
EE442 OPERATING SYSTEMS Lecture notes on UNIX by Uğur Halıcı

 23

CHAPTER 4
THE BOURNE SHELL

The start up file named “.profile” is run as you login to Bourne shell. You may change its
content as needed

$ cat .profile
TERM=vt100 #set terminal type
export TERM #copy to environment
ssty erase ”^?” kill ”^U” intr ”^C” eof ”^D” #set metacharacters
path=”.:/bin:/home122/bin” #set path

CREATING /ASSIGNING A VARIABLE

A variable is created and/or assigned value using the following syntax:

{name=value}+

$ firstName=Ugur lastName=Halici
$ echo $firstName $lastName
$ name=Ugur Halici ... syntax error
Halici:not found
$ name=”Ugur Halici”
$ echo $name
Ugur Halici

ACCESSING A VARIABLE

Variables can be accessed in several ways as explained below.

$name : replaced by the value of the variable name
${name} : same as above
${name-word} : replaced by the value of name if it was set, and word otherwise
${name+word} : replaced by word if name was set, and nothing otherwise
${name=word} : assigns word to name if it was not already set, and then is replaced by the value

of name
${name?word} : replaced by name if name was set, word is displayed at the standard error

channel. If word is omitted, then the standard error message is displayed
instead.

EE442 OPERATING SYSTEMS Lecture notes on UNIX by Uğur Halıcı

 24

$ verb=sing
$ echo I like $verbing ... there is no variable named verbing
I like
$ echo I like ${verb}ing
$

$ startDate=${startDate-`date`} #if not set, assign by `date`
$ echo $startDate
Tue May 12
$

$ echo x=${x=10}
x=10
$ echo $x
10
$

$ flag=1
$ echo ${flag+’flag is set’}
flag is set
$ echo ${flag2+’flag2 is set’} ... nothing to be displayed
$

$ total=10
$ value=${total?’total is not set’}
$ echo $value
10
$ value=${grandTotal?’grand total is not set’}
grandTotal: grand total is not set

$ cat script.sh
value=${grandTotal?’grand total is not set’}
echo done
$ script.sh
grandTotal: grand total is not set
$

Note that, script terminated when the access error occured, so “done” is not displayed

READING A VARIABLE FROM STANDARD INPUT

read {variable}+

reads one line from stndard input and then assigns sucessive words from the line to the specified
variables.

EE442 OPERATING SYSTEMS Lecture notes on UNIX by Uğur Halıcı

 25

$ cat script.sh
echo –n ”please enter your name:”
read name
echo your name is $name
$script.sh
please enter your name: ugur
your name is ugur
$script.sh
please enter your name: ugur halici
your name is ugur halici

$ cat script1.sh
echo –n ”please enter your name: ”
read firstname lastname #read two variables
echo your firstname is $firstname
echo your lastname is $lasttname
$ script1.sh
please enter your name: Ugur Halici
echo your firstname is Ugur
echo your lastname is Halici
$ script1.sh
please enter your name: Ugur
echo your firstname is Ugur
echo your lastname is
$ script1.sh
please enter your name: Ayse Nese Can
echo your firstname is Ayse
echo your lastname is Nese Can

EXPORTING VARIABLES

export {variable}*

The export command marks th specified variables for export to the environment. If no variables
are specified, a list of all the vriables marked for export during the shell session is displayed

env {variable=value}* [command]

The env command assigns values to specified environment variables, and then executes an
optional command using the new environment. If no varibles or command are specified, a list of
the current environment variables is displayed.

$ export
export term
$ DATABASE=/dbase/db
$ export DATABASE
$ export
export DATABASE

EE442 OPERATING SYSTEMS Lecture notes on UNIX by Uğur Halıcı

 26

export TERM
$ env
DATABASE=dbase/db
HOME=/home122/halici
LOGNAME=halici
PATH=.:/bin:/home122/bin
SHELL=/bin/sh
TERM=vt100
USER=halici
$ sh # create a new shell
$ echo $DATABASE
/dbase/db
$ ^D # terminate subshell
$

PREDEFINED LOCAL VARIABLES

Some predefined local variables in Bourne shell having special meaning are listed below:

$@ : an individually quated list of all the positional parameters
$# : the number of positional parameters
$? : the exit value of th last command
$! : the process id of the lst background command
$- : the current shell option assigned from the command line

$ cat script.sh
echo there are $# command line arguments: $@
$ script.sh nofile tmpfile
there are 2 command line arguments: nofile tmpfile

$ sleep 1000 &
29452
$ kill 29452
29452 terminated
$ sleep 1000 &
29455
$ kill $!
29455 terminated
$ echo $!
29455 ... the process id still remembered

EE442 OPERATING SYSTEMS Lecture notes on UNIX by Uğur Halıcı

 27

ARITHMETIC

expr expression

The command expr evaluates expression and sends the result to the standard output. All of
the components of the expression must be seperated by blanks, and allof the shell metacharacters
must be escaped by a \. In an expression the following operators may be used.

* / % : the number of positional parameters
+ - : the exit value of the last command
= \> \>= \< \<= != : the comparison operators
\& : logical “and”
\| : logical “or”

Escaped parantheses \(and \) may be used to explicitly control the order of evalution.

$ x=1
$ x=`expr $x + 1`
$ echo $x
2
$ x=`expr 2 + 3 * 5`
$ echo $x
17
$ echo `expr \(4 \> 5 \)` # Is 4>5 ?
0
$ echo `expr \(4 \> 5 \) \| \(6 \< 7 \)` # Is 4>5 or 6<7 ?
1

The following operators may be used in expressions reated to strings.

string : regularExp : returns the length of string if both sides match, returns 0

otherwise
match string regularExp : same as the previous one
sbstr string start length : returns the substring of string starting from start and consisting of

length characters
index string charlist : returns index of the first character in string that appears in charlist
length string : Returns length of string

Above regularExp is regular expression in which

. : matches any single character
[...] : matches any of the single character enclosed in brackets
[^...] : matches any of the single character which is not enclosed in brackets
* : zero or more occurances of the character that preceeds it

EE442 OPERATING SYSTEMS Lecture notes on UNIX by Uğur Halıcı

 28

$ echo `expr length ”cat”`
3
$ echo `expr substr ”monkey” 4 3`
key
$ echo `expr match ”transputer” ”.*lk”`
0
$ echo `expr match ”smalltalk” ”.*lk”`
9
$ echo `expr match ”smalltalk” ”a*lk”`
0

CONDITIONAL EXPRESSIONS

The utility test returns a 0 exit status if the given expression evaluates to true; it returns a
non-zero exit status otherwise. The exit status of the test command is typically used by the shell
control structures for branching purposes. The syntax is as follows:

test expression

or equivalently the following may be used instead of the above form

[expression]

The expression may be written in the following forms

str1=str2 : true if str1 is equal to str2
str1!=str2 : true if str1 is not equal to str2
string : true if string is not null
int1 –eq int2 : true if int1 is equal to int2
int1 –ne int2 : true if int1 is not equal to int2
int1 –gt int2 : true if int1 is greater than int2
int1 –ge int2 : true if int1 is greater or equal to int2
int1 –lt int2 : true if int1 is less than int2
int1 –le int2 : true if int1 is less or equal to int2
!expr : true if expr is false
expr1 –a expr2 : true if expr1 and expr2 are both true
expr1 –o expr2 : true if expr1 or expr2 is true
\(expr\) : escaped parantheses are used for grouing expressions

EE442 OPERATING SYSTEMS Lecture notes on UNIX by Uğur Halıcı

 29

CONTROL STRUCTURES

while ... do ... done

The while command executes the commands in list2 as long as the last command in list1
succeeds.

while list1
do
 list2
done

$ cat multish
x=1
do
 y=1
 while [$x –le $1]
 do
 echo –n `expr $x * $y` ” ”
 y=`expr $y + 1`
 done
 echo
 x=`expr $x + 1`
done
$ multi.sh 4
1 2 3 4
2 4 6 8
3 6 9 12
4 8 12 16
$

The following commands can be used to control loops

break: causes the loop to end immediately
loop: causes the loop jump immediately to the next iteration

until ... do ... done

The until command executes the commands in list2 as long as the last command in list1 fails.

until list1
do
 list2
done

$ cat until.sh
x=1
until [$x –gt] 3
do

EE442 OPERATING SYSTEMS Lecture notes on UNIX by Uğur Halıcı

 30

 echo x=$x
 x=`expr $x+1`
done
$ until.sh
x=1
x=2
x=3
$

case ..in ...esac

The case command supports multi-way branching based on the value of a single string and has
the following syntax

case expression in
pattern{|pattern}*)
list
;;
esac

$ cat menu.sh
#!/bin/sh
echo menu test program
stop=0
while test $stop –eq 0
do
cat <<ENDOFMENU
1: print the date
2,3: print the current working directory
4: exit
ENDOFMENU
echo
echo –n ’your choice?’
read reply
echo
case $reply in
”1”)
date
;;
”2”|”3”)
pwd
;;
”4”)
stop=1
;;
*)
echo illegal choice
;;
esac
done

EE442 OPERATING SYSTEMS Lecture notes on UNIX by Uğur Halıcı

 31

for ... do ... done

The for comman allows a list of commnds to be executed several times, using a differnt value of the loop
avriable during each iteration.

for name [in {word}*]
do
 list
done

The for command loops the value of the variable name through each word in the word list,
evaluating the commands list after each iteration. İf no word list is supplied, $@ (i.e. all
positional parameters) is used instead.

$ cat for.sh
for color in red yelow blue
do
 echo one color is $color
done
$ for.sh
one color is red
one color is yellow
one color is blue

if ... then ... fi

The if command supports nsted conditionl branches, and has the
following syntax

if list1
then
 list2
elif
 list3 ... optional, elif part can be repeted several imes
then
 list4
else
 list5 ...else part may be omitted
fi

$ cat if.sh
echo –n ’enter a number:’
read number
if [$number –lt 0]
then
 echo negative
elif [$number –eq 0]

EE442 OPERATING SYSTEMS Lecture notes on UNIX by Uğur Halıcı

 32

then
 echo zero
else
 echo positive
fi
$ if.sh
enter a number: 1
positive
$ if.sh
enter a number: -1
negative
$

trap

The trap command allows you to specify a command that should be executed when the shell
receives a signal of a particular type. The syntax is as follows:

trap [[command] {signal}+]

$ cat trap.sh
trap ’echo control-C is pressed;exit 1’ 2 #trap control-C signal 2
while [1 –eq 1]
do
 echo infinite loop
 sleep 3
done
$ trap.sh
infinite loop
^C
cotrol-C is pressed
$

