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Abstract

A one-dimensional dynamic microslip friction model, including the damper inertia, is presented in this paper. An

analytical approach is developed to obtain the steady-state solution of the resulting nonlinear partial differential equations

when subjected to harmonic excitation. In the proposed approach, according to the excitation frequency, a single mode of

the system is considered in the steady-state solution for simplicity; consequently, phase difference among spatially

distributed points is neglected. Three types of normal load distributions, resulting in distinct stick–slip transitions along the

contact interface, are studied. The resulting hysteresis curves and the associated Fourier coefficients are obtained and

compared with each other. An equivalent point contact friction model is established and compared with the proposed

microslip model, illustrating the effects of partial slip in the contact interface for low amplitude or high normal load

applications.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

In the dynamic response analysis of structures having friction contact, two types of approaches are used, the
macroslip and the microslip methods. Due to its mathematical simplicity, the macroslip approach [1–5] is
widely used, in which the friction interface is modeled as a rigid body, and is entirely in slip or stick states. This
method is acceptable if gross-slip occurs at the friction interface, which is possible if the normal load acting on
the interface is small. On the other hand, the microslip method [6–10] is mathematically complicated; however,
since the friction interface is modeled as an elastic body, it is capable of modeling partial slip, which occurs if
the normal load acting on the interface is high. For those cases, macroslip model results in stuck interface and
estimates no energy dissipation through friction contact.

Menq et al. [6] developed a microslip model, in which the friction damper was modeled as an elastic bar in
contact with a rigid ground and connected to a spring at the left end. A shear layer was included between the
bar and the ground; therefore, it is possible to have linear deformation relative to the support before the
beginning of slip [11]. Under the effect of uniform normal load distribution, partial-slip and gross-slip of
the bar were studied. A single-degree-of-freedom oscillator with a friction damper was analyzed by applying
the Harmonic Balance Method (HBM), and the authors assessed that for high normal load cases this microslip
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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Fig. 1. One-dimensional microslip model.
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model showed approximately 50 percent reductions in the resonant response. In addition to this, Menq et al.
[8] explained experimental friction damping data by using this microslip friction model.

Csaba [9] proposed a microslip friction model with a quadratic normal load distribution based on the model
developed by Menq et al. [6] in which the shear layer was removed for simplicity. A single blade with a friction
damper attached to the ground was analyzed in the frequency domain and the author evaluated that macroslip
predicted the response amplitudes much higher than the microslip model used. Filippi et al. [12] described a
measurement method in order to determine the friction characteristics between two surfaces. The authors
estimated the possible measurement errors and tried to eliminate or avoid them in the measurement process.
Specimens were selected in order to have negligible inertial effects and hysteresis curves for different
displacement amplitudes were given which showed the microslip behavior. Friction coefficient between the
surfaces and contact stiffness in the direction of motion was also determined through the experiment. Song et
al. [13] added a parallel spring to the parallel-series Iwan model and used this model to estimate the friction in
the joints. The model parameters estimating the microslip behavior were determined from experimental results
by applying a neural network algorithm.

The objective of this study is to develop a dynamic one-dimensional microslip friction model by including
the inertia of the damper. For this purpose a one-dimensional beam model which is similar to the one
introduced by Menq et al. [6], but includes the inertia of the beam and has a non-uniform normal load
distribution, is proposed and is shown in Fig. 1. The beam is connected to the ground from the left end with a
spring in order to include strain hardening effects, and a harmonic excitation is applied to the right end of the
beam. A shear layer, which permits elastic deformation of the beam before the occurrence of slip, is inserted
between the beam and the ground. The shear layer can be visualized as distributed springs connected to the
beam and in contact with the ground, and obeying the Coulomb friction law with a constant friction
coefficient throughout the length of the beam. Since this is a one-dimensional model normal load applied on
the beam is assumed to be directly transmitted to the shear layer. The system is analyzed for uniform, and
convex and concave normal load distributions, which result in distinct stick–slip transitions along the contact
interface.

In the remaining parts of this paper, determination of stick–slip transitions along the contact interface for
different normal load distributions is presented and force displacement relationships for constant, convex and
concave normal load distributions are derived. The effect of excitation frequency is analyzed and results
obtained for different normal load distributions are compared with each other and with a representative point
contact model.
2. Determination of stick–slip transitions

An analytical approach is developed to determine the stick–slip transitions of the steady-state solution of
the frictionally constrained system when subjected to harmonic excitation. In the proposed approach,
according to the excitation frequency single mode of the system is considered in the steady-state solution for
simplicity; consequently, the phase difference among spatially distributed points is neglected.
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2.1. Determination of contact elastic force

In order to determine stick–slip transition in the microslip model proposed in Fig. 1, the build-up of elastic
force along the contact interface between the beam and the ground is first examined. As a starting point, the
microslip model is analyzed assuming the beam is completely stuck and the contact elastic force obtained
through this analysis is used to determine the effects of damper inertia. In conjunction with the normal load
distribution, it will later be employed to determine the transitions between stick and slip, and to obtain the
resulting friction force. The equations of motion for the completely stuck beam can be written as

EA
q2u
qx2
� ku ¼ rAo2 q2u

qy2
, (1)

with the following boundary conditions

EA
qu

qx

����
x¼0

¼ buð0; yÞ; EA
qu

qx

����
x¼L

¼ F 0 sinðyÞ, (2)

where o; t; E; r; A; L and k are excitation frequency, time, modulus of elasticity, density, cross-sectional
area, length and the shear layer stiffness of the beam, respectively, and y ¼ ot. Solving the partial differential
equation analytically, the contact elastic force acting on the beam can be obtained. The spatial distribution of
the resulting contact elastic force for different excitation frequencies is given in Fig. 2 to illustrate the effects of
damper inertia, and is seen to be similar to the mode shape of the constrained beam. Moreover, Fig. 3 shows
the build-up of the contact elastic force, together with three different normal load distributions, while
increasing the amplitude of low-frequency excitation. It is seen that as the excitation amplitude increases the
contact elastic force generated in the shear layer becomes larger than the allowable value, depending on the
normal load, and the contact interface starts to slip at a location depending on the distribution of normal load.
For the example shown in Fig. 3, the contact interface starts to slip at the right end of the beam for both the
constant and the convex normal load distributions; whereas it starts to slip somewhere around the middle of
the beam for the concave normal load distribution. It can also be concluded that for the first vibration mode
both the constant and the convex normal load distributions lead to similar stick–slip transition along the
friction interface, which is a stick region at the left side and a slip region at the right side. The slip region
propagates towards the left end of the beam, reverses and repeats. Since showing similar stick–slip transition,
they are analyzed together, where the case of constant normal load is considered as a special case of the convex
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Fig. 4. Two-region friction interface due to convex normal load distribution.
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normal load distribution. On the other hand, for the case of concave normal load distribution, the stick–slip
transition along the friction interface is composed of two stick regions at the left and the right sides of the
beam, and in-between is a slip region, which propagates towards the right and the left ends of the beam,
reverses and repeats.

2.2. Two-region friction interface

It is concluded in Section 2.1 that, as the amplitude of the excitation force at the right end of the beam
increases, convex normal load distribution results in a two-region friction interface, a stuck region on the left
side and a slip region on the right. Fig. 4 shows the microslip model with a two-region friction interface where,
L1 is the length of the stuck region and qðxÞ is the normal load distribution over the interface. Since it is aimed
to obtain hysteresis curves, instead of force input, displacement input is used in the model. The nonlinear
partial differential equations defining this system are given as

EA
q2u
qx2
� kðuðx; yÞ � wðxÞÞ ¼ rAo2 q2u

qy2
; 0pxpL1, (3)
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EA
q2u

qx2
� sgn

qu

qy

� �
mqðxÞ ¼ rAo2 q2u

qy2
; L1pxpL, (4)

with the boundary and compatibility conditions

EA
qu

qx

����
x¼0

¼ buð0; yÞ; uðL; yÞ ¼ a sinðyÞ, (5)

uðL�1 ; yÞ ¼ uðLþ1 ; yÞ;
qu

qx

����
L�
1

¼
qu

qx

����
Lþ
1

, (6)

where m is the friction coefficient and wðxÞ is the displacement of the shear layer at the time of sticking, and for
the regions which have not slipped, wðxÞ ¼ 0. In Eqs. (3), (4) and (6), L1 is still an unknown; however, it should
be noted that the friction force calculated at x ¼ L1 from Eqs. (3) and (4) should be the same, therefore
equating these friction forces results in the equation

jkðuðL1; yÞ � wðL1ÞÞj ¼ mqðL1Þ, (7)

from which L1, the change of stick–slip regions, can be determined. Eqs. (3) and (4) for y between 0 and p=2
can be rewritten as

EA
q2u
qx2
� ku ¼ rAo2 q2u

qy2
0pxpL1, (8)

EA
q2u
qx2
� mqðxÞ ¼ rAo2 q2u

qy2
L1pxpL, (9)

where wðxÞ is taken as zero for the points that have not been slipped as pointed out formerly. It should be
noted that, Eqs. (8) and (9) are linear and the solution can be obtained in terms of L1 if u is taken in the
following form

u ¼
u1ðxÞ þ u2ðx; yÞ; 0pypL1;

v1ðxÞ þ v2ðx; yÞ; L1pypL:

(
(10)

Since only the first mode of the beam is considered, there is no phase difference between the points
throughout the length; hence, inserting Eq. (10) into Eqs. (8) and (9) yields the results

u1ðxÞ ¼ D1 sinhðlxÞ þD2 coshðlxÞ,

u2ðx; yÞ ¼ ðC1 sinhðgxÞ þ C2 coshðgxÞÞ sinðyÞ,

v1ðxÞ ¼ QðxÞ þ c1xþ c0,

v2ðx; yÞ ¼ ðC3 sinðaxÞ þ C4 cosðaxÞÞ sinðyÞ, ð11Þ

where

l ¼

ffiffiffiffiffiffiffi
k

EA

r
; a ¼ o

ffiffiffiffi
r
E

r
; g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

EA
�

r
E

o2

r
. (12)

The unknown coefficients in Eq. (11) are in terms of L1 and can be determined using the boundary and the
compatibility conditions (5) and (6), respectively. Using Eq. (7) together with Eqs. (11) and (12), a nonlinear
equation for L1 is obtained and given as

mqðL1Þ

kEAa
þ

Q0ðL1ÞðL� L1Þ þQðLÞ �QðL1Þ

EAaþ b0aðL� L1Þ

� �
EA cos½aðL� L1Þ� þ b0 sin½aðL� L1Þ� � a sinðyÞ ¼ 0, (13)

where

b0 ¼ b0ðL1Þ ¼ EAg
EAg sinhðgL1Þ þ b coshðgL1Þ

EAg coshðgL1Þ þ b sinhðgL1Þ
, (14)
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QðxÞ ¼

Z x

0

Q0ðxÞdx; Q0ðxÞ ¼

Z x

0

m
EA

qðxÞdx. (15)

It should be noted that Eq. (13) is nonlinear and an analytical solution for L1 cannot be obtained; however, it
is possible to solve y analytically for L1 varying between 0 and L. The solution of Eqs. (3) and (4) for y
between 0 and p=2 gives the loading curve of the resulting hysteresis loop, and Menq et al. [6] showed that if
the loading curve of an elastic element is known and if the normal load distribution is time invariant it is
possible to construct the hysteresis curve for cyclic motion from this result. Applying this approach, the
hysteresis curve for a cycle is constructed, and the effect of excitation amplitude and frequency are analyzed
and the results are presented in Section 3.

2.3. Three-region friction interface

It is concluded in Section 2.1 that a concave normal load distribution results in a three-region friction
interface composed of two stick regions at the left and right sides and a slip region at the middle of the beam.
The microslip model for this case is given in Fig. 5, where L1, L2 and qðxÞ are the length of the stuck region on
the left side, the beginning of the stuck region on the right side, and the normal load distribution over the
interface, respectively. The nonlinear partial differential equations defining this system are given as

EA
q2u
qx2
� kðuðx; yÞ � wðxÞÞ ¼ rAo2 q2u

qy2
; 0pxpL1, (16)

EA
q2u
qx2
� sgn

qu

qy

� �
mqðxÞ ¼ rAo2 q2u

qy2
; L1pxpL2, (17)

EA
q2u

qx2
� kðuðx; yÞ � wðxÞÞ ¼ rAo2 q2u

qy2
; L2pxpL, (18)

with the boundary and compatibility conditions

EA
qu

qx

����
x¼0

¼ buð0; yÞ; uðL; yÞ ¼ a sinðyÞ, (19)

uðL�1 ; yÞ ¼ uðLþ1 ; yÞ;
qu

qx

����
L�
1

¼
qu

qx

����
Lþ
1

,

uðL�2 ; yÞ ¼ uðLþ2 ; yÞ;
qu

qx

����
L�
2

¼
qu

qx

����
Lþ
2
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Fig. 5. Three-region friction interface due to concave normal load distribution.
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where wðxÞ is the same as in Section 2.2. It should be noted that in Eqs. (16), (17), (18) and (20) L1 and L2 are
unknowns and in order to determine them, the friction force calculated at x ¼ L1 from Eqs. (16) and (17), and
the friction force calculated at x ¼ L2 from Eqs. (17) and (18) are equated, respectively, resulting in the
equations

jkðuðL1; yÞ � wðL1ÞÞj ¼ mqðL1Þ,

jkðuðL2; yÞ � wðL2ÞÞj ¼ mqðL2Þ. ð21Þ

Following a similar procedure as described in Section 2.2, Eqs. (16), (17) and (18) become

EA
q2u

qx2
� ku ¼ rAo2 q2u

qy2
; 0pxpL1, (22)

EA
q2u
qx2
� mqðxÞ ¼ rAo2 q2u

qy2
; L1pxpL2 (23)

EA
q2u

qx2
� ku ¼ rAo2 q2u

qy2
; L2pxpL. (24)

These equations are linear and the solutions are in terms of L1 and L2. If u is taken in the form

u ¼

u1ðxÞ þ u2ðx; yÞ; 0pxpL1;

v1ðxÞ þ v2ðx; yÞ; L1pxpL2;

w1ðxÞ þ w2ðx; yÞ; L2pxpL;

8><
>: (25)

and only the first mode is considered, inserting Eq. (25) into Eqs. (22)–(24) leads to the solution

u1ðxÞ ¼ D1 sinhðlxÞ þD2 coshðlxÞ,

u2ðx; yÞ ¼ ðC1 sinhðgxÞ þ C2 coshðgxÞÞ sinðyÞ,

v1ðxÞ ¼ QðxÞ þ c1xþ c0,

v2ðx; yÞ ¼ ðC3 sinðaxÞ þ C4 cosðaxÞÞ sinðyÞ,

w1ðxÞ ¼ D3 sinhðlxÞ þD4 coshðlxÞ,

w2ðx; yÞ ¼ ðC5 sinhðgxÞ þ C6 coshðgxÞÞ sinðyÞ, ð26Þ

where a; g and l are given in Eq. (12). The unknown coefficients in Eq. (26) are in terms of L1 and L2, and can
be determined by applying the boundary and the compatibility conditions given in Eqs. (19) and (20),
respectively. Nonlinear equations to determine L1 and L2 can then be obtained from Eq. (21) and they are
given as

kD1 sinhðlL1Þ þ
EAl
b

coshðlL1Þ

� �
þ

sinhðgL1Þ þ
EAg
b

coshðgL1Þ

� �
ka sinðyÞ

C5 sinhðgLÞ þ C6 coshðgLÞ
� mqðL1Þ ¼ 0, (27)

kD3
sinhðlðL2 � LÞÞ

coshðlLÞ
þ
ðC5 sinhðgL2Þ þ C6 coshðgL2ÞÞka sinðyÞ

C5 sinhðgLÞ þ C6 coshðgLÞ
� mqðL2Þ ¼ 0, (28)

where D1;D3;C5 and C6 are functions of L1 and L2, and they are given in Appendix A. Using a similar
approach described in Section 2.2 the complete hysteresis curve can be obtained from the solution for y
between 0 and p=2. The effect of excitation amplitude and frequency are analyzed and compared with the
convex normal load case, and the results are presented in Section 3.

3. Results

In the previous sections, one-dimensional microslip models for two different normal load distributions are
presented. In the analyses performed in this section, the normal load distribution for the two-region friction
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interface is taken as constant, N=L, where N is the total normal load applied, and for the three-region friction
interface the following quadratic distribution is used:

qðxÞ ¼ q0 þ q2

4xðx� LÞ

L2
, (29)

where q0 and q0 � q2 indicate the maximum and minimum normal loads acting on the beam, and the total
normal load is N ¼ ðq0 � 2q2=3ÞL.

3.1. Stick– slip transitions

Fig. 6 shows the change of stuck region length, L1, as a function of temporal variable y for the two-region
friction interface. As predicted from the analysis of the completely stuck system, slip starts from the right end
of the beam and propagates towards the left end. Likewise, Fig. 7 shows the changes of L1 and L2 as functions
of temporal variable y for the three-region friction interface due to the normal load distribution given in
Eq. (29). Slip starts around the middle of the beam and it propagates towards the right and the left ends;
furthermore, slip region reaches the right end of the beam first and continues to propagate towards the left end
resulting in gross-slip finally.

3.2. Equivalent spring force and damping force

Hysteresis curves, establishing the relationship between the harmonic input displacement and the resulting
net force at the right end of the model, are employed to characterize the effectiveness of the frictional
constraint. For the two-region friction interface shown in Fig. 4, hysteresis curves for different excitation
frequencies are given in Fig. 8, and here oc denotes the first natural frequency of the completely stuck system.
It is seen that, for low excitation frequencies hysteresis curves are close to each other, which is in agreement
with the experimental results obtained by Filippi et al. [12], but there is a small rotation in clockwise direction.
For higher frequencies, hysteresis curves rotate more in the clockwise direction and the area enclosed inside
them increases.

The equivalent spring force and damping force of a frictional constraint can be obtained from the Fourier
coefficients of a hysteresis curve. In this paper, f s denotes the spring force, being the component in phase with
the input displacement, and f c denotes the damping force, being the 901 out of phase component. Rotation of
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a hysteresis curve in clockwise direction indicates a decrease in Fourier coefficient f s and increase in area
indicates an increase in Fourier coefficient f c. In Figs. 9 and 10, non-dimensionalized Fourier coefficients
Fsðf s=k�aÞ and F cðf c=k�aÞ vs. normalized displacement amplitude ða=aminÞ for the two-region friction interface
are given for different excitation frequencies, respectively, where k� is the stiffness of the system when the
frequency is zero and amin is the minimum displacement to cause slip, which is mN=kL for this case. It is seen
that the non-dimensionalized Fourier coefficient F s (normalized stiffness) is constant until the slip starts and
after this point it decreases with increasing displacement amplitude; moreover, it decreases with increasing
excitation frequency. It should be noted that for o ¼ 0:5oc, the Fs curve can become negative, indicating that
the equivalent elastic force is 1801 out of phase. On the other hand, the normalized Fourier coefficient Fc
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(normalized damping) is zero until the slip starts and subsequently, it increases with increasing displacement
amplitude, reaches a maximum and becomes stable. In addition to this, although the difference between the
curves become insignificant for large displacement amplitudes; for low amplitudes, which is the case for high
normal load applications, the Fourier coefficient Fc increases as the excitation frequency increases. In the
harmonic response analysis of a structurally damped system, the damping term is included in the stiffness term
resulting in a complex stiffness, which can be written as kð1þ ZiÞ; where k; Z and i are the stiffness of the
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system, the structural damping coefficient and the imaginary number, respectively. Therefore, the normalized
Fourier coefficient Fc can be treated as the structural damping coefficient of the microslip friction model;
hence, an increase in F c expresses an increase in the structural damping of the system.

Hysteresis curves and Fourier coefficients for the three-region friction interface are given in Figs. 11–13, and
similar conclusions as in the case of the two-region friction interface can be drawn from them. In the next
section, both friction interfaces are compared with each other and differences between them are presented.
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3.3. Effect of normal load distribution

In order to examine the effect of normal load distribution on microslip of the friction constraint,
comparison of the two-region and the three-region friction interfaces are presented in this section. Both
friction interfaces are subject to identical total normal load and are analyzed according to the developed
approach. The resulting Fourier coefficients F c and F s are compared in Figs. 14 and 15, respectively, in which
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the displacement amplitude for both interfaces is normalized with respect to amin of the two-region friction
interface. It is seen that due to the nature of concave normal load distribution specified in this comparison,
q0=ðq0 � q2Þ ¼ 12, the three-region friction interface starts to have partial slip at lower vibration amplitude
when compared to the two-region friction interface. In other words, the three-region friction interface starts to
generate friction damping, and thus leads to attenuated stiffness, at lower vibration amplitude. However,
even though the two-region friction interface requires higher vibration amplitude to start slip, as the
vibration amplitude increases the resulting friction damping increases rapidly when compared to that
produced by the three-region friction interface. At the same time, after starting slip the equivalent stiffness of
the two-region friction interface decreases faster than that of the three-region friction interface, and finally
both friction damping and stiffness of the two interfaces become comparable at higher vibration amplitude.
This result illustrates that normal load distribution has a significant effect on the microslip characteristics of a
friction interface, and accurate prediction of its effect on equivalent stiffness and friction damping is
important.
3.4. Comparison with point contact model

A point contact friction model is defined in Fig. 16. The resulting friction damping and equivalent stiffness
of this point contact model in terms of vibration amplitude will be compared with those of the two-region
friction interface model presented earlier. The unknown stiffness values, b0; k0 and ks, are determined in order
to satisfy the following three conditions: both models start gross-slip at the same vibration amplitude, and
both models have the same equivalent stiffness values in complete stuck and fully slipping states. The resulting
Fourier coefficients F c and Fs are compared in Figs. 17 and 18, respectively, in which the displacement
amplitude for both interfaces is normalized with respect to amin of the two-region friction interface. For high
vibration amplitude, it is seen that the results agree with each other well since gross-slip occurs in both models.
However, at low vibration amplitude, while the point contact model remains fully stuck, partial slip occurs in
the microslip model, and thus increasing friction damping and attenuated stiffness are predicted, which are
also observed in experimental results [12]. It is evident that until the gross slip occurs the effects of microslip
are very significant.
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3.5. Comparison with numerical solution

In order to validate the analytical method developed, time integration is performed on the following
nonlinear partial differential equation:

EA
q2u

qx2
� tðu;xÞ ¼ rAo2 q2u

qy2
,

tðu;xÞ ¼

kðu� wÞ for stuck;

sgn
qw

qy

� �
mqðxÞ for slip;

8><
>: ð30Þ

where wðxÞ is the displacement of the shear layer as defined in Section 2.2, and the boundary conditions
are given in Eq. (2). For the numerical solution technique an implicit finite difference scheme is employed and
Fig. 19 shows the change of the normalized stuck region for the two-region friction interface obtained from
the analytical and steady-state numerical solutions at low frequency. It is seen that both solutions agree with
each other well in the determination of stick–slip transitions.
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4. Conclusions

A one-dimensional dynamic microslip model is presented in this paper. An analytical approach is developed
to determine the stick–slip transitions of the steady-state solution of the frictionally constrained system when
subjected to harmonic excitation. In the proposed approach, according to the excitation frequency, a single
mode of the system is considered in the steady-state solution for simplicity; consequently, phase difference
among spatially distributed points is neglected. The proposed model is analyzed for three different normal
load distributions, resulting in two distinct friction interfaces. The two-region friction interface is composed of
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a stuck region on the left side and a slip region on the right side of the beam, whereas the three-region friction
interface has two stuck regions at the left and the right sides and a slip region in between them. Moreover, the
effects of excitation frequency on the resulting hysteresis curves as well as the equivalent stiffness and damping
are examined. It is also shown that, even when a friction interface is subjected to identical total normal load,
normal load distribution has a significant effect on the equivalent damping and stiffness of the frictionally
constrained system.

Although only two-region and three-region friction interfaces are discussed in this paper, other complicated
multi-region friction interfaces are possible depending on normal load distribution and excitation frequency. It
is possible to extend the developed microslip model to friction interfaces having complicated multiple regions.
However, while the number of stick–slip regions increases, the number of unknown variables increases, and so
does the number of needed nonlinear equations similar to Eqs. (27) and (28). Moreover, in the proposed
approach, according to the excitation frequency, a single mode of the constrained system is employed in the
steady-state solution for simplicity; consequently, phase difference among spatially distributed points is
neglected. In order to determine the phase difference in terms of spatial distribution, it is necessary to include
multiple modes of the system into the solution. This issue will be discussed in future investigation.

Although the microslip friction model presented in this paper is based on a beam model, which is simpler
than many engineering structures, it provides a better understanding of the effects of normal load distribution
and damper inertia on the stick–slip transitions. For more complicated engineering structures, since numerical
methods are often required to obtain the stick–slip transitions and then friction force distributions, the
developed method can be used as a basis of comparison, where the numerical results for a simplified model can
be verified by the analytical solutions obtained.
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Appendix A. Unknown coefficients for the three-region friction interface

The coefficients in Eq. (26) are derived and given below.

D1ðL1;L2Þ ¼
�b2Q1 � ðL2b2 � L1b2 � b1ÞQ

0
1 þ b2Q2 � b1Q

0
2

b2ðL1a2 � a1Þ � a2ðL2b2 � b1Þ
, (A.1)

D3ðL1;L2Þ ¼
�a2Q1 þ a1Q01 þ a2Q2 þ ðL1a2 � L2a2 � a1Þ

b2ðL1a2 � a1Þ � a2ðL2b2 � b1Þ
, (A.2)

c0ðL1;L2Þ ¼
ðL2b2 � b1Þða2Q1 � a1Q

0
1Þ � ðL1a2 � a1Þðb2Q2 � b1Q02Þ

b2ðL1a2 � a1Þ � a2ðL2b2 � b1Þ
, (A.3)

c1ðL1;L2Þ ¼
�a2b2Q1 þ a1b2Q01 þ a2b2Q2 � a2b1Q

0
2

b2ðL1a2 � a1Þ � a2ðL2b2 � b1Þ
, (A.4)

C5ðL1;L2Þ ¼ � ðC3 sinðaL2Þ þ C4 cosðaL2ÞÞ sinhðgL2Þ

þ ðC3 cosðaL2Þ � C4 sinðaL2ÞÞ
a
g
coshðgL2Þ, ðA:5Þ
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C6ðL1;L2Þ ¼ ð�C3 cosðaL2Þ þ C4 sinðaL2ÞÞ
a
g
sinhðgL2Þ

þ ðC3 sinðaL2Þ þ C4 cosðaL2ÞÞ coshðgL2Þ, ðA:6Þ

where

QðxÞ ¼

Z x

0

Q0ðxÞdx; Q0ðxÞ ¼

Z x

0

m
EA

qðxÞdx, (A.7)

Q1 ¼ QðL1Þ; Q01 ¼ Q0ðL1Þ, (A.8)

a1 ¼ a1ðL1Þ ¼ sinhðlL1Þ þ
EAl
b

coshðlL1Þ, (A.9)

a2 ¼ a2ðL1Þ ¼ l coshðlL1Þ þ
EAl
b

sinhðlL1Þ

� �
, (A.10)

Q2 ¼ QðL2Þ; Q02 ¼ Q0ðL2Þ, (A.11)

b1 ¼ b1ðL2Þ ¼
sinhðlðL2 � LÞÞ

coshðlLÞ
, (A.12)

b2 ¼ b2ðL2Þ ¼
l coshðlðL2 � LÞÞ

coshðlLÞ
, (A.13)

C3 ¼ C3ðL1Þ ¼ sinðaL1Þ þ
EAlg
ab

cosðaL1Þ

� �
sinhðgL1Þ

þ
EAl
b

sinðaL1Þ þ
g
a
cosðaL1Þ

� �
coshðgL1Þ, ðA:14Þ

C4 ¼ C4ðL1Þ ¼ cosðaL1Þ �
EAlg
ab

sinðaL1Þ

� �
sinhðgL1Þ

þ
EAl
b

cosðaL1Þ �
g
a
sinðaL1Þ

� �
coshðgL1Þ. ðA:15Þ
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