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CHAPTER VI 
 

Learning in Feedforward Neural 
Networks 

 
The method of storing and recalling information in brain is not fully understood. 
However, experimental research has enabled some understanding of how neurons appear 
to gradually modify their characteristics because of exposure to particular stimuli.  The 
most obvious changes have been observed to occur in the electrical and chemical 
properties of the synaptic junctions. For example the quantity of chemical transmitter 
released into the synaptic cleft is increased or reduced, or the response of the post-
synaptic neuron to receive transmitter molecules is altered.  The overall effect is to 
modify the significance of nerve impulses reaching that synaptic junction on determining 
whether the accumulated inputs to post-synaptic neuron will exceed the threshold value 
and cause it to fire. Thus learning appears to effectively modify the weighting that a 
particular input has with respect to other inputs to a neuron. 
 
In this chapter, learning in feedforward networks will be considered. Research interest in 
multilayer feedforward networks dates back to the pioneering work of Rosenblatt (1962) 
on perceptrons and that of Widrow on Madalines [Widrow 62]. Madalines were 
constructed with many Adaline elements in the first layer, and with various logic devices 
such as AND, OR and majority vote-taker elements in the second layer. Madalines of the 
1960`s had adaptive first layers and fixed threshold functions in the second (output) 
layers [Widrow and Lehr 90]. However the tool that was missing in those early days of 
multilayer feedforward networks was what we now call backpropagation learning. 
 
Usage of the term backpropagation appears to have evolved in 1985. However, the basic 
idea of back-propagation was first described by Werbos in his Ph.D. Thesis [Werbos 74], 
in the context of a more general network. Subsequently, it was rediscovered by 
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Rumelhart, Hinton and Williams (1986b), and popularized through the publication of the 
seminal book entitled Parallel and Distributed Processing [Rumelhart and McClelland 
86]. A similar generalization of the algorithm was derived independently by Parker, 
1985, and interestingly enough, a roughly similar learning algorithm was also studied by 
LeCun (1985).  
. 
 
6.1. Perceptron Convergence Procedure 
 
Perceptron was introduced by Frank Rosenblatt in the late 1950's (Rosenblatt, 1958) with 
a learning algorithm on it. Perceptron may have continuous valued inputs. It works in the 
same way as the formal artificial neuron defined previously. Its activation is determined 
by equation: 
 
 a=wTu + θ (6.1.1)  
  
Moreover, its output function is: 
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having value either +1 or -1.   
 

 
Figure 6.1. Perceptron 

 
 
Now, consider such a perceptron in N dimensional space (Figure 6.1), the equation 
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 wTu + θ = 0  (6.1.3) 
 
that is 
 
 w1u1+w2u2+...+wN uN + θ = 0 (6.1.4) 
 
defines a hyperplane. This hyperplane divides the input space into two parts such that at 
one side, the perceptron has output value +1, and in the other side, it is -1.  
 
A perceptron can be used to decide whether an input vector belongs to one of the two 
classes, say classes A and B.   The decision rule may be set as to respond as class A if the 
output is +1 and as class B if the output is -1.  The perceptron forms two decision regions 
separated by the hyperplane. The equation of the boundary hyperplane depends on the 
connection weights and threshold.     
 
Example 6.1: When the input space is two-dimensional then the equation  
 
 w1u1+w2u2 + θ = 0 (6.1.5) 
 
defines a line as shown in the Figure 6.2.  
 
 
 
 

 

 

 

 

 

 

 

 
Figure 6.2. Perceptron output defines a hyperplane that divides input space into two separate 
subspaces 
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This line divides the space of input variables u1 and u2, which is a plane, into to two 
separate parts. In the given figure the elements of the classes A and B lies on the different 
sides of the line.  ♦ 
 
Connection weights and the threshold in a perceptron can be fixed or adapted by using a 
number of different algorithms. The original perceptron convergence procedure 
developed by  [Rosenblatt, 1959] for adjusting weights is provided in the following: 
 

THE PERCEPTRON CONVERGENCE PROCEDURE 
 

Step 1: Initialize weights and threshold 
 Set each wj(0), for j=0,1,2,..,N, in w(0) to small random values. Here w=w(t) is 

the weight vector at iteration time t and the component w0=θ corresponds to the 
threshold.  

 
Step 2. Present New Input and Desired output: 
 Present a new continuous valued input vector uk to the along with the desired 

output yk,  such that: 
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Step 3. Calculate actual output 

   
xk=f( wTuk) 

 
Step 4. Adapt weights 

  w(t+1)=w(t)+η(yk-xk(t)) uk 
            where η is a positive constant  less than 1. 
Step 5. Repeat steps 2-4 until no error occurs 

 

 
Initially connection weights and bias values are set to small random non-zero values. 
Then, a new input vector u with N continuous valued elements is applied to the input and 
the output value is calculated in Step 2 by using the Eqs. (6.1.1) and (6.1.2). Notice that 
the connection weights are adapted only when an error occurs in step 4 that is when the 
calculated and the desired values are different. Weights remain unchanged if a correct 
decision is made by the perceptron.  The weight update equation given in this step 
includes a gain term η that ranges from 0.0 to 1.0 and controls the learning rate. If η is 
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not small enough, then oscillation may occur during weight adaptation. On the other 
hand, if η is too small then adaptation rate is very slow.    
 
Example 6.2: Figure 6.3 demonstrates how the line defined by the perceptrons 
parameters is shifted in time as the weights are updated. Although it is not able to 
separate the classes A and B with the initial weights assigned at time t=0, it manages to 
separate them at the end. 

 

 

 

 

 

 

 

 

 

 

Figure 6.3: Perceptron convergence 
 
In [Rosenblatt, 1959] it is proved that if the inputs presented from the two classes are 
separable, that is if they fall on the opposite sides of some hyperplane, then the 
perceptron convergence procedure always converge in time. Furthermore, it positions the 
final decision hyperplane such that it separates the samples of class A from those of class 
B. 
 
One problem with the perceptron convergence procedure is that the decision boundary 
may oscillate continuously when the distributions overlap or the classes are not linearly 
separable (Figure 6.4). 
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Figure 6.4. (a) Overlapping distributions (b) non linearly separable distribution 
 
 
The types of decision regions that can be formed by single and multilayer perceptrons 
with one and two layers of hidden layers are given in the Figure 6.5  [Lipmann 87]. 
 

 
Figure 6.5. Types of regions that can be formed by single and multi-layer perceptrons 

 (Adapted from Lippmann 87) 
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6.2 LMS Learning Rule 
 
A modification to the perceptron convergence procedure forms the Least Mean Square  
(LMS) solution for the case that the classes are not separable. This solution minimizes 
the mean square error between the desired output and the actual output of the processing 
element.  The LMS algorithm was first proposed for Adaline (Adaptive Linear Element) 
in [Widrow and Hoff 60].  The structure of Adaline is shown in the Figure 6.6. The part 
of the Adaline that executes the summation is called Adaptive Linear Combiner. 
 

Figure 6.6 Adaline 

 
The output function of the Adaline can be represented by the identity function as:  
 
 f(a)=a, (6.2.1)   
 
So the output can be written in terms of input and weights as:   
 

 x f a w uj j
j

N
= =

=
∑( )

0
 (6.2.2)      

       
where the bias is implemented via a connection to  a constant  input u0, which means that 
the input vector and the weight vector are of space R(N+1) instead of RN. 

 
The output equation of Adaline can be written as: 
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 x=wTu (6.2.3) 
 
where w and u are weight and input vectors respectively having dimension N+1. 
 
Suppose that we have a set of input vectors uk, k=1..K, each having its own desired 
output value yk. 
 
The performance of the Adaline for a given input value uk can be defined by considering 
the difference between the desired output yk and the actual output xk, which is called error 
and denoted as ε.  Therefore, the error for the input uk is as follows: 
 
 εk=yk-xk=yk-wTuk (6.2.4) 
 
The aim of the LMS learning is to adjust the weights through a training set {(uk,yk)}, 
k=1..K, such that the mean of the square of the errors is minimum. The mean square error 
is defined as: 
 

 ∑
=∞→
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k

k
K

k

k

1

212 )(lim)( εε  (6.2.5) 

 
where the notation <.> denotes the mean value. 
 
The mean square error can be rewritten as: 
 
                   < >=< − >( ) ( )ε k k ky2 2w uT   

                                    wuwuuw ><−>×<+>=<
TT kkkkk yy 2)( 2  (6.2.6) 

 
where  T denotes transpose and x is the outer vector product. 

 
Defining input correlation matrix R  [Widrow 85, Freeman 91] 
 

 R u u u u=< × > = < >k k k k T
 (6.2.7) 

 
and a vector P as  
 



Ugur HALICI                               ARTIFICIAL NEURAL NETWORKS                                CHAPTER 6 
 

EE543 LECTURE NOTES  .  METU EEE  .  ANKARA                                                                                                                     
 

100

 P u=< >yk k  (6.2.8)  
 
results in: 
 
 e( ) ( ) ( )w w R w P w=< >=< > + −εk ky2 2 2T T  (6.2.9) 
  
The optimum value w* for the weight vector corresponding to the minimum of the mean 
squared error can be obtained by evaluating the gradient of e(w).  The point which makes 
the gradient zero gives us the value of  w*.  That is:   
 

 ∇ = = − ==
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∗
e e( ) ( )w w
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Rw Pw w

w w

∂
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2 2 0 (6.2.10) 

 
Here, the gradient is 
 

 ∇ =e e e e( ) ...w ∂
∂

∂
∂

∂
∂w w wn1 2

T
 (6.2.11) 

 
and it is a vector extending in the direction of the greatest rate of change. The gradient of 
a function evaluated at some point is zero if the function has a maximum or minimum at 
that point. The error function is of the second degree so it is a paraboloid and it has a 
single minimum at point w*. 
 
When we set the gradient of the mean square error to zero, this implies that 
 
 Rw*=P (6.2.12) 
 
and then 
 
 w*=R-1P (6.2.13) 

 
 
6.3 Steepest Descent Algorithm. 
 
The analytical calculation of the optimum weight vector for a problem is rather difficult 
in general. Not only does the matrix manipulation get cumbersome for the large 
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dimensions, but also each component of R and P itself is an expectation value. Thus, 
explicit calculations of R and P require knowledge of the statistics of the input signal 
[Freeman 91].  A better approach would be to let the Adaline Linear Combiner to find the 
optimum weights by itself through a search over the error surface. Instead of having a 
purely random search, some intelligence is added to the procedure such that the weight 
vector is changed by considering the gradient of e(w) iteratively [Widrow 60], according 
to formula known as delta rule: 
 
 w(t+1)=w(t)+∆w(t) (6.3.1) 
 
where 
 
 ∆w(t)=-η∇e(w(t)) (6.3.2) 
 
In the above formula η is a small positive constant, determining the learning rate. 
 
For the real valued scalar function e (w) on a vector space w ∈ RN, the gradient ∇e(w) 
gives the direction of the steepest upward slope, so the negative of the gradient is the 
direction of the steepest descent . This fact is demonstrated in Figure 6.7 for a parabolic 
error surface on two dimensions. 

 
Figure 6.7 Direction of the steepest gradient descent on the paraboloid error surface on two-
dimensional weight space.  Only the equpotential curves of the error surface is shown instead of 
the 3D-error surface. 
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In Section 6.2 we have considered the linear output function in the derivation of the 
optimum weight w* for the minimum error. However in the general case, we should 
consider any nonlinearity f(.) at the output of the neuron. It should be noted that in such a 
case the error surface is no more a paraboloid, so it may have several local minima. 
 
For an input uk applied at time t, (εk(t))2 can be used as an approximation to <(εk)2>, 
where 
 
 εk(t)=yk-f(ak)=yk-f(w(t)Tuk) (6.3.3)  
 
Therefore, we obtain: 
 
 ∇<(εk)2> ~  ∇ (εk(t))2 = ∇(yk-f(ak))2 (6.3.4) 

 
With a differentiable function f(.) having derivative f'(.) it becomes 
 
 kkkkk aaftafy ∇′−=−∇ )()(2))(( 2 ε  (6.3.5) 

 
Since 
 
 ∇ak=∇w(t)Tuk=uk (6.3.6) 

 
Then the weight update formula becomes: 
 

 w(t+1)=w(t)+2ηεk(t) f'(ak)uk. (6.3.7) 
 
Notice that for Adaline's linear output function: 
 
 f ' (a)=1 (6.3.8) 
 
For sigmoid function it is: 
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The steepest descent algorithm based on least mean square error is summarized in the 
following:  
 

STEEPEST DESCENT ALGORITHM 
 
Step 1: Apply an input vector uk with an desired output value yk to the neuron's inputs 
Step 2: By considering uk and  using the current value of the weight vector determine the 

value of the activation ak: 
 
 ak=w(t)Tuk 
 
Step 3: Determine the value of the derivative of the output function using the  current  
 value of activation ak, that is: 

 
kaa

k

a
afaf

=

=
∂

∂ )()('  

 
Step 4: Determine the value of error εk(t) as: εk(t)= yk-f(ak) 
 
Step 5: Update the weight vector using the following update formula 
 
 w(t+1)=w(t)+2ηf'(ak)εk(t)uk 

 
 Step 6: Repeat steps 1-5 until  <εk(t)2> reduces to an acceptable level. 
 
 
The parameter η in the algorithm determines the stability and the speed of convergence 
of the weight vector towards the minimum error value. The value of η should be tuned 
well. If it is chosen too small this effects considerably the convergence time. On the other 
hand, if changes are too large, the weight vector may wander around the minimum as 
shown in the Figure 6.8, without being able to reach it.  
 
Notice that, the iterative weight update by the delta rule is derived by assuming constant 
uk. Therefore, it tends to minimize the error with respect to applied uk. In fact, we require 
the average error, that is: 
 

 ∑
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Figure 6.8. Inappropriate value of learning rate η may cause oscillations in the weight values 
without convergence 
 
 
to be minimum, and this implies that 
 

 ∑∑
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Therefore, the net change in wj after one complete cycle of pattern presentation is 
expected to be: 
 

 ∑
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However, this would be true that if the weights are not updated along a cycle, but only at 
the end. By changing the weights as each pattern is presented, we depart to some extend 
from the gradient descent in e.  Nevertheless, provided the learning rate is sufficiently 
small, this departure will be negligible and the delta rule will implement a very close 
approximation to gradient descent in mean squared error [Freeman 91]. 

fast 

slow 



Ugur HALICI                               ARTIFICIAL NEURAL NETWORKS                                CHAPTER 6 
 

EE543 LECTURE NOTES  .  METU EEE  .  ANKARA                                                                                                                     
 

105

 
6.4. The Backpropagation Algorithm 
 
6.4.1. Learning Single Layer Network 
 
Consider a single layer multiple output network as shown in the Figure 6.9. Here, we still 
have N inputs denoted uj, j=1..N, but M processing elements whose activations and 
outputs are denoted as ai and xi , i=1..M respectively. Here wji is used to denote the 
strength of the connection from the jth input to the ith processing element. In vector 
notation wji is the jth component of weight vector wi, while uj is the jth component of the 
input vector u. Let uk and yk to represent the kth input sample and the corresponding 
desired output vector respectively. 
 

Figure 6.9. Multiple output network 
 
Let the error observed at the output i be  
 
  ε i

k
i
k

i
ky x= −  (6.4.1) 

 
when uk is applied at the input. If the error is to be written in terms of the input vector uk 
and the weights wi, we obtain 
 
  ε i

k
i
k

i
ky f= − ( )w uT  (6.4.2) 

 
If we take partial derivative with respect to wji by applying the chain rule  
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where 
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and 

 

 
∂
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we obtain 
 

 ∂ε
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k
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k
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w
f a u= − ′( )  (6.4.6) 

 
If we define the total output error for input uk as the sum of the square of the errors at 
each neuron output, that is: 
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then partial derivative of the total error with respect to wji when uk is applied at the input 
can be written as: 
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which is 
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i
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By defining  
 
 δ εi

k
i
k kf a= ′( )  (6.4.10) 

 
it can be reformulated as 
 

 k
j

k
i

ji

k
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w

δ
∂
∂
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For the error to be minimum, the gradient of the total error with respect to the weights 
should be 
 
 ∇ =ek 0  (6.4.12)  
 
where 0 is the vector having N.M entries each having value zero. In other words, it 
should be satisfied:  
 

 ∂
∂

ek

jiw
for j 1 N i 1 M= = =0 .. , ..  (6.4.13) 

 
In order to reach the minimum of the total error, without solving the above equation, we 
apply the delta rule in the same way explained for the steepest descent algorithm: 
 
 w(t+1)=w(t)-η�ek (6.4.14) 
 
in which 
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that is  
 
 MiNjforutwtw k

j
k
ijiji ..1,..1)()1( ==+=+ ηδ  (6.4.16) 
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6.4.2. Multilayer Network 
 
Now assume that another layer of neurons is connected to the input side of the output 
layer. Therefore we have the input, hidden and the output layers as shown in Figure 6.10. 
In order to discriminate between the elements of the hidden and output layers we will use 
the subscripts L and o respectively. Furthermore, we will use h as the index on the hidden 
layer elements, while still using index j and i for the input and output layers. 
 

 
 
 
 
 
 
 
 
   

 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.10 Multilayer network 
 
In such a network, the output value of ith neuron of output layer can be written as: 
 
 x fi

k
o i L

k
o o
= ( )w xT  (6.4.17) 

 
where x L

k  being the vector of output values at hidden layer that is connected as input to 

the output layer. The value of the hth element in xL
k
 is determined by the equation: 
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fx uw T=  (6.4.18) 

Since 
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Lh uw∑

=

=
1

Tuw  (6.4.19) 

 
the partial derivative of the output of a neuron io of output layer with respect to hidden 
layer weight wjhL can be determined by applying the chain rule  
 

 
∂

∂

∂

∂

∂

∂

x

w

x

x

x

w
i
k

jh

i
k

h
k

h
k

ij

o

L

o

L

L

L

=  (6.4.20) 

 
By using Eq. (6.4.17) and (6.4.19) this can be written as 
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Then the partial derivative of the total error 
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with respect to the hidden layer weight w jhL

can be written as 
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It can be reformulated as 
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When defined 
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 δ δh
k

h
k

i
k

i

M
h iL L L o

o
L o

f a w= ′
=
∑( )

1
 (6.4.25) 

 
it becomes 
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δ
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j h
h
k

jw
u

L
L

= −  (6.4.26). 

 
Therefore, the weight update rule for the hidden layer  
 

 w t w t
wj h j h

k

jh
L L

L

( ) ( )+ = −1 η
∂
∂

e  (6.4.27) 

 
can be reformulated in analogy with the weight update rule of the output layer, as 
 
 w t w t uj h j h h

k
jL L L

( ) ( )+ = +1 ηδ  (6.4.28) 

 
This weight update rule may be generalized for the networks having several hidden 
layers as:  
 
 w t w t xj h j h h

k
jL L L L L L( ) ( ) ( )

( ) ( )
− − −

+ = +
1 1 1

1 ηδ . (6.4.29) 

 
where L and (L-1) are used to denote any hidden layer and its previous layer respectively.  
 
Furthermore, 
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where NL is the number of neurons at layer L. 
 
The backpropagation algorithm for multi-layered network is summarized in the 
following. 
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BACKPROPAGATION ALGORITHM FOR 

 MULTILAYERED FEEDFORWARD NEURAL NETWORK 
 

Step 0. Initialize weights: to small random values; 
 
Step 1. Apply a sample: apply to the input a sample vector uk having desired output 
 vector yk; 
 
Step 2. Forward Phase:  
       Starting from the first hidden layer and propagating towards the output layer: 
       2.1. Calculate the activation values for the units at layer L as: 
               2.1.1. If L-1 is the input layer 
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      2.1.2.  If L-1 is a hidden layer 
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     2.2. Calculate the output values for the units at layer L as:  
  )( k

LhL
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            in which use io instead of hL if it is an output layer 
 
Step 4. Output errors: Calculate the error terms at the output layer as: 
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Step 5.  Backward Phase Propagate error backward to the input layer through each 
 layer L using the error term 
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 in which, use io instead of  i(L+1) if  L+1 is an output layer; 
 
Step 6. Weight update: Update weights according to the formula  
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Step7.  Repeat steps 1-6 until the stop criterion is satisfied, which may be chosen as the 
            mean of the total error  
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             is sufficiently small. 


