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Forced Response Prediction of
Constrained and Unconstrained
Structures Coupled Through
Frictional Contacts
In this paper, a forced response prediction method for the analysis of constrained and
unconstrained structures coupled through frictional contacts is presented. This type of
frictional contact problem arises in vibration damping of turbine blades, in which damp-
ers and blades constitute the unconstrained and constrained structures, respectively. The
model of the unconstrained/free structure includes six rigid body modes and several
elastic modes, the number of which depends on the excitation frequency. In other words,
the motion of the free structure is not artificially constrained. When modeling the contact
surfaces between the constrained and free structure, discrete contact points along with
contact stiffnesses are distributed on the friction interfaces. At each contact point, contact
stiffness is determined and employed in order to take into account the effects of higher
frequency modes that are omitted in the dynamic analysis. Depending on the normal force
acting on the contact interfaces, quasistatic contact analysis is initially employed to
determine the contact area as well as the initial preload or gap at each contact point due
to the normal load. A friction model is employed to determine the three-dimensional
nonlinear contact forces, and the relationship between the contact forces and the relative
motion is utilized by the harmonic balance method. As the relative motion is expressed as
a modal superposition, the unknown variables, and thus the resulting nonlinear algebraic
equations in the harmonic balance method, are in proportion to the number of modes
employed. Therefore the number of contact points used is irrelevant. The developed
method is applied to a bladed-disk system with wedge dampers where the dampers con-
stitute the unconstrained structure, and the effects of normal load on the rigid body
motion of the damper are investigated. It is shown that the effect of rotational motion is
significant, particularly for the in-phase vibration modes. Moreover, the effect of partial
slip in the forced response analysis and the effect of the number of harmonics employed
by the harmonic balance method are examined. Finally, the prediction for a test case is
compared with the test data to verify the developed method.
�DOI: 10.1115/1.2940356�
Introduction

Mechanical systems with moving components always involve
rictional contact, which appears in various applications such as
urbine blades �1–10�, mechanical joints �11–13�, and clutches
14–16�. Due to the nonlinear nature of dry friction, dynamic
nalysis of structures constrained through frictional contacts is
ifficult. Several methods were developed in order to analyze
hese structures �1–16�; however, due to this difficulty, all of these

ethods were developed for specific cases such as shroud contact
9,10�, bladed disks with wedge dampers �1–3,8�, mechanical
oints �11�, and clutches �14,16�. Therefore, there is a need for a
eneral approach for the analysis of structures constrained through
rictional contacts.

In order to develop a general analysis method, one of the struc-
ures in the frictional contact is considered as unconstrained;
herefore, it is constrained by the frictional contact and/or the
eometric configuration only. This is a general case, which can
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also handle friction contact between constrained structures. A typi-
cal example of frictional contact between constrained and uncon-
strained structures can be found in bladed-disk systems with
blade-to-blade dampers �1–8�, where the dampers move freely in
between adjacent blades. In order to establish the developed
forced response analysis method, in this study, a bladed-disk sys-
tem with wedge dampers is used as an illustration in the rest of the
paper. Here, blade and wedge damper constitute the constrained
and unconstrained structures, respectively.

Wedge damper, unconstrained structure, is a widely used fric-
tion damper, which is also referred to as underplatform damper. It
has two inclined surfaces on both sides and forced against the two
neighboring blades by centrifugal forces. Due to the relative mo-
tion between the wedge damper and adjacent blades, the excessive
energy of the blades is dissipated through frictional contacts. In
order to increase the high cycle fatigue �HCF� life of turbine
blades, optimal parameter values for the wedge damper and the
bladed-disk system have to be determined, which can be achieved
through a forced response analysis.

Yang and Menq �1,2� developed stick-slip contact kinematics
for wedge dampers under two translational degrees of freedom.
Authors developed analytical stick-slip transition criteria, includ-
ing the variation of normal load, in order to simulate the stick-slip
motion precisely. The harmonic balance method was used to pre-
dict forced response of bladed disk with wedge dampers, and an

experimental test beam was analyzed and the simulation results
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ere validated. A 3D wedge damper model with two-dimensional
otion on the contact interface was developed by Sanliturk et al.

3�. A two-dimensional friction model for constant normal load
as used, and the harmonic balance method is applied to predict

orced response. A test case with two blades and a wedge damper
as analyzed, and the results were compared with the simulations.

n addition to wedge dampers, curved shape underplatform damp-
rs were also studied by several researchers �4–7�, and an under-
latform damper with a curved and inclined surface was analyzed
n Ref. �8�. All the models described above develop kinematic
elations for the damper and blade, and the rigid body motion of
he unconstrained structure is not modeled.

In order to determine nonlinear contact forces between two
elatively moving bodies, different friction models can be utilized.
n the analysis of friction damping, one-dimensional friction
odel was used widely �17–21�. This model is useful if the rela-

ive motion is one dimensional. It is possible to have planar mo-
ion, for which two-dimensional friction models are developed
22,23�. However, due to the interaction between two bodies, the
ormal load acting on contacting surfaces can vary with normal
otion. Yang et al. �24� developed a one-dimensional friction
odel where the normal load was induced by the normal motions

f the mating surfaces. Authors developed analytical transition
riteria for stick-slip-separation transition and obtained analytical
ransition angles for simple harmonic motion. Normal load varia-
ion was also addressed by Yang and Menq �25� for three-
imensional motion �two-dimensional in-plane and one-
imensional out-of-plane motion� and by Chen and Menq �10� for
hree-dimensional periodic motion. Using similar criteria as devel-
ped in Ref. �24�, Petrov and Ewins �26�, for one-dimensional
otion with normal load variation, later described an algorithm to

etermine transition angles numerically for periodic motion, simi-
ar to the one given in Ref. �27�.

This paper presents a forced response prediction method for the
nalysis of constrained and unconstrained structures coupled
hrough frictional contacts. The proposed model includes six rigid
ody modes and several elastic modes of the unconstrained struc-
ure; therefore, it may undergo three-dimensional translation and
hree-dimensional rotation, which are constrained by the friction
ontacts only. In the modeling of contact surfaces, discrete contact
oints associated with contact stiffnesses are distributed on fric-
ion interfaces. Contact stiffnesses at each contact point are deter-

ined by considering the effects of higher frequency modes,
hich are omitted in the dynamic analysis. The initial preload or
ap at each contact pair varies with the normal force acting on the
riction interface; therefore, a quasistatic contact analysis is per-
ormed initially in order to determine the contact area in addition
o the initial preload or gap at each contact point due to the normal
oad.

In order to predict forced response of frictionally constrained
tructures, two-dimensional or three-dimensional friction models
eveloped previously can be employed. However, in order to de-
rease computational time required for the forced response predic-
ions, a simplified three-dimensional friction contact model based
n the one-dimensional model with normal load variation �24� is
roposed. In the proposed friction model, the three-dimensional
elative motion on the contact surface is decomposed into two
ne-dimensional in-plane components and an out-of-plane com-
onent. The one-dimensional friction contact model is employed
y assuming that these in-plane components are independent of
ach other. The harmonic balance method is used to represent the
esulting nonlinear contact forces ensuing in a set of nonlinear
lgebraic equations. The relative motion at the contact surface is
xpressed by modal superposition; therefore, the number of un-
nowns resulting in the nonlinear equation set is only proportional
o the number of modes used in the analysis. As a result, unlike
eceptance methods, the number of nonlinear equations is inde-
endent of the number of contact points used.
The developed method is applied to a tuned bladed-disk system
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with wedge dampers in order to obtain its forced response and
optimal curves. In addition, the effects of normal load on the rigid
body motion of the damper are studied. Specifically, the effect of
the damper’s rotational motion on the prediction of the forced
response is analyzed. It is shown that the effect of rotational mo-
tion is significant, particularly for the in-phase vibration modes.
The effect of partial slip in the forced response analysis is inves-
tigated. A blade-to-ground damper is studied in order to reveal the
effects of multiple harmonics on forced response predictions. Fi-
nally, predictions for a test case are compared with available test
data.

2 Model for Constrained and Unconstrained Structure
The forced response prediction method for constrained and un-

constrained structures coupled through frictional contacts is pre-
sented on a bladed-disk system with wedge dampers, where the
blade constitutes the constrained structure, and the damper consti-
tutes the unconstrained structure. Accordingly, the motion of the
damper is constrained by the frictional contacts and the geometric
configuration of the damper between adjacent blades only. Conse-
quently, the damper undergoes three-dimensional translation and
three-dimensional rotation in addition to the elastic deformation.
Elastic motion of the damper is necessary if the excitation fre-
quency and/or static forces acting on the damper are high. How-
ever, with the proposed approach, it is possible to model the
damper as completely rigid or rigid in certain directions and elas-
tic in others by using the appropriate mode shapes.

2.1 Contact Model. The interaction between the blade and
the wedge damper is modeled by discrete contact points evenly
distributed on the two contact surfaces of the blade and damper.
At each contact pair, contact stiffnesses in the three main direc-
tions of motion are determined in order to take into account the
effects of higher frequency modes, which can be represented as
residual stiffnesses. It is assumed that residual stiffnesses are only
present between contact pairs; hence, they are called as contact
stiffnesses. The determination of contact stiffnesses will be ex-
plained in the next section.

A blade and a wedge damper in contact are given in Fig. 1,
where contact points represented by the dots are shown on the left,
and contact stiffnesses between a contact pair in the local coordi-
nate system are shown on the right. The contact points on the X-Y
plane of the damper are called constrained points, which are used
to constrain the motion of the damper in the Z direction due to
space limitations, and it should be noted that the constrained force
could be at most on one of the constrained planes. These con-
straints are due to the physical restrictions in real gas turbine
engine, where the damper can move freely under the action of
contact and centrifugal forces in a volume between the adjacent
blades on the disk.

The motion of the blade and the wedge damper are expressed in
the blade coordinate and damper coordinate systems, respectively.
The coordinate systems for the ith blade and wedge damper are

Fig. 1 Contact model for the wedge damper
shown in Fig. 2. The blade coordinate system is on the rotary axis

Transactions of the ASME

 license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



o
g
d
s
a
o
b

w
r
c
t
c
a
p

i
h
p
t
e
b
t
r
l

i
r
w
n

F

J

Downlo
f the disk where the X and Y axes are coincident with the tan-
ential and radial orientations of the ith blade, and the Z axis is
etermined by the right hand rule. The ith damper coordinate
ystem is determined by three rotations about the blade coordinate
xes. Coordinate systems for other blades and dampers can be
btained by a simple rotation about the Z axis with an amount of
lade phase angle.

As shown in Fig. 3, wedge damper has four contact planes,
here � and � are used to define the orientations of the left and

ight contact planes. Coordinate systems for the front and the back
onstraint planes can be obtained by 90° and −90° rotations about
he XD axis, and the coordinate systems for the right and the left
ontact planes can be obtained by −�90°−�� and 90°−� rotations
bout the ZD axis. In Fig. 3 the coordinate system for the right
lane is shown.

2.2 Calculation of Contact Stiffness. In the model proposed,
n order to capture local deformation on the contact interface, very
igh frequency modes have to be included into the modal super-
osition approach, which is not practical in terms of calculation
imes. Therefore limited number of modes is used in the modal
xpansion process. On the other hand, higher vibration modes
ehave like springs at lower excitation frequencies; therefore,
hese omitted higher modes of the bladed-disk system can be rep-
esented by contact stiffnesses, which makes it possible to capture
ocal deformations on the contact interface.

In the bladed-disk system with wedge dampers, dampers are
nitially not in contact with the blades. When the engine starts
otation due to the centrifugal effects, dampers come into contact
ith the neighboring blades. In order to include this effect, a
ormal force is assumed to act on the damper which presses it

Fig. 2 Blade and damper coordinate systems
ig. 3 Wedge damper contact planes and coordinate systems
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against the adjacent blades. Therefore, for a static contact analy-
sis, where the only force acting on the bladed-disk system is the
normal force, the displacement at any contact point on the blade
from modal analysis can be calculated by

ŨB
i = − �

j=1

nC

RB
i,jBFj �1�

RB is the blade receptance matrix between contact points, BF is
the finite element contact force vector on the damper in the blade
coordinate system, and nC is the number of contact points. The
difference in blade displacements with the finite element results
can be expressed in the contact plane coordinate system as

�UB
i = CUB

i − CŨB
i = CUB

i + �
j=1

nC

CRB
i,jCFj �2�

where �UB is the vector of difference in blade displacements, and
CŨB and CUB are the vectors of displacements from modal super-
position and finite element contact analysis considering slip and
separation at the contact pairs, respectively. Superscript C on the
left of each parameter denotes the contact plane coordinate sys-
tem. Blade residual stiffnesses at contact points are defined as

KcB
i �UB

i = − CFi �3�

Substituting Eq. �2� in Eq. �3�, the following relation is obtained:

KcB
i −1CFi = − ��

j=1

nC

CRB
i,jCFj + CUB

i � �4�

from which residual stiffnesses for the blade can be calculated.
The residual stiffness equation for the damper can be obtained

similarly; however, the rigid body motion of the damper has to be
considered. The displacements of contact points on the damper
can be given in two parts,

ŨD
i = ŨDR

i + ŨDE
i �5�

where ŨDR and ŨDE are the vectors of rigid body and elastic
damper displacements from modal analysis, and they are given as

ŨDR
i = �i� �6�

ŨDE
i = �

j=1

nC

RDC
i,j DFj + �

j=1

nP

RDP
i,j Pj �7�

where �i is the rigid body mode shape matrix for the ith contact
point, � is the rigid body modal coefficient vector, and RDC and
RDP are the receptance matrices between contact points and pre-
load points, respectively. DF and P are the vectors of contact
forces and preloads acting on the damper in the damper coordinate
system. Using Eqs. �6� and �7�, the difference between modal
superposition and finite element displacements in the contact
plane coordinate system is obtained as

�UD
i = CUD

i − CŨD
i = CUD

i − �C�i� + �
j=1

nC

CRDC
i,j CFj + �

j=1

nP

CRDP
i,j Pj�

�8�

The damper residual stiffness is defined as

KcD
i �UD

i = CFi �9�
from which the following relation is obtained:

MARCH 2009, Vol. 131 / 022505-3
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KcD
i −1CFi = CUD

i − �C�i� + �
j=1

nC

CRDC
i,j CFj + �

j=1

nP

CRDP
i,j Pj�

�10�
ssuming that the blade and damper contact pairs are bounded

ogether, as shown in Fig. 4, the residual stiffness matrix for the
th contact pair can be written as follows:

Kc
i −1 = KcB

i −1 + KcD
i −1 �11�

here Kc
i−1 is the residual stiffness matrix at the ith contact pair,

hich is referred to as contact stiffness matrix. It should be noted
hat in three-dimensional space there are nine unknowns in the
esidual stiffness matrix given in Eq. �11�; hence, Eqs. �4� and
10� cannot be solved uniquely to determine these unknowns.
owever, if the residual stiffness matrix is assumed to be diagonal
nly, Eqs. �4� and �10� can be solved uniquely for the three un-
nowns on their diagonals. It can be concluded that the stiffnesses
n the diagonal are in the three main directions of the contact
lane coordinate system between blade and damper contact pairs.
ince the friction model utilized is applied in the two major tan-
ential directions, contact stiffnesses used in the developed fric-
ion model are in the three main directions; therefore, the assump-
ion of the diagonal contact stiffness matrix is an appropriate one.

oreover, most of the friction models developed for the analysis
f bladed-disk systems utilize diagonal contact stiffness matrices
here off-diagonal coupling terms between tangential directions

re used in the friction model given in Refs. �10,25�, but to the
est of the authors’ knowledge, no friction model uses coupling
etween tangential and normal directions. Therefore, the method
resented can be applied to other friction models as well.

Friction Contact Model and Forced Response Pre-
iction
The relative motion at the blade-damper contact interface is

hree dimensional, and this relative motion is decomposed into
n-plane and out-of-plane �normal� components. Furthermore, two

ajor directions for the in-plane component of motion are deter-
ined, and the in-plane motion is approximated in these direc-

ions. Calculation of Fourier coefficients using a three-
imensional friction model as given in Ref. �10,25� is time
onsuming, and the main focus of this work is modeling damper
otion as an unconstrained body having six degrees of freedom

igid body motion plus elastic motion. Therefore, in order to speed
p the forced response calculations, these major directions are
ssumed to be independent of each other, and the one-dimensional
riction model with normal load variation developed by Yang et al.
24� is employed. Transition criteria and analytical transition
ngles for harmonic motion are given in Ref. �24�, and for peri-
dic motion these criteria can be solved numerically to determine
he transition angles. Therefore, the nonlinear normal force and
he friction forces in major directions are obtained, which are then

Fig. 4 Schematic view for the bounded configuration
xpressed in the contact plane coordinate system.

22505-4 / Vol. 131, MARCH 2009

aded 26 Feb 2009 to 144.122.1.202. Redistribution subject to ASME
3.1 Initial Preload on Contact Surfaces. Depending on the
engine rpm, the centrifugal force acting on the wedge dampers
varies. This results in variation in the contact area and the preload/
gap acting on the contact surfaces. In order to determine the initial
preload/gap, a quasistatic contact analysis is performed for the
given normal load. The analysis is performed as follows:

1. Initially, the contact status of all the contact pairs are as-
sumed completely stuck.

2. The displacements of contact points and the contact forces
acting on them are determined using the given contact sta-
tus.

3. Using the Coulomb friction model, the contact status of each
contact pair is updated.

4. The contact status of each contact pair is compared with
previous contact status.

5. If the contact status is changed, go to step 2.
6. Otherwise, output the initial preload.

This analysis is an important step for the forced response cal-
culations since the change of contact area and the preload/gap can
affect the entire forced response characteristics of the blade and
damper system. In order to increase the robustness of the method
presented, a continuation method can be employed where the nor-
mal load is modified with a load factor between 0 and 1. Starting
with a very low value, where the entire contact interface is com-
pletely stuck or very close to completely stuck, and applying the
procedure given above, the contact state for this load step can be
determined. The contact state for an increased load factor can be
obtained by repeating the procedure given above where the previ-
ous solution is used as an initial guess at step 1. For the preload
considered, the contact state and normal load acting on the contact
interface will be obtained when the load factor reaches 1.

3.2 Forced Response Method. In the forced response analy-
sis, finite element models for the blade �disk� and the damper are
employed. Using receptance methods, the number of unknowns in
the forced response analysis method can be decreased to the num-
ber of nonlinear �contact points� degrees of freedom multiplied by
the number of harmonics. However, if the number of contact
points is high, which is necessary for an accurate modeling of
friction contact, this method is not suitable for forced response
analysis due to large matrices involved in the solution procedure.
Recently, Cigeroglu et al. �27� proposed a modal superposition
method for the forced response analysis of bladed-disk systems. In
this approach, the relative motion between contact surfaces is ap-
proximated by modal superposition using free mode shapes of the
structure. This method is extended for multiple harmonics and is
employed in this work. In the modal superposition approach, the
number of unknowns involved in the solution procedure is the
number of mode shapes used in the modal expansion process mul-
tiplied by the number of harmonics; therefore, it is independent of
the number of contact points used. As a result of this, the modal
superposition approach is suitable for accurate modeling of fric-
tion contact with more contact points or for cases when the tuned
approach �cyclic symmetry� cannot be used.

The equation of motion in matrix form for a system with dry
friction dampers can be written in the following form:

M · Ẍ + C · Ẋ + K · X = Fe�t� + Fn�X� �12�

where M, C, K, Fe�t�, Fn�X�, and X are the mass matrix, viscous
damping matrix, stiffness matrix, excitation force vector, nonlin-
ear force vector, and displacement vector, respectively. The mo-
tion of the blade and the damper for harmonic excitation can be
written in terms of its mode shapes as follows:

uB
j = �

nB

An,0� j
n + �

nH

Im��nB

An,l� j
nei�l���
n=1 l=1 n=1
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uD
j = �

n=1

nR

Cn,0� j
n + �

n=1

nE

Dn,0� j
n

+ �
l=1

nH

Im���
n=1

nR

Cn,l� j
n + �

n=1

nE

Dn,l� j
n�ei�l��	 �13�

here � j
n, � j

n, and � j
n are the nth mode shape vector for the jth

lade node, nth rigid body mode shape, and elastic mode shape
or the jth damper node, respectively. An

l , Cn
l , and Dn

l are the lth
armonic modal coefficients for the blade, damper rigid body
odes, and elastic modes, respectively, where l=0 defines the bias

erms. nB, nR, nE, and nH are the number of blade modes, damper
igid body modes, damper elastic modes, and harmonics, respec-
ively. In addition to this, i is the imaginary unit and � is the
emporal variable. The relative motion between the jth contact
air can be written in contact plane coordinates as

�Xj = CuB
j − CuD

j = B
CT j · uB

j − D
CT j · uD

j �14�

here B
CT j and D

CT j are the transfer matrices from the blade coor-
inate system to contact plane coordinates and from the damper
oordinate system to contact plane coordinates for contact point j,
espectively. Using the friction contact model and the relative mo-
ion given in Eq. �14�, nonlinear contact forces can be determined
n contact plane coordinates as

CFn�A,C,D,�� 
 CFn
0�A,C,D� + �

l=1

nH

CFns
l �A,C,D�sin�l��

+ �
l=1

nH

CFnc
l �A,C,D�cos�l�� �15�

here CFn
0 is the bias term of vector of contact forces and, CFns

l

nd CFnc
l are the vectors of sine and cosine components of the lth

armonic of contact forces, which are functions of modal coeffi-
ients A, C, and D. Using the orthogonality of mode shapes and
q. �15�, Eq. �12� for a single sector can be written in the follow-

ng form:

�BA�0� = QBb

0

��B − �l��2I + i�l��CB�A�l� = Qe
l + QBRe

l + iQBIm

l

0 = jQDb

0 �j = 1 ¯ nR�

�D
j D j,0 = jQDb

0 �j = nR + 1 ¯ nD = nR + nE�

��D − �l��2I + i�l��CD�E�l� = QDRe

l + iQDIm

l �l = 1 ¯ nH�

�16�

f mass normalized mode shapes are used. In Eq. �16�, �B and �D
re nB�nB and nD�nD diagonal matrices of squares of natural
requencies of the blade and the damper. CB and CD are modal
amping matrices of the blade and the damper, and they are diag-
nal if the damping is proportional. A�l� is the vector of modal
oefficients of the blade, and E�l� is the vector of modal coeffi-
ients of the damper for the lth harmonic, which is composed of
igid body and elastic mode shapes as E= �C D�T. QB

l and QD
l

re the vectors of modal forces of the lth harmonic for the blade
nd damper, respectively, and e, b, Re, and Im stand for excitation
orce, bias component, real part, and imaginary part, respectively.
t should be noted that the contact forces acting on the jth blade
nd the jth damper in contact plane coordinate system are the
ame in magnitude but opposite in signs. If the bladed-disk system
s tuned due to the cyclic symmetry, the motion of the �j+1�th
lade can be related to the motion of the jth blade as

ournal of Engineering for Gas Turbines and Power
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uB
j+1��� = uB

j �� + ��, � = 2�nEO/nb �17�

where � is the interblade phase angle, nEO is the engine order, and
nb is the number of blades. Using this information, the relative
displacement on the contact surfaces of the jth damper can be
determined, from which contact forces acting on the jth damper
can be obtained. Similar to the displacements, contact forces be-
tween the �j−1�th damper and jth blade can be related as

Fn
j ��� = Fn

j+1�� − �� �18�

where Fn
j is the nonlinear contact forces acting on the jth blade in

the blade coordinate system. Transferring contact forces between
the jth damper and the �j−1�th blade to the jth blade, the modal
coefficients of the jth blade and damper can be determined by
iteratively solving the nonlinear equation set given in Eq. �16�;
consequently, the blade and damper responses can be obtained
from Eq. �13�.

4 Numerical Results
Two different cases are analyzed in this section. In the first part,

the method is applied to a tuned bladed-disk system, and forced
response curves and optimal curves are presented. Moreover, the
effects of normal load on the rigid body coefficients of the damper
and the effects of rotational motion of the damper on the forced
response results are studied. In order to show the effect of partial
slip on the forced response analysis, the bladed-disk system is
analyzed for different numbers of contact points. In the second
part, a blade-to-ground damper system is analyzed in order to
show the effects of multiharmonics on the forced response. In the
results provided below, stuck case indicates that all the contact
points that are initially in contact do not slip. Therefore, it is
possible to have contact points, which are not in contact due to the
applied normal load. These are identified in the quasistatic contact
analysis.

4.1 Tuned Bladed-Disk System With Wedge Dampers. A
tuned bladed-disk system with wedge dampers, composed of 65
blades and dampers, is studied in this part. Finite element models
of a blade and a damper are given in Fig. 5. The point of excita-
tion and the point where displacement is calculated are indicated
by dots, as shown in the figure. In the analysis, fifth engine order
excitation is considered, and ten modes for the blade and six rigid
body modes for the damper are used. In the forced response cal-
culations only the fundamental harmonic is kept due to reasons
that will be explained in Sec. 4.2.

4.1.1 Forced Response and Optimal Curves. Tracking plots
around the first and second modes of the blade are given in Figs.
6 and 7 for different preload cases. External force applied at the
tip point is in the tangential direction for the first mode and in the
radial direction for the second mode in order to excite those
modes. It is observed that as the preload acting on the damper
increases, the amplitude of tip point displacement decreases and
the resonance frequency of the system increases. When the opti-
mum point is reached, the amplitude is minimum, and increasing
the preload further results in an increase in the vibration ampli-
tude, which converges to the completely stuck magnitude. It is
interesting to note that in Fig. 6 multiple solutions in the tracking
plots exist for some preload cases, whereas in Fig. 7 none of the
preload cases results in multiple solutions in the tracking plots.
These multiple solutions are due to the separation of the contact
surfaces. In Fig. 6, the first bending mode of the blade is excited,
resulting in the separation of the contact surfaces due to the rota-
tion of the wedge damper about the Z axis. However, in Fig. 7,
since the dominant rotation is about the X axis, contact surfaces
remain in contact throughout the analysis. Multiple solutions in
the tracking plots are obtained by the continuation method, and
they show a typical fold bifurcation, which has an unstable solu-

tion branch in between two stable solutions resulting in the jump
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henomenon.
In Figs. 8 and 9, optimal curves and frequency shift curves for

he first and second vibration modes of the blade are given. It is
bserved that the ratio of the stuck case amplitude to the optimal
reload case amplitude is approximately 4.4 and 5.5 for the first
nd second modes of vibration, respectively. Due to the fact that
here exists no separation between the wedge damper and the
djacent blades, damping at the second mode is more effective.
owever, since the decrease in the free response amplitude at the
rst mode is larger than the second mode, damper works more
ffectively at the first mode. The frequency shifts observed for the
rst and second modes are 17.2% and 3.4%, respectively.
Using the computer code �BDAMPER� developed for the analysis

f bladed-disk systems with wedge dampers, higher modes of the

ig. 5 Finite element models for „a… blade and „b… wedge
ampers
Fig. 6 Tracking plot for the first mode

22505-6 / Vol. 131, MARCH 2009

aded 26 Feb 2009 to 144.122.1.202. Redistribution subject to ASME
blade can also be investigated. The tracking plots and optimum
and frequency shift curves for the third and seventh modes of the
blade are given in Figs. 10 and 11.

4.1.2 Effects of Normal Load and Excitation Frequency on
Rigid Body Motion. In Figs. 12 and 13, maximum amplitudes of
the bias and vibratory components of rigid body modal coeffi-
cients of the wedge damper are given for the first vibration mode,
respectively. For low normal load cases, modal coefficients for
translation along X and Y axes and for rotation about the Z axis

Fig. 7 Tracking plot for the second mode

Fig. 8 Optimal and frequency shift curves: first mode
Fig. 9 Optimal and frequency shift curves: second mode
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re the main contributions to the damper rigid body motion, and
s the normal load increases, the major contribution comes from
he modal coefficient for translation along the Y axis. Similarly,
he major variable components of rigid body motion are transla-
ion along X and Y axes and rotation about the Z axis. For all
ormal load ranges, major variable components of rigid body mo-
ion are in the order of translation along X, rotation about Z, and
ranslation along Y. It should be noted that rotation of the damper
bout the Z axis results in the separation of the contact surfaces,
hich results in multiple solutions or jumps in the tracking plots.
The bladed-disk system is analyzed using only the translational

igid body modes and translational and rotational rigid body
odes of the damper at the first vibration mode of the blade. The

esults, including and excluding the rotational modes for different
ormal load cases, are compared in Fig. 14. It is observed that
eglecting the rotation of the damper results in an underestimation
f the maximum vibration amplitudes; in addition to this, fre-
uency shift is overestimated for this case. It is also interesting to
ote that a jump phenomenon �multiple solutions� does not exist if
he rotational modes of the damper are neglected. Therefore, it can
e concluded that the separation of the contact surfaces is associ-
ted with the rotation of the damper.

4.1.3 Effects of Partial Slip on Forced Response. In order to
bserve the effects of partial slip, the forced response analysis is
erformed for different numbers of contact points on the left and
ight contact planes. Figure 15 shows the comparison of forced
esponse results for different normal load cases for 9�9, 24

24, and 48�48 contact points. It is observed that multiple so-
utions in the forced response are captured better when more con-
act points are employed in the analysis. Moreover, using 9�9

Fig. 10 Tracking plots: „a… third and seventh „b… modes
ontact points resulted in an underestimation of the vibration am-

ournal of Engineering for Gas Turbines and Power
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plitude in the cases studied. The results for 24�24 and 48�48
contact points are closer to each other, 48�48 having the highest
vibration amplitude in most of the cases. However, employing
more contact nodes results in longer calculation times; therefore,
optimum values for the number of contact points can be deter-
mined by comparing the forced response results.

In Fig. 16, the contact status of four sample contact points on
the left and right contact planes of the wedge damper are shown

Fig. 11 Optimum and frequency shift curves: „a… third and sev-
enth „b… mode

Fig. 12 Effect of normal load on the rigid body motion of

damper „bias component…

MARCH 2009, Vol. 131 / 022505-7
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or the normal load of 5000 N at the maximum amplitude fre-
uency of 308.3 Hz. The length of the bar represents the periodic
emporal scale. Partial slip on both contact surfaces can be clearly
een from the figure where contact points undergo different states
t different times.

4.2 Blade-to-Ground Damper System

4.2.1 Effect of the Number of Harmonics on the Forced
esponse. In order to present the effect of the number of harmon-

cs on the forced response of frictionally constrained structures, a
lade-to-ground damper system is investigated, where the blade
iven in Fig. 5 is in contact with the ground from the right side, as
hown in Fig. 17. This simple model is chosen in order to de-
rease the number of unknowns and hence decrease the computa-
ional time for the analysis as well as to control the initial preload/
ap distribution, as requested.

Tracking plots for the blade-to-ground damper system are given
n Fig. 18 for single-harmonic and multiple-harmonic responses. It
s observed that for the cases where multiple solutions exist, the
ifference between the single- and multiple-harmonic solutions is

ig. 13 Effect of normal load on the rigid body motion of
amper „vibratory component…

ig. 14 Effect of rotational modes for normal load; „a… 100, „b…
00, „c… 1000, and „d… 10,000; ——, translational and rotational

odes; ----------, translational modes

22505-8 / Vol. 131, MARCH 2009
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significant. This is due to the separation of the contact interface,
and it can be concluded that, if separation occurs single-harmonic
solution cannot capture the nonlinear characteristics accurately.
However, for high preload cases, a single-harmonic solution cap-

Fig. 15 Effect of the number of contact points for normal load;
„a… 100, „b… 200, „c… 1000, and „d… 25,000

Fig. 16 Contact status of sample points on „a… left „b… right
contact planes: „red… stick, „blue… slip, and „green… separation….
„Color version of this figure available online only.…
Fig. 17 Schematic for the blade to ground damper
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ures the nonlinear characteristics quite well and the difference
etween the single- and multiple-harmonic solutions is negligible.
his result is also in agreement with the findings of Chen and
enq �10�.

4.3 Comparison With the Test Case Data. In order to verify
he developed method, prediction for a test blade, used by GE
ircraft engines in a friction damping experiment, is compared
ith the test data. The schematic for the experimental setup is
iven in Fig. 19, where two wedge dampers are placed at each
ide of the test blade, and they are retained by two dummy blades
ithout any airfoils. The normal load on the damper is adjusted by

ontrolling the tension in the damper load wires. The test blade is
xcited by a pulsating air jet, where the excitation levels are con-
rolled by air-jet supply pressure. Strain gages are placed at sev-
ral locations on the blade, including the airfoil root, in order to
easure the vibratory stresses.
The finite element model of the test case is given in Fig. 20.

ince the developed computer code is designed for a tuned system
nalysis, the test blade and the dummy blades are considered as a
ingle structure for which the interblade phase angle is zero. A
omparison of the predicted frequency shift curve with the avail-
ble test data is given in Fig. 21. For high damper load cases,
redicted frequency shift is lower than the test data. However,
verall, the predicted frequency shift curve is in good agreement
ith the experimental data. It should be noted that these predic-

ig. 18 Tracking plots, „¯¯¯…, stuck; single-harmonic:
— — —… 1.0e6, „-------… 5.0e5, „·–·–·–·–… 2.5e5, „·–¯–¯… 1.0e5,
– — – —… 5.0e4, „– – – – –… 1.0e4; multiharmonic: „¯�¯… 1.0e6,
¯�¯… 5.0e5, „¯�¯… 2.5e5, „¯�¯… 1.0e5, „¯�¯… 5.0e4, and
- – -�- – -… 1.0e4
Fig. 19 Schematic view of the test case

ournal of Engineering for Gas Turbines and Power
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tions are done by using the contact stiffnesses calculated by the
proposed approach, as discussed previously. In Fig. 22, the pre-
dicted normalized optimal curve and the test data are presented. It
is observed that predictions and test results are in good agreement,
and the optimal damper load can be predicted acceptably without
any parameter tuning. The only parameter to be determined is the
friction coefficient, which, in this case, was acquired experimen-
tally. Due to the acyclic structure of the test case, complete lock-
ing of the contact surfaces is not possible, which results in mi-

Fig. 20 Finite element model for the test case

Fig. 21 Frequency shift curve
Fig. 22 Predicted normalized optimal curve and test data

MARCH 2009, Vol. 131 / 022505-9
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roslip for those cases. This can clearly be seen from the
redictions given in Fig. 22. Predictions for the test case are also
erformed for including more blade modes into the analysis, for
hich contact stiffnesses are recalculated, and it is observed that
redictions obtained from both cases are similar and very close to
ach other. All these results are not presented here for brevity.

Conclusions
A forced response prediction method for the analysis of con-

trained and unconstrained structures coupled through frictional
ontacts is presented. In the developed method, the unconstrained
tructure is modeled as a solid body having six rigid body motions
s well as elastic deformation. Discrete contact points, which are
ssociated with contact stiffnesses in three directions of motion,
re distributed on the contact surfaces. In order to determine the
nitial preload or gap at each contact point, a quasistatic contact
nalysis is performed initially for each normal load acting on the
amper.

A method is proposed to calculate the contact stiffnesses used
n the friction model. The suggested method is based on represent-
ng the effect of higher vibration modes by springs associated with
ach contact pair, which makes it possible to capture local defor-
ations at the contact interface. Therefore, contact kinematics can

e accurately estimated by using a reasonable number of mode
hapes in the forced response prediction, which decreases the
omputational cost significantly.

For the forced response analysis, a friction model with normal
oad variation induced by normal motion is employed to deter-

ine the three dimensional contact forces. The harmonic balance
ethod is employed to approximate these contact forces in order

o calculate the forced response of constrained and unconstrained
tructures coupled through frictional contacts. Modal superposi-
ion is used to express the relative motion; therefore, the number
f unknowns in the resulting nonlinear equation set is proportional
o the number of modes and the number of harmonics employed
n the analysis, and it is independent of the number of contact
oints.

The developed forced response prediction method is demon-
trated on an example bladed-disk system with wedge dampers,
here blades and dampers represent the constrained and uncon-

trained structures, respectively. A tuned bladed-disk system is
tudied by the method developed, and forced response results are
resented. Multiple solutions �jumps� in the tracking plots for the
rst vibration mode are observed, which are due to the separation
f the contact surfaces associated with the rotation of the damper
bout the Z axis.

For the first vibration mode, the major contributions to the vi-
ratory component of motion comes from the translation along the
axis, rotation about the Z axis, and translation along the Y axis.

n addition to this, the effects of rotational modes are also ana-
yzed, and it is observed that neglecting rotational modes results
n an underestimation of the vibration amplitude and an overesti-

ation of the frequency shift. Moreover, no multiple solutions
jumps� in the tracking plots are observed if the rotational modes
re neglected.

In order to analyze the effects of partial slip, forced response
redictions are calculated for three different numbers of contact
oints. Utilizing more contact points makes it possible to capture
he stick-slip-separation phenomenon of the contact surfaces more
ccurately, which is observed in contact status plots. The method
eveloped can be used to obtain optimum values for the number
f contact points in order to meet the accuracy and computational
equirements.

The effects of multiple harmonics are also investigated on a
lade-to-ground damper example. It is observed that multiple har-
onics is necessary only for the case of jump, where the normal

oad is low; on the other hand, for high normal loads, multiple

armonics and single-harmonic solutions are approximately the

22505-10 / Vol. 131, MARCH 2009
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same. Since friction dampers are designed to work at higher
damper loads, single-harmonic solutions will be adequate for
damper optimization purposes.

Finally, predictions for a test case are compared with the test
data, and it is observed that simulation results and test results are
in good agreement. Similar forced response predictions are ob-
tained by increasing the number of blade modes used in the analy-
sis, which verifies the developed forced response prediction
method and contact stiffness calculation method presented. Utiliz-
ing the contact stiffnesses obtained by the proposed method, pa-
rameter tuning for contact stiffnesses is eliminated, and the only
contact parameter left to be determined is the friction coefficient,
which significantly simplifies the forced response prediction pro-
cess.
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