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Introduction

B We have examined the dynamics of recurrent neural networks in detail in Chapter 2.
B Then in Chapter 3, we used them as associative memory with fixed weights.

B In this chapter, the backpropagation learning algorithm that we have considered for
feedforward networks in Chapter 6 will be extended to recurrent neural networks
[Almeida 87, 88].

B Therefore, the weights of the recurrent network will be adapted in order to use it as
associative memory.

B Such a network is expected to converge to the desired output pattern when the
associated pattern is applied at the network inputs.
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7.1. Recurrent Backpropagation

B Consider the recurrent system shown in the
Figure 7.1, in which there are n neurons,
some of them being input units, and some
others outputs.

B In such a network, the units, which are neither
input nor output, are called hidden neurons.

input hidden output
neurons neurons neurons

Figure 7.1 Recurrent network
architecture
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7.1. Recurrent Backpropagation

B We will assume a network dynamic defined as:

dx;
dtl =—x+ T wx, +6,) (7.1.1)
7

B This may be written equivalently as

da;
d—t':faiJrZWjif(ai)Jr&, (7-1-2)

through a linear transformation.
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7.1. Recurrent Backpropagation

B Our goal is to update the weights of the network so that it will be able to remember
predefined associations, p*=(uky¥), ukeRN, ykeRN, k=1.. K.

®  With no loss of generality, we extended here the input vector u such that u;=0 if the
neuron i is not an input neuron. Furthermore, we will simply ignore the outputs of the

unrelated neurons.

We apply an input uk to the network by setting

6 =uf i=1.N (7.1.3)

Therefore, we desire the network with an initial state x(0)=xk° to converge to

XK(co)=xke =yk (7.1.4)

whenever uk is applied as input to the network.

.\

C
7.

FIAPTER VI : Learning in Recurrent Networks
1. Recurrent Backpropagation

The recurrent backpropagation algorithm, updates the connection weights aiming to
minimize the error

e k:}éZ(gik)z (7.1.5)

so that the mean error is also minimized

e =<(2> (7.1.6)
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7.1. Recurrent Backpropagation

Notice that, ek and e are scalar values while g is a vector defined as

gh=ykoxk (7.1.7)
whose i'" component g, i=1..M, is
k k ok
ei=aily; —%) (7.1.8)

In equation (7.1.8) the coefficient o; used to discriminate between the output neurons and
the others by setting its value as
1 if iis an output neuron
i = . 2 (7.1.9)
0 otherwise
Therefore, the neurons, which are not output, will have no effect on the error.
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7.1. Recurrent Backpropagation

Notice that, if an input uk is applied to the network and if it is let to converge to a fixed
point xk=, the error depends on the weight matrix through these fixed points. The learning
algorithm should modify the connection weights so that the fixed points satisfy
koo _ k (7.1.10)

=Y
For this purpose, we let the system to evolve in the weight space along trajectories in the
opposite direction of the gradient, that is

dw K
— =-7nVe
at n (7.1.12)

In particular W should satisfy

d wij k
I__ 2k (7.1.12)

dt v 0’7Wij
Here n is a positive constant named the learning rate, which should be chosen so small.
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7.1. Recurrent Backpropagation
¥ Since,
A = (7.1.13)
the partial derivative of ek given in Eq. (7.1.5) with respect to w,, becomes:
de' <« (O (7.1.14)
ow, ZE‘ ow,
CHAPTER VI : Learning in Recurrent Networks
7.1. Recurrent Backpropagation
B On the other hand, since x¥ is a fixed point, it should satisfy
koo
T (7.1.15)
dt
for which Eg. (7.1.1) becomes
X< = f(Ej;wjix‘Jf“’ +uf) (7.1.16)
B Therefore , )
oxt” koo koo OWji il
vy /() §(xJ g + Wi ﬁTsr) (7.1.17)
where
rakey 4 F(a)
F@) ==y, \a:%wijxéw (7.1.18)
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7.1. Recurrent Backpropagation

¥ Notice that,
ﬁWij .
T’Wsr = bjsé‘ir
where §;; is the Kronecker delta which have value 1 if i=j and 0 otherwise, resulting

(7.1.19)

> X85 = Sirxg” (7.1.20)
j
E  Hence,
X_koa ; ) ﬁxz_(oo
—L = /(@) (i X+ D Wi (7.1.21)
oWy (&) (SirXg z ji 5Wsr)

B By reorganizing the above equation, we obtain

oxe
%7 f/(aikw)z Wji X] _ fr(aikoo)é-_ ka (7122)
i

oW, ir*s

sr sr
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7.1. Recurrent Backpropagation

Remember
Axk . oxk
i fr(gke W i _ f1(a%)s. X<
o, (& ); " ow, (a")5, %, (7.1.22)
* Notice that,
k koo
% Y5 x| (7.1.23)
sy 5 " owg
¢ Therefore, Eq. (7.1.22), can be written equivalently as,
koo ox
Y5, 2 @)y w, = f(@)o (7.1.24)
i ﬁwsr j é)wsr
or,
oxe
Y (@ -wyfE) =5, @)X (7.1.25)
j

sr
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7.1. Recurrent Backpropagation

Remember
ﬁ koo
Z ((5]i —W;i f '(a|k0c))

i

%
oW,

sr

=5, f'@“)x" (7.1.25)

If we define matrix Lk and vector Rk such that

L = & - (@ )wj; (7.1.26)
and
R =5, f'(a”) (7.1.27)

the equation (7.1.25) results in

L —j X = R x (7.1.28)
W,

sr
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7.1. Recurrent Backpropagation

B Hence, we obtain,
17

oW

ko _ (g koy-1 oy ke
X = (L) RX (7.1.29)

sr

B In particular, if we consider the it row we observe that

S Vir Xk = (Zj:(Lkw)ﬁle)x:w (7.1.30)
B  Since
ZJ:(LK”)Hle =;(Lk°°);151, (@) = (L) () (7.1.31)
we obtain
Wﬁyx‘kw — (L) @k (7.1.32)
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7.1. Recurrent Backpropagation

Remember
d w; :7naek (7.1.12)
dt 5Wij
G SO 7.1.14
0’7W5r i IﬁWsr ( o )
J koo _ /y kooy—=1 ¢,/ kooy koo
awg 1~ (E e @ (7.1.32)

Insertion of (7.1.32) in equation (7.1.14) and then (7.1.12), results in
(7.1.33)

dW o0 00\ —. ' 0 00
Sl YN (P HCUSER
i
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7.1. Recurrent Backpropagation

B When the network with input uk has converged to xk*, the local gradient for recurrent
backpropagation at the output of the r" neuron may be defined in analogy with the

standard backpropagation as
5= f'(a:@)Z (L) (7.1.34)

B So, it becomes simply
dWsr _ | skoykoo (7.1.35)
dt r S
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7.1. Recurrent Backpropagation

B In order to reach the minimum of the error e, instead of solving the above equation, we
apply the delta rule as it is explained for the steepest descent algorithm:

w(k+1)=w(k)n Ve (7.1.36)
in which
Wy (k +1) = w,, (k) + 78,7 %.” (7.1.37)

for s=1..N, r=1..N

B The recurrent backpropagation algorithm for recurrent neural network is summarized in
the following.
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7.1. Recurrent Backpropagation

Step 0. Initialize weights:
to small random values

Step 1. Apply a sample:
apply to the input a sample vector uk having desired output vector y*

Step 2. Forward Phase:
Let the network relax according to the state transition equation
%xi" =—xf+ fQ w;x¥ +uf)
j

to a fixed point xk=
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7.1. Recurrent Backpropagation

Step 3. Local Gradients:
Compute the local gradient for each unit as:

koo 1 (Koo koo 7y kooy—1
g, =1 )Zgi (Chp
i

Step 4. Update weights according to the equation
Wy (K +1) = Wy, (K) + 787X,

Step 5. Repeat steps 1-4 for k+1, until mean error
e=<e' >=< %> o (i —x")* >

is sufficiently small
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7.2 Backward Phase

B Notice that, in the computation of local
gradients, it is needed to find out L%, ufmm> | Recurent Netiork
which  requires  global information
processing.

B In order to overcome this limitation, a H Awj;
local method to compute gradients is

proposed in [Almeida 88,89]. R

B For this purpose an adjoint dynamical
system in cooperation with the original
recurrent neural network is introduced Figure 7.2. Recurrent neural network
(Figure 7.2) and cooperating gradient network
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7.2 Backward Phase

Remember
P f,(arkw)z £ (L) (7.1.34)

¢ The local gradient given in Eq (7.1.34) can be redefined as
5= @l

by introducing a new vector variable v into the system whose rt" component defined by
the equation

koo k*y\-1 _k*
v =2 )i (7.2.2)
1

(7.2.1)

in which * is used instead of « in the right handside to denote the fixed values of the
recurrent network in order to prevent confusion with the fixed points of the adjoint
network.

« They have constant values in the derivations related to the fixed-point vk©of the adjoint
dynamic system.
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7.2 Backward Phase

B The equation (7.2.2) may be written in the matrix form as
V(L)1) Tehox (7.2.3)
or equivalently
(LEke)Tykeo= (g kox. (7.2.4)
that implies

L =g (7.2.5)
]
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7.2 Backward Phase

Remember

koo 1 koo (7.1.26)
L =6 — & wi
* By using the definition of L;; given in Eq. (7.1.26), we obtain,

DS, - @)WV = (7.2.6)
j

that is
==y @)WV 4 e
0=-v¥ +;f @ )wyvi” + &/ (7.2.7)

¢ Such a set of equations may be assumed as a fixed-point solution to the dynamical
system defined by the equation

dv,

dt

=-v, +Z f '(a:.(*)erVj +é‘r* (7.2.8)
J
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7.2 Backward Phase

Remember
(7.2.1)

se= e

«  Therefore vk~ and then &% in equation (7.2.1) can be obtained by the relaxation of the
adjoint dynamical system instead of computing L.

¢ Hence, a backward phase is introduced to the recurrent backpropagation as summarized
in the following:
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7.2 Backward Phase: Recurrent BP having backward phase

Step 0. Initialize weights: to small random values

Step 1. Apply a sample: apply to the input a sample vector uk having desired output
vector yX

Step 2. Forward Phase:
Let the network to relax according to the state transition equation

d
axik(t) =—xik + f (ijix;< +uik)
J

to a fixed point xk=
Step 3. Compute:

a =a” = > wx{" +uf
j

ke OF
F@)=5 oy

& =&l = (Y - %) i=1.N
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7.2 Backward Phase

Step 4. Backward phase for local gradients :
Compute the local gradient for each unit as:

5= 1@
where vf°° is the fixed point solution of the dynamic system defined by the
equation:

dc;ltr =—v + Z '@ w,v; )+
]

Step 4. Weight update: update weights according to the equation
War (K +1) = e (K) + 0k xE”
Step 5. Repeat steps 1-4 for k+1, until the mean error

e=<eX>=< %Zozi(yik —x)? >

is sufficiently small.

EE543 - ANN - CHAPTER 7 13



Ugur HALICI - METU EEE - ANKARA 11/18/2004

ANN eceS54

CHAPTER VI : Learning in Recurrent Networks

7.3. Stability of Recurrent Backpropagation

Remember
%:—x,+ Qo wx; +6,) (7.1.2)
]
dv, (7.2.8)

k* k*
dtr =-v, +Zf’(aj W,V + &l
J

« Due to difficulty in constructing a Lyapunov function for recurrent backpropagation, a
local stability analysis [Almeida 87] is provided in the following. In recurrent
backpropagation, we have two adjoint dynamic systems defined by Egs. (7.1.1) and

(7.2.8).
¢ Let x* and v* be stable attractors of these systems.

¢ Now we will introduce small disturbances Ax and Av at these stable attractors and
observe the behaviors of the systems.
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7.3. Stability of Recurrent Backpropagation

B First, consider the dynamic system defined by the Eq. (7.1.1) for the forward phase and
insert x*+Ax instead of x, which results in:

%(xf +AX) =—(X +Ax) + f(ZWji (xjf +AX))+U;) (7.3.1)
satisfying

X = f(zjleix:f+ui ) (7.3.2)

B If the disturbance x is small enough, then a function g () at x*+ Ax can be linearized
approximately by using the first two terms of the Taylor expansion of the function around

x*, which is
g(x" +Ax) = g(x") +Vg(x") T Ax (7.3.3)

where vg(x") is the gradient of g(.) evaluated at x*.
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7.3. Stability of Recurrent Backpropagation

B Therefore, f(.)in Eqg. (7.3.1) can be approximated as
f(zjlw“(xj+ij)+u,) (7.3.4)

= F QoW +u) + ) QWX +u WA,
] J ]

where f'(.) is the derivative of f (.).

B Notice that

3 = 2 Wjix; +U (7.3.5)
i
B Therefore, insertion of Egs. (7.3.2) and (7.3.5) in equation (7.3.4) results in

f(ZWji(X?+ij)+Ui):X:+Zf'(ai*)WjiAXj (7.3.6)
j j
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7.3. Stability of Recurrent Backpropagation

B Furthermore, notice that

d = d
a(xi +AX;) = ani (7.3.7)

B Therefore, by inserting equations (7.3.6) and (7.3.7) in equation (7.3.1), it becomes

%:—AxI +Y f'(a])w;Ax, (7.3.8)
J
B This may be written equivalently as
d Ax; *
it L :—Z(a‘ij — (3] )Wji)AX; (7.3.9)
i
B Referring to the definition of L; given by Eq. (7.1.26), it becomes
dAX _ §* 7.3.10
at I 77; LijAXj ( )
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7.3. Stability of Recurrent Backpropagation

B In a similar manner, the dynamic system defined for the backward phase by Eq. (7.2.8) at
v*+Av becomes

%(VT +AV) =—(v; +AV)+ D F@)w, (v + AV, + e (7.3.11)
]
satisfying
vi =2 F@)wyvi + & (7.3.12)
J

B When the disturbance Av in is small enough, then linearization in Eq. (7.3.11) results in

dAv, -
dtl :_Z(gl.i = f'(a;)w;)Av; (7.3.13)
J
B This can be written shortly
dAv; *
= L— —Z LjiAvj (7.3.14)
i
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7.3. Stability of Recurrent Backpropagation

B In matrix notation, the equation (7.3.10) may be written as

9 Ax= - ax (7.3.15)
dt
B In addition, the equation (7.3.14) is
O )Ty (7.3.16)

B If the matrix L* has distinct eigenvalues, then the complete solution for the system of
homogeneous linear differential equation given by (7.3.15) is in the form

xR =Yy gt (7.3.17)
i

B where ¢&;is the eigenvector corresponding to the eigenvalue };of L* and v; is any real
constant to be determined by the initial condition.
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7.3. Stability of Recurrent Backpropagation

F  On the other hand, since L*T has the same eigenvalues as L*, the solution (7.3.16) will
be the same as given in Eq. (7.3.17) except the coefficients, that is
—Ait
AV(t) =) Bi e i (7.3.18)
i

B |If it is true that each A; has a positive real value then the convergence of both x(t) and
y(t) to vector 0 are guaranteed.

B It should be noticed that, if weight vector w is symmetric, it has real eigenvalues.
B Since L can be written as
L=D(@)-D(f'(a,))W (7.3.19)

where D(c;) represents diagonal matrix having i diagonal entry as ¢;, real eigenvalues of
W imply that they are also real for L.
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