
Ugur HALICI ARTIFICIAL NEURAL NETWORKS CHAPTER 6

EE543 LECTURE NOTES . METU EEE . ANKARA

92

CHAPTER VI

Learning in Feedforward Neural
Networks

The method of storing and recalling information in brain is not fully understood.
However, experimental research has enabled some understanding of how neurons appear
to gradually modify their characteristics because of exposure to particular stimuli. The
most obvious changes have been observed to occur in the electrical and chemical
properties of the synaptic junctions. For example the quantity of chemical transmitter
released into the synaptic cleft is increased or reduced, or the response of the post-
synaptic neuron to receive transmitter molecules is altered. The overall effect is to
modify the significance of nerve impulses reaching that synaptic junction on determining
whether the accumulated inputs to post-synaptic neuron will exceed the threshold value
and cause it to fire. Thus learning appears to effectively modify the weighting that a
particular input has with respect to other inputs to a neuron.

In this chapter, learning in feedforward networks will be considered. Research interest in
multilayer feedforward networks dates back to the pioneering work of Rosenblatt (1962)
on perceptrons and that of Widrow on Madalines [Widrow 62]. Madalines were
constructed with many Adaline elements in the first layer, and with various logic devices
such as AND, OR and majority vote-taker elements in the second layer. Madalines of the
1960`s had adaptive first layers and fixed threshold functions in the second (output)
layers [Widrow and Lehr 90]. However the tool that was missing in those early days of
multilayer feedforward networks was what we now call backpropagation learning.

Usage of the term backpropagation appears to have evolved in 1985. However, the basic
idea of back-propagation was first described by Werbos in his Ph.D. Thesis [Werbos 74],
in the context of a more general network. Subsequently, it was rediscovered by

Ugur HALICI ARTIFICIAL NEURAL NETWORKS CHAPTER 6

EE543 LECTURE NOTES . METU EEE . ANKARA

93

Rumelhart, Hinton and Williams (1986b), and popularized through the publication of the
seminal book entitled Parallel and Distributed Processing [Rumelhart and McClelland
86]. A similar generalization of the algorithm was derived independently by Parker,
1985, and interestingly enough, a roughly similar learning algorithm was also studied by
LeCun (1985).
.

6.1. Perceptron Convergence Procedure

Perceptron was introduced by Frank Rosenblatt in the late 1950's (Rosenblatt, 1958) with
a learning algorithm on it. Perceptron may have continuous valued inputs. It works in the
same way as the formal artificial neuron defined previously. Its activation is determined
by equation:

 a=wTu + θ (6.1.1)

Moreover, its output function is:

⎩
⎨
⎧

<−
≤+

=
01

01
)(

afor
afor

af (6.1.2)

having value either +1 or -1.

Figure 6.1. Perceptron

Now, consider such a perceptron in N dimensional space (Figure 6.1), the equation

Ugur HALICI ARTIFICIAL NEURAL NETWORKS CHAPTER 6

EE543 LECTURE NOTES . METU EEE . ANKARA

94

 wTu + θ = 0 (6.1.3)

that is

 w1u1+w2u2+...+wN uN + θ = 0 (6.1.4)

defines a hyperplane. This hyperplane divides the input space into two parts such that at
one side, the perceptron has output value +1, and in the other side, it is -1.

A perceptron can be used to decide whether an input vector belongs to one of the two
classes, say classes A and B. The decision rule may be set as to respond as class A if the
output is +1 and as class B if the output is -1. The perceptron forms two decision regions
separated by the hyperplane. The equation of the boundary hyperplane depends on the
connection weights and threshold.

Example 6.1: When the input space is two-dimensional then the equation

 w1u1+w2u2 + θ = 0 (6.1.5)

defines a line as shown in the Figure 6.2.

Figure 6.2. Perceptron output defines a hyperplane that divides input space into two separate
subspaces

A

u1

u2
u1w1 + u1w1 + θ = 0

x u1

u2

1 θ
w1

w2

B

Ugur HALICI ARTIFICIAL NEURAL NETWORKS CHAPTER 6

EE543 LECTURE NOTES . METU EEE . ANKARA

95

This line divides the space of input variables u1 and u2, which is a plane, into to two
separate parts. In the given figure the elements of the classes A and B lies on the different
sides of the line. ♦

Connection weights and the threshold in a perceptron can be fixed or adapted by using a
number of different algorithms. The original perceptron convergence procedure
developed by [Rosenblatt, 1959] for adjusting weights is provided in the following:

THE PERCEPTRON CONVERGENCE PROCEDURE

Step 1: Initialize weights and threshold
 Set each wj(0), for j=0,1,2,..,N, in w(0) to small random values. Here w=w(t) is

the weight vector at iteration time t and the component w0=θ corresponds to the
threshold.

Step 2. Present New Input and Desired output:
 Present a new continuous valued input vector uk to the along with the desired

output yk, such that:

⎪⎩

⎪
⎨
⎧

∈−

∈+
=

 Bu1
 u1

k

k

for
Afor

y k

Step 3. Calculate actual output

xk=f(wTuk)

Step 4. Adapt weights

 w(t+1)=w(t)+η(yk-xk(t)) uk
 where η is a positive constant less than 1.
Step 5. Repeat steps 2-4 until no error occurs

Initially connection weights and bias values are set to small random non-zero values.
Then, a new input vector u with N continuous valued elements is applied to the input and
the output value is calculated in Step 2 by using the Eqs. (6.1.1) and (6.1.2). Notice that
the connection weights are adapted only when an error occurs in step 4 that is when the
calculated and the desired values are different. Weights remain unchanged if a correct
decision is made by the perceptron. The weight update equation given in this step
includes a gain term η that ranges from 0.0 to 1.0 and controls the learning rate. If η is

Ugur HALICI ARTIFICIAL NEURAL NETWORKS CHAPTER 6

EE543 LECTURE NOTES . METU EEE . ANKARA

96

not small enough, then oscillation may occur during weight adaptation. On the other
hand, if η is too small then adaptation rate is very slow.

Example 6.2: Figure 6.3 demonstrates how the line defined by the perceptrons
parameters is shifted in time as the weights are updated. Although it is not able to
separate the classes A and B with the initial weights assigned at time t=0, it manages to
separate them at the end.

Figure 6.3: Perceptron convergence

In [Rosenblatt, 1959] it is proved that if the inputs presented from the two classes are
separable, that is if they fall on the opposite sides of some hyperplane, then the
perceptron convergence procedure always converge in time. Furthermore, it positions the
final decision hyperplane such that it separates the samples of class A from those of class
B.

One problem with the perceptron convergence procedure is that the decision boundary
may oscillate continuously when the distributions overlap or the classes are not linearly
separable (Figure 6.4).

A

u1

u2

x u1

u2

1 θ
w1

w2

B t=0

t=1

t=k

...

A

u1

u2

B A

u1

u2

B

Ugur HALICI ARTIFICIAL NEURAL NETWORKS CHAPTER 6

EE543 LECTURE NOTES . METU EEE . ANKARA

97

Figure 6.4. (a) Overlapping distributions (b) non linearly separable distribution

The types of decision regions that can be formed by single and multilayer perceptrons
with one and two layers of hidden layers are given in the Figure 6.5 [Lipmann 87].

Figure 6.5. Types of regions that can be formed by single and multi-layer perceptrons

 (Adapted from Lippmann 87)

Ugur HALICI ARTIFICIAL NEURAL NETWORKS CHAPTER 6

EE543 LECTURE NOTES . METU EEE . ANKARA

98

6.2 LMS Learning Rule

A modification to the perceptron convergence procedure forms the Least Mean Square
(LMS) solution for the case that the classes are not separable. This solution minimizes
the mean square error between the desired output and the actual output of the processing
element. The LMS algorithm was first proposed for Adaline (Adaptive Linear Element)
in [Widrow and Hoff 60]. The structure of Adaline is shown in the Figure 6.6. The part
of the Adaline that executes the summation is called Adaptive Linear Combiner.

Figure 6.6 Adaline

The output function of the Adaline can be represented by the identity function as:

 f(a)=a, (6.2.1)

So the output can be written in terms of input and weights as:

 x f a w uj j
j

N
= =

=
∑()

0
 (6.2.2)

where the bias is implemented via a connection to a constant input u0, which means that
the input vector and the weight vector are of space R(N+1) instead of RN.

The output equation of Adaline can be written as:

Ugur HALICI ARTIFICIAL NEURAL NETWORKS CHAPTER 6

EE543 LECTURE NOTES . METU EEE . ANKARA

99

 x=wTu (6.2.3)

where w and u are weight and input vectors respectively having dimension N+1.

Suppose that we have a set of input vectors uk, k=1..K, each having its own desired
output value yk.

The performance of the Adaline for a given input value uk can be defined by considering
the difference between the desired output yk and the actual output xk, which is called error
and denoted as ε. Therefore, the error for the input uk is as follows:

 εk=yk-xk=yk-wTuk (6.2.4)

The aim of the LMS learning is to adjust the weights through a training set {(uk,yk)},
k=1..K, such that the mean of the square of the errors is minimum. The mean square error
is defined as:

 ∑
=∞→

>=<
K

k

k
K

k

k

1

212)(lim)(εε (6.2.5)

where the notation <.> denotes the mean value.

The mean square error can be rewritten as:

 < >=< − >() ()ε k k ky2 2w uT

 wuwuuw ><−>×<+>=<
TT kkkkk yy 2)(2 (6.2.6)

where T denotes transpose and x is the outer vector product.

Defining input correlation matrix R [Widrow 85, Freeman 91]

 R u u u u=< × > = < >k k k k T
 (6.2.7)

and a vector P as

Ugur HALICI ARTIFICIAL NEURAL NETWORKS CHAPTER 6

EE543 LECTURE NOTES . METU EEE . ANKARA

100

 P u=< >yk k (6.2.8)

results in:

 e() () ()w w R w P w=< >=< > + −εk ky2 2 2T T (6.2.9)

The optimum value w* for the weight vector corresponding to the minimum of the mean
squared error can be obtained by evaluating the gradient of e(w). The point which makes
the gradient zero gives us the value of w*. That is:

 ∇ = = − ==
=

∗
∗

∗
e e() ()w w

w
Rw Pw w

w w

∂
∂

2 2 0 (6.2.10)

Here, the gradient is

 ∇ =e e e e() ...w ∂
∂

∂
∂

∂
∂w w wn1 2

T
 (6.2.11)

and it is a vector extending in the direction of the greatest rate of change. The gradient of
a function evaluated at some point is zero if the function has a maximum or minimum at
that point. The error function is of the second degree so it is a paraboloid and it has a
single minimum at point w*.

When we set the gradient of the mean square error to zero, this implies that

 Rw*=P (6.2.12)

and then

 w*=R-1P (6.2.13)

6.3 Steepest Descent Algorithm.

The analytical calculation of the optimum weight vector for a problem is rather difficult
in general. Not only does the matrix manipulation get cumbersome for the large

Ugur HALICI ARTIFICIAL NEURAL NETWORKS CHAPTER 6

EE543 LECTURE NOTES . METU EEE . ANKARA

101

dimensions, but also each component of R and P itself is an expectation value. Thus,
explicit calculations of R and P require knowledge of the statistics of the input signal
[Freeman 91]. A better approach would be to let the Adaline Linear Combiner to find the
optimum weights by itself through a search over the error surface. Instead of having a
purely random search, some intelligence is added to the procedure such that the weight
vector is changed by considering the gradient of e(w) iteratively [Widrow 60], according
to formula known as delta rule:

 w(t+1)=w(t)+∆w(t) (6.3.1)

where

 ∆w(t)=-η∇e(w(t)) (6.3.2)

In the above formula η is a small positive constant, determining the learning rate.

For the real valued scalar function e (w) on a vector space w ∈ RN, the gradient ∇e(w)
gives the direction of the steepest upward slope, so the negative of the gradient is the
direction of the steepest descent . This fact is demonstrated in Figure 6.7 for a parabolic
error surface on two dimensions.

Figure 6.7 Direction of the steepest gradient descent on the paraboloid error surface on two-
dimensional weight space. Only the equpotential curves of the error surface is shown instead of
the 3D-error surface.

Ugur HALICI ARTIFICIAL NEURAL NETWORKS CHAPTER 6

EE543 LECTURE NOTES . METU EEE . ANKARA

102

In Section 6.2 we have considered the linear output function in the derivation of the
optimum weight w* for the minimum error. However in the general case, we should
consider any nonlinearity f(.) at the output of the neuron. It should be noted that in such a
case the error surface is no more a paraboloid, so it may have several local minima.

For an input uk applied at time t, (εk(t))2 can be used as an approximation to <(εk)2>,
where

 εk(t)=yk-f(ak)=yk-f(w(t)Tuk) (6.3.3)

Therefore, we obtain:

 ∇<(εk)2> ~ ∇ (εk(t))2 = ∇(yk-f(ak))2 (6.3.4)

With a differentiable function f(.) having derivative f'(.) it becomes

 kkkkk aaftafy ∇′−=−∇)()(2))((2 ε (6.3.5)

Since

 ∇ak=∇w(t)Tuk=uk (6.3.6)

Then the weight update formula becomes:

 w(t+1)=w(t)+2ηεk(t) f'(ak)uk. (6.3.7)

Notice that for Adaline's linear output function:

 f ' (a)=1 (6.3.8)

For sigmoid function it is:

 ′ =
+

= −
−

f a
a e T

f a f aa T() () ()(())/
∂
∂

1
1

1 1 (6.3.9)

Ugur HALICI ARTIFICIAL NEURAL NETWORKS CHAPTER 6

EE543 LECTURE NOTES . METU EEE . ANKARA

103

The steepest descent algorithm based on least mean square error is summarized in the
following:

STEEPEST DESCENT ALGORITHM

Step 1: Apply an input vector uk with an desired output value yk to the neuron's inputs
Step 2: By considering uk and using the current value of the weight vector determine the

value of the activation ak:

 ak=w(t)Tuk

Step 3: Determine the value of the derivative of the output function using the current
 value of activation ak, that is:

kaa

k

a
afaf

=

=
∂

∂)()('

Step 4: Determine the value of error εk(t) as: εk(t)= yk-f(ak)

Step 5: Update the weight vector using the following update formula

 w(t+1)=w(t)+2ηf'(ak)εk(t)uk

 Step 6: Repeat steps 1-5 until <εk(t)2> reduces to an acceptable level.

The parameter η in the algorithm determines the stability and the speed of convergence
of the weight vector towards the minimum error value. The value of η should be tuned
well. If it is chosen too small this effects considerably the convergence time. On the other
hand, if changes are too large, the weight vector may wander around the minimum as
shown in the Figure 6.8, without being able to reach it.

Notice that, the iterative weight update by the delta rule is derived by assuming constant
uk. Therefore, it tends to minimize the error with respect to applied uk. In fact, we require
the average error, that is:

 ∑
=

>==<
K

k

k
K

k

1

212)()(εεe (6.3.10)

Ugur HALICI ARTIFICIAL NEURAL NETWORKS CHAPTER 6

EE543 LECTURE NOTES . METU EEE . ANKARA

104

Figure 6.8. Inappropriate value of learning rate η may cause oscillations in the weight values
without convergence

to be minimum, and this implies that

 ∑∑
==

==
K

k j

kk

K

K

k j

k

K
j www 1

1

1

2
1 2)(∂εεε∂

∂
∂ e (6.3.11)

Therefore, the net change in wj after one complete cycle of pattern presentation is
expected to be:

 ∑
=

−=+
K

k

kk

jj wjK
twKtw

1

21)()(
∂

ε∂εη (6.3.12)

However, this would be true that if the weights are not updated along a cycle, but only at
the end. By changing the weights as each pattern is presented, we depart to some extend
from the gradient descent in e. Nevertheless, provided the learning rate is sufficiently
small, this departure will be negligible and the delta rule will implement a very close
approximation to gradient descent in mean squared error [Freeman 91].

fast

slow

Ugur HALICI ARTIFICIAL NEURAL NETWORKS CHAPTER 6

EE543 LECTURE NOTES . METU EEE . ANKARA

105

6.4. The Backpropagation Algorithm

6.4.1. Learning Single Layer Network

Consider a single layer multiple output network as shown in the Figure 6.9. Here, we still
have N inputs denoted uj, j=1..N, but M processing elements whose activations and
outputs are denoted as ai and xi , i=1..M respectively. Here wji is used to denote the
strength of the connection from the jth input to the ith processing element. In vector
notation wji is the jth component of weight vector wi, while uj is the jth component of the
input vector u. Let uk and yk to represent the kth input sample and the corresponding
desired output vector respectively.

Figure 6.9. Multiple output network

Let the error observed at the output i be

 ε i

k
i
k

i
ky x= − (6.4.1)

when uk is applied at the input. If the error is to be written in terms of the input vector uk
and the weights wi, we obtain

 ε i

k
i
k

i
ky f= − ()w uT (6.4.2)

If we take partial derivative with respect to wji by applying the chain rule

Ugur HALICI ARTIFICIAL NEURAL NETWORKS CHAPTER 6

EE543 LECTURE NOTES . METU EEE . ANKARA

106

ji

k
i

k
i

k
i

ji

k
i

w
x

xw ∂
∂

∂
ε∂

∂
ε∂

= (6.4.3)

where

 1−=k
i

k
i

x∂
ε∂

 (6.4.4)

and

∂
∂

x
w

f a ui
k

ji
i
k

j
k= ′() (6.4.5)

we obtain

 ∂ε
∂

k

ij

k
j
k

w
f a u= − ′() (6.4.6)

If we define the total output error for input uk as the sum of the square of the errors at
each neuron output, that is:

 ek
i
k

i

m
=

=
∑1

2
2

1
()ε (6.4.7)

then partial derivative of the total error with respect to wji when uk is applied at the input
can be written as:

 ∂
∂

∂
∂ ε

∂ε
∂

e ek

ji

k

i
k

i
k

jiw w
= (6.4.8)

which is

 ∂
∂

εek

ji
i
k k

jw
f a u= − ′() (6.4.9)

Ugur HALICI ARTIFICIAL NEURAL NETWORKS CHAPTER 6

EE543 LECTURE NOTES . METU EEE . ANKARA

107

By defining

 δ εi

k
i
k kf a= ′() (6.4.10)

it can be reformulated as

 k
j

k
i

ji

k

u
w

δ
∂
∂

−=
e (6.4.11)

For the error to be minimum, the gradient of the total error with respect to the weights
should be

 ∇ =ek 0 (6.4.12)

where 0 is the vector having N.M entries each having value zero. In other words, it
should be satisfied:

 ∂
∂

ek

jiw
for j 1 N i 1 M= = =0 .. , .. (6.4.13)

In order to reach the minimum of the total error, without solving the above equation, we
apply the delta rule in the same way explained for the steepest descent algorithm:

 w(t+1)=w(t)-η�ek (6.4.14)

in which

 MiNjfor
w

twtw
ji

k

jiji ..1,..1)()1(==−=+
∂
∂η e (6.4.15)

that is

 MiNjforutwtw k

j
k
ijiji ..1,..1)()1(==+=+ ηδ (6.4.16)

Ugur HALICI ARTIFICIAL NEURAL NETWORKS CHAPTER 6

EE543 LECTURE NOTES . METU EEE . ANKARA

108

6.4.2. Multilayer Network

Now assume that another layer of neurons is connected to the input side of the output
layer. Therefore we have the input, hidden and the output layers as shown in Figure 6.10.
In order to discriminate between the elements of the hidden and output layers we will use
the subscripts L and o respectively. Furthermore, we will use h as the index on the hidden
layer elements, while still using index j and i for the input and output layers.

Figure 6.10 Multilayer network

In such a network, the output value of ith neuron of output layer can be written as:

 x fi

k
o i L

k
o o
= ()w xT (6.4.17)

where x L

k being the vector of output values at hidden layer that is connected as input to

the output layer. The value of the hth element in xL
k
 is determined by the equation:

Ugur HALICI ARTIFICIAL NEURAL NETWORKS CHAPTER 6

EE543 LECTURE NOTES . METU EEE . ANKARA

109

)(k

hL
k
h LL

fx uw T= (6.4.18)

Since

 k
j

N

j
Ljh

k
Lh uw∑

=

=
1

Tuw (6.4.19)

the partial derivative of the output of a neuron io of output layer with respect to hidden
layer weight wjhL can be determined by applying the chain rule

∂

∂

∂

∂

∂

∂

x

w

x

x

x

w
i
k

jh

i
k

h
k

h
k

ij

o

L

o

L

L

L

= (6.4.20)

By using Eq. (6.4.17) and (6.4.19) this can be written as

))(())((k
j

k
hih

k
i

jh

k
i uafwaf

w
x

LLoLoo

L

o ′′=
∂
∂

 (6.4.21)

Then the partial derivative of the total error

 2

1
2

12

1
2

1)()(k
i

M

i

k
i

M

i

k
i

k
o

o

o

o

o
xy −== ∑∑

==

εe (6.4.22)

with respect to the hidden layer weight w jhL

can be written as

 k
j

k
hih

k
i

M

i

k
i

hj

k

uafwaf
w LLoLoo

o

o

L

)()(
1

′′−= ∑
=

ε
∂
∂ e (6.4.23)

It can be reformulated as

 k
j

k
hih

M

i

k
i

hj

k

uafw
w LLoL

o

o

L

)(
1

′−= ∑
=

δ
∂
∂ e . (6.4.24)

When defined

Ugur HALICI ARTIFICIAL NEURAL NETWORKS CHAPTER 6

EE543 LECTURE NOTES . METU EEE . ANKARA

110

 δ δh
k

h
k

i
k

i

M
h iL L L o

o
L o

f a w= ′
=
∑()

1
 (6.4.25)

it becomes

 ∂
∂

δ
ek

j h
h
k

jw
u

L
L

= − (6.4.26).

Therefore, the weight update rule for the hidden layer

 w t w t
wj h j h

k

jh
L L

L

() ()+ = −1 η
∂
∂

e (6.4.27)

can be reformulated in analogy with the weight update rule of the output layer, as

 w t w t uj h j h h

k
jL L L

() ()+ = +1 ηδ (6.4.28)

This weight update rule may be generalized for the networks having several hidden
layers as:

 w t w t xj h j h h

k
jL L L L L L() () ()

() ()
− − −

+ = +
1 1 1

1 ηδ . (6.4.29)

where L and (L-1) are used to denote any hidden layer and its previous layer respectively.

Furthermore,

LL

L

L

LLLL hj

N

h

k
h

k
j

k
j waf

)1()1(1)1(
1

)(
−−−− ∑

=

′= δδ (6.4.30)

where NL is the number of neurons at layer L.

The backpropagation algorithm for multi-layered network is summarized in the
following.

Ugur HALICI ARTIFICIAL NEURAL NETWORKS CHAPTER 6

EE543 LECTURE NOTES . METU EEE . ANKARA

111

BACKPROPAGATION ALGORITHM FOR

 MULTILAYERED FEEDFORWARD NEURAL NETWORK

Step 0. Initialize weights: to small random values;

Step 1. Apply a sample: apply to the input a sample vector uk having desired output
 vector yk;

Step 2. Forward Phase:
 Starting from the first hidden layer and propagating towards the output layer:
 2.1. Calculate the activation values for the units at layer L as:
 2.1.1. If L-1 is the input layer

 ∑
=

=
N

j

k
jhj

k
h uwa

LL
0

 2.1.2. If L-1 is a hidden layer

 ∑
−

−

−−
=

=
1

1

)1()1(
0

L

L

LLLL

N

j

k
jhj

k
h xwa

 2.2. Calculate the output values for the units at layer L as:
)(k

LhL
k
Lh afx =

 in which use io instead of hL if it is an output layer

Step 4. Output errors: Calculate the error terms at the output layer as:
)()(k

oio
k
oi

k
oi

k
oi

afxy ′−=δ

Step 5. Backward Phase Propagate error backward to the input layer through each
 layer L using the error term

 ∑
+

=+
+

+

′=
1

11
)1(

)1(
)(

LN

Li

k
LiLh

k

Li

k
LhL

k
Lh waf δδ

 in which, use io instead of i(L+1) if L+1 is an output layer;

Step 6. Weight update: Update weights according to the formula
 k

j
k
hhjhj LLLLLL

xtwtw
)1()1()1(

)()1(
−−−

+=+ ηδ

Step7. Repeat steps 1-6 until the stop criterion is satisfied, which may be chosen as the
 mean of the total error

 >−>=<< ∑
=

2

1
2

1)(k
i

M

i

k
i

k
o

o

o
xye

 is sufficiently small.

