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CHAPTER IX 
 

Radial Basis Function Networks  
    
 
Radial basis function (RBF) networks are feed-forward networks trained using a supervised 

training algorithm. They are typically configured with a single hidden layer of units whose 

activation function is selected from a class of  functions called basis functions. While similar 

to back propagation in many respects, radial basis function  networks have several 

advantages. They usually train much faster than back propagation networks. They are less 

susceptible to problems with non-stationary inputs because of the behavior of the radial basis 

function hidden units. 

 

Popularized by Moody and Darken (1989), RBF networks have proven to be a useful neural  

network architecture. The major difference between RBF networks and back propagation 

networks (that is, multi layer perceptron trained by Back Propagation algorithm) is the 

behavior of the single hidden layer. Rather than using the sigmoidal or S-shaped activation 

function as in back propagation, the hidden units in RBF networks use a Gaussian or some 

other basis kernel function. Each  hidden unit acts as a locally tuned processor that computes a 

score for the match between the input vector and its connection weights or centers. In effect, 

the basis units are highly specialized pattern detectors. The weights connecting the basis units 

to the outputs are used to take linear combinations of the hidden units to product the final 

classification or output.  

   

In this chapter first the structure of the network will be introduced and it will be explained 

how it can be used for function approximation and data interpolation. Then it will be 

explained how it can be trained. 
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9.1 The Structure of the RBF Networks 
 

Radial Basis Functions are first introduced in the solution of the real multivariable 

interpolation problems. Broomhead and Lowe (1988),   and Moody and Darken (1989) were 

the first to exploit the use of radial basis functions in the design of neural networks.  

 

The structure of an RBF networks in its most basic form involves three entirely different 

layers (Figure 9.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9.1. Structure of the Standart RBF network 

 

 

The input layer is made up of source nodes (sensory units) whose number is equal to the 

dimension p of the input vector u. 
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9.1.1 Hidden layer 

 

The second layer is the hidden layer which is composed of nonlinear units that are connected 

directly to all of the nodes in the input layer. It is of high enough dimension, which serves a 

different purpose from that in a multilayer perceptron.  

 

Each hidden unit takes its input from all the nodes at the components at the input layer. As 

mentioned above the hidden units contains a basis function, which has the parameters center 

and width. The center of the basis function for a node i at the hidden layer  is a vector ci 

whose size is the as the input vector u and there is normally a different center for each unit in 

the network. 

 

First, the radial distance di, between the input vector u and the center of the basis function ci is 

computed for each unit i in the hidden layer as 

 

iid cu −=          (9.1.1) 

 

using the Euclidean distance. 

 

The output hi of each hidden unit i is then computed by applying the basis function G to this 

distance  

 

  hi = G(di,σi)         (9.1.2) 

 

As it is shown in  Figure 9.2, the basis function is a curve (typically a Gaussian function, the 

width corresponding to the variance,σi ) which has a peak at zero distance and it decreases as 

the distance from the center increases.   
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Figure 9.2. The response region of an RBF hidden node around its center as a function of the distance 
from this center. 
 

 

For an input space u∈R2, that is M=2,  this corresponds to the two dimensional Gaussian 

centered at ci on the input space, where also ci ∈R2, as it is shown in Figure 9.3 

 

 
 

Figure 9.3 Response of  a hidden unit on the input space for  u∈R2 
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9.1.2 Output layer 

 

The transformation from the input space to the hidden unit space is nonlinear, whereas the 

transformation to the hidden unit space to the output space is linear. 

 

The jth output is computed as 
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9.1.3 Mathematical model 

 

In summary, the mathematical model of the RBF network can be expressed as: 

 

 x=f(u),  f:RN→RM   
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cuu    (9.1.5) 

 

where is the the Euclidean distance between u and ci 

 

 

9.2  Function approximation  
 

Let y=g(u) be a given function of u, y∈R, u∈R, g:R→R, and let Gi i=1..L, be a finite set of 

basis functions.  

 

The function g can be written in terms of the given basis functions as 
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where  r(u) is the residual. 

 

The function y can be approximated as 

 

)()(
1

uGwgy
L

i
ii∑

=

≅= u        (9.2.2) 

 

The aim is to minimize the error by setting the parameters of Gi appropriately. A possible 

choice for the error definition is the L2 norm of the residual function r(u) which is defined as 

 

∫= 2
2
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        (9.2.3) 

 

 

9.2.1 Approximation by RBFNN 

 

Now, consider the single input single output RBF network shown in Figure 9.4. Then x can be 

written as 
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By the use of such a network, y can be written as 
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     (9.2.5) 

 

 

where f(u) is the output of the RBFNN given in Figure 9.4 and r(u) is the residual. By setting 

the center ci, the variance σi , and the weight wi the error appropriately, the error can be 

minimized. 
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Figure 9.4 Single input, single output RBF network 

 

 

Whatever we discussed here for g:R→R, can be generalized to g:RN→RM easily by using an N 

input, M output RBFNN given in figure 9.1 previously.  

 

 

9.2.2 Data Interpolation 

 

Given  input output training patterns (uk,yk),  k=1,2, ..K,  the aim of data interpolation is to 

approximate  the function y from which the data is generated. Since the function y is 

unknown, the problem can be stated as a minimization problem which takes only the sample 

points into consideration: 

 

Choose wi,j and ci,  i=1,2...L,  j=1,2...M so as to minimize 
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As an example, the output of  an RBF  network trained to fit the data points given in Table 9.1 

is given in Figure 9.5. 

 

 

TABLE I:  13 data points generated by using sum of three gaussians with  c1=0.2000   

c2=0.6000   c3=0.9000    w1=0.2000  w2=0.5000   w3=0.3000 σ=0.1000 

 
data no 1 2 3 4 5 6 7 9 10 11 12 13 

x 0.0500 0.2000 0.2500 0.3000 0.4000 0.4300 0.4800 0.6000 0.7000 0.8000 0.9000 0.9500

f(x) 0.0863 0.2662 0.2362 0.1687 0.1260 0.1756 0.3290 0.6694 0.4573 0.3320 0.4063 0.3535

 

 

 

 

 

 

 

 

 

 

 

Figure 9.5 Output of the RBF network trained to fit the datapoints given in Table 9.1 

 

 

 

9.3 Training RBF Networks  
 

The training of  a RBF network can be formulated as a nonlinear unconstrained optimization problem 

given below: 

 

Given  input output training patterns (uk,yk),  k=1,2, ..K, choose wi,j and ci,, i=1,2...L,  

j=1,2...M so as to minimize 
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(1.3)  

 

Note that the training problem becomes quadratic once if ci’s (radial basis function centers) 

are known. 

 

 

9.3.1 Adjusting the widths 

 

In its simplest form, all hidden units in the RBF network have the same width or degree of 

sensitivity to inputs. However, in portions of the input space where there are few patterns, it is 

sometime desirable to have hidden units with a wide area of reception. Likewise, in portions 

of the input space, which are crowded, it might be desirable to have very highly tuned 

processors with narrow reception fields. Computing these individual widths increases the  

performance of the RBF network at the expense of a more complicated training process. 

 

9.3.2 Adjusting the centers 

 

Remember that in a back propagation network, all weights in all of the layers are adjusted at 

the same time. In radial basis function networks, however, the weights into the hidden layer 

basis units are usually set before the second layer of weights is adjusted. As the input moves 

away from the connection weights, the activation value falls off. This behavior leads to the 

use of the term “center” for the first-layer weights. These center weights can be computed 

using Kohonen feature maps, statistical methods such as K-Means clustering, or some other 

means. In  any case, they are then used to set the areas of sensitivity for the RBF network’s 

hidden units, which then remain fixed.  

 

9.3.3 Adjusting the weights 

 

Once the hidden layer weights are set, a second phase of training is used to adjust the output 

weights. This process typically uses the standard steepest descent algorithm. Note that the 

training problem becomes quadratic once if ci’s (radial basis function centers) are known. 

 

 

 


