the BCJR decoders run twice, one for the uninterleaved fdrichata and one for the interleaved.
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Similarly for PDRAC decoders the decoding latency can be agae as

D D
3D
= <2NR + 6) I (31)
whereR is the code rate. The terl;\%12 in (30) is the latency introduced by the BCJR decoders antetie

%% is the latency introduced by the accumulate decoders. Agthmot performed here, different number

of parallellised blocks for BCJR and accumulate decodenshbeautilised for optimisation purposes.

During the decoding latency calculations, we have assutmadatping-pong buffer structure is used
in the receiver side. While a packet is being received, theeofations are stored in a memory in
the quantised form. After thaping memories are filled as described in Section V-G domp; and ps
observations and decoders begin to run. If another packeesrduring the decoding process, ttep,
and p, observations are stored pong memories. In this case, the decoding process is not affdgted
the reception of the new packet. When the decoders finish jiiigithey operate on theong memories
and this time thging memories are free for another packet storage. This strudnubles the memory
usage in the system for storing observations.

At this point, we can make a final comparison between all thegsed structures in terms of maximum
available data rates. If we denote the data rate bwe can formulate it as,

v=2X5 (32)

T

where f is the maximum available frequency ands the decoding latecy. To find the exact data rate, we
need to decide on the architecture, number of data bits irclkepdD),metric representation widthk(),
iteration number {), the number of constituent decoders in a clusféj, (and the code rateR). In data
rate calculation, th¢ value can be obtained by checking the Tables I, I, and litlerselected< value.
Similarly, = value can be obtained from (28), (29), or (31) for the decidgdcture and architecture.
After observing the BER performances and FPGA resource usagdawe decided to usg = 6 for
log-MAP and max-log-MAP PDTC decoders with both architecduaad X' = 7 for PDRAC decoder.
Herein we used packets containibg0 data bits, that i9D = 160. Using the Tables I, I, 11l and Figures
10, 11, 12 with the design choices listed above, we can genéedle IV that gives all the information
and comparisons needed. In this table, the clock frequeranie adjusted in such a way that oscillators
can be found in the market easily.

As seen in Table IVN values differ for each decoder structure. The idea of usiffgrdnt V values

can be explained as follows. It is remarked before that thkeuee consumption increases approximately
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TABLE IV

COMPARISON OF THE PROPOSED DECODER STRUCTURES

K | Clock speed _ | Bit Rate
Decoder & Architecture N | I SNR for BER = 1073
(bits) (MHz) (Mbps)
PDTC with max-log-MAP inArchitecture-A | 8 | 4 6 48 ~2.2 dB 48
PDTC with max-log-MAP inArchitecture-B | 8 | 4 6 80 ~2.2 dB 61.54
PDTC with log-MAP in Architecture-A 6 | 4 6 30 ~2.0 dB 225
PDTC with log-MAP in Architecture-B 6 | 4 6 60 ~2.0 dB 36.73
PDRAC with log-MAP 10 | 8 7 60 ~2.7 dB 15.4

linearly asV increases. Working on that assumption, maximum availablealue is calculated for the
usage of the all FPGA resources. In [17], it is stated that asing the/N value does not affect the
performance of the PDTC decoddrstands for the number of iterations carried on in paralleloder
structure andK shows the number of bits that the observations are repexbdiyt By these provided
results, it is not hard to say that a PDTC decoder with log-MA¢hiéecture inArchitecture-B is the best

in terms of error performance. However, max-log-MAP decaday be preferred in terms of resource
consumption and data rate but with022 dB performance degradation. On the other hand, PDRAC
decoder structure with parallellised MAP decoders doespnesent a satisfactory performance among

the proposed architectures.

VIlI. CONCLUSION

Decoding latency is an important issue in iterative decgditgorithms which may be overcome
with parallellisation. In this paper we implemented a paiided encoder/decoder structure for turbo
and repeat-accumulate codes. A new and simple metric gasioth scheme was proposed and used
to avoid problems of decoding in fixed point arithmetic. Conatborial logic and pipelining based
architectures were separately implemented for compangswposes. Comparisons were made in terms
of error performance, FPGA resource usage, FPGA clock speeddatadrate. Max-log-MAP with
pipelining provided the best result when all issues arertaki account. PDRAC does not perform well

in comparison to any of the turbo decoders at the same daa rat
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