
EE442 Operating Systems Ch. 4 Virtual Memory

Lecture Notes by Uğur Halıcı 34

Chapter 4
Virtual Memory

All the memory management policies we have discussed so far, try to keep a number of
processes in the memory simultaneously to allow multiprogramming. But they require an
entire process to be loaded in the memory before it can execute.

With the virtual memory technique, we can execute a process which is only partially loaded
in memory. Thus, the logical address space may be larger than physical memory, and we
can have more processes executing in memory at a time, hence a greater degree of
multiprogramming.

4.1 Demand Paging

Demand paging is the most common virtual memory management system. It is based on the
locality model of program execution. As a program executes, it moves from locality to
locality.

Locality is defined as a set of pages actively used together. A program is composed of
several different localities which may overlap. For example, a small procedure when called,
defines a new locality. A while-do loop when being executed defines a new locality.

As a program executes, it moves from locality to locality.

Procedural languages with while-do, repeat-until, for-do structures (i.e. Pascal, Algol, C, etc.)
have less frequently changing localities than other high-level languages with go-to structure
(i.e. Basic, Fortran).

In demand paging, programs reside on a swapping device commonly known as the backing
store. The backing store, for most of today’s operating systems is a disk.

When the operating system decides to start a new process, it swaps only a small part of this
new process (a few pages) into memory. The page table of this new process is prepared and
loaded into memory, and the valid/invalid bits of all pages that are brought into memory are
set to “valid”. All the other valid/invalid bits are set to “invalid” showing that those pages are
not brought into memory.

If the process currently executing tries to access a page which is not in the memory, a page
fault occurs, and the OS brings that page into the memory. If a process causes page fault
then the following procedure is applied:

1. Trap the OS.
2. Save registers and process state for the current process.
3. Check if the trap was caused because of a page fault and whether the page reference is

legal.

EE442 Operating Systems Ch. 4 Virtual Memory

Lecture Notes by Uğur Halıcı 35

4. If yes, determine the location of the required page on the backing store
5. Find a free frame.
6. Read (swap in) the required page from the backing store into the free frame. (During

this I/O, the processor may be scheduled to some other process)
7. When I/O is completed, restore registers and process state for the process which

caused the page fault and save state of the currently executing process.
8. Modify the corresponding page table entry to show that the recently copied page is now

in memory.
9. Resume execution with the instruction that caused the page fault.

While executing a process, in the case of a page fault, the OS finds the desired page on the
backing store and if there is no free frames, the OS must choose a page in the memory
(which is not the one being used) as a victim, and must swap it out (slow) to the backing
store.

Then, the OS changes the valid/invalid bit for the victim page in the page table to indicate
that it is no longer in memory. It swaps the desired page into newly freed frame, modifies the
frame table, and sets the valid/invalid bit of the new page to valid. The executing process
may now go on.

This operations can be summarized as:

1. Checking the address and finding a free frame or victim page (fast)
2. Swap out the victim page to secondary storage (slow)
3. Swap in the page from secondary storage (slow)
4. Context switch for the process and resume its execution (fast)

In servicing a page fault, the time is spent mainly for swap-out and swap-in. The time
required for other operations are negligible.

Virtual memory can be implemented in:

• paging systems
• paged segmentation systems
• segmentation systems (However, segment replacement is much more sophisticated

than page replacement since segments are of variable size.)

4.2. Performance Calculation of Demand Paging System

If there is no page fault, effective access time is effective memory acces time is

eatNO-PF = emat

If there is a page fault, we have

eatPF = pfst + emat ≅ pfst

where pfst is page fault service time. Since emat is very small compared to pfst it can be
ignored.

Now, let p be the probability for a page fault (0 ≤ p ≤ 1) to occur. Then, the effective access
time must be calculated as follows:

EE442 Operating Systems Ch. 4 Virtual Memory

Lecture Notes by Uğur Halıcı 36

 eat = p * eat PF + (1 – p) * eatNO-PF
 ≅ p * pfst + (1 – p) * emat

Example 3.1:

Effective memory access time for a system is given as 1 microseconds, and the average
page fault service time is given as 10 milliseconds. Let p=0.001. Then, effective access time
is

eat = 0.001 * 10 msec +(1 – 0.001) * 1 µsec
 = 0.001 * 10 000 µsec + 0.999 * 1 µsec
 ≅ 10 µsec + 1 µsec = 11 µsec

4.3 Dirty bit

In order to reduce the page fault service time, a special bit called the dirty bit can be
associated with each page.

The dirty bit is set to "1" by the hardware whenever the page is modified. (written into).

When we select a victim by using a page replacement algorithm, we examine its dirty bit. If it
is set, that means the page has been modified since it was swapped in. In this case we have
to write that page into the backing store.

However if the dirty bit is reset, that means the page has not been modified since it was
swapped in, so we don't have to write it into the backing store. The copy in the backing store
is valid.

Let the probability of a page being dirty be d. In this case effective access time becomes:

eat = p * ((1-d) * swap_in + d * (swap_in + swap_out)) + (1 – p) * emat

4.4 Page Replacement Algorithms

A page replacement algorithm determines how the victim page (the page to be replaced) is
selected when a page fault occurs. The aim is to minimize the page fault rate.

The efficiency of a page replacement algorithm is evaluated by running it on a particular
string of memory references and computing the number of page faults.

Reference strings are either generated randomly, or by tracing the paging behavior of a
system and recording the page number for each logical memory reference.

The performance of a page replacement algorithm is evaluated by running it on a particular
string of memory references and computing the number of page faults.

Consecutive references to the same page may be reduced to a single reference, because
they won't cause any page fault except possibly the first one:

(1,4,1,6,1,1,1,3) (1,4,1,6,1,3).

EE442 Operating Systems Ch. 4 Virtual Memory

Lecture Notes by Uğur Halıcı 37

We have to know the number of page frames available in order to be able to decide on the
page replacement scheme of a particular reference string. Optionally, a frame allocation
policy may be followed.

4.4.1 Optimal Page Replacement Algorithm (OPT)

In this algorithm, the victim is the page which will not be used for the longest period. For a
fixed number of frames, OPT has the lowest page fault rate between all of the page
replacement algorithms, but there is problem for this algorithm. OPT is not possible to be
implemented in practice. Because it requires future knowledge. However, it is used for
performance comparison.

Example 4.2

Assume we have 3 frames and consider the reference string below.

Reference string: 5, 7, 6, 0, 7, 1, 7, 2, 0, 1, 7, 1, 0

Show the content of memory after each memory reference if OPT page replacement
algorithm is used. Find also the number of page faults

 5 7 6 0 7 1 7 2 0 1 7 1 0
f1 5 5 5 0 0 0 0 0 0 0 0 0 0
f2 7 7 7 7 7 7 2 2 2 7 7 7
f3 6 6 6 1 1 1 1 1 1 1 1
pf 1 2 3 4 same 5 same 6 same same 7 same same

According to the given information, this algorithm generates a page replacement scheme
with 7 page faults.

4.4.2 First-In-First-Out (FIFO)

This is a simple algorithm, and easy to implement. The idea is straight forward: choose the
oldest page as the victim.

Example 4.3

Assume there are 3 frames, and consider the reference string given in example 4.2. Show
the content of memeory after each memory reference if FIFO page replacement algorithm is
used. Find also the number of page faults

5 7 6 0 7 1 7 2 0 1 7 1 0
f1 5 5 5 0 0 0 0 2 2 2 7 7 7
f2 7 7 7 7 1 1 1 0 0 0 0 0
f3 6 6 6 6 7 7 7 1 1 1 1
pf 1 2 3 4 same 5 6 7 8 9 10 same same

10 page faults are caused by FIFO

EE442 Operating Systems Ch. 4 Virtual Memory

Lecture Notes by Uğur Halıcı 38

Belady’s Anomaly

Normally, one would expect that with the total number of frames increasing, the number of
page faults decreases. However, for FIFO, there are cases where this generalization fails.
This is called Belady’s Anomaly.

As an exercise consider the reference string below. Apply the FIFO method and find the
number of page faults considering different number of frames. Then, examine whether the
replacement suffer Belady’s anomaly.

Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

4.4.3 Least Recently Used (LRU)

In this algorithm, the victim is the page that has not been used for the longest period. So, this
algorithm makes us be rid of the considerations when no swapping occurs.

The OS using this method, has to associate with each page, the time it was last used which
means some extra storage. In the simplest way, the OS sets the reference bit of a page to
"1" when it is referenced. This bit will not give the order of use but it will simply tell whether
the corresponding frame is referenced recently or not. The OS resets all reference bits
periodically.

Example 4.4

Assume there are 3 frames, and consider the reference string given in example 4.2. Show
the content of memory after each memory reference if LRU page replacement algorithm is
used. Find also the number of page faults

5 7 6 0 7 1 7 2 0 1 7 1 0
f1 5 5 5 0 0 0 0 2 2 2 7 7 7
f2 7 7 7 7 7 7 7 7 1 1 1 1
f3 6 6 6 1 1 1 0 0 0 0 0
pf 1 2 3 4 same 5 same 6 7 8 9 same same

This algorithm resulted in 9 page faults.

4.5 Frame Allocation

In order to be able to decide on the page replacement scheme of a particular reference
string, we have to know the number of page frames available

In page replacement, some frame allocation policies may be followed.

• Global Replacement: A process can replace any page in the memory.

• Local Replacement: Each process can replace only from its own reserved set of

allocated page frames.

In case of local replacement, the operating system should determine how many frames
should the OS allocate to each process. The number of frames for each process may be
adjusted by using two ways:

EE442 Operating Systems Ch. 4 Virtual Memory

Lecture Notes by Uğur Halıcı 39

• Equal Allocation: If there are n frames and p processes, n/p frames are allocated to

each process.

• Proportional Allocation: Let the virtual memory size for process p be v(p). Let there

are m processes and n frames. Then the total virtual memory size will be: V = Σv(p).
Allocate (v(p) /V) * n frames to process p.

Example 4.5

Consider a system having 64 frames and there are 4 processes with the following virtual
memory sizes: v(1) = 16, v(2) = 128, v(3) = 64 and v(4) = 48.

Equal Allocation: Assume that there are n frames, and p processes, then n/p frames are
allocated to each process allocates 64 / 4 = 16 frames to each process.

Proportional Allocation: V = 16 + 128 + 64 + 48 = 256. It allocates:

 (16 / 256) * 64 = 4 frames to process 1,

(128 / 256) * 64 = 32 frames to process 2,
(64 / 256) * 64 = 16 frames to process 3,
(48 / 256) * 64 = 12 frames to process 4.

4.6.Thrashing

A process is thrashing if it is spending more time for paging in/out (due to frequent page
faults) than executing.

Thrashing causes considerable degradation in system performance. If a process does not
have enough number of frames allocated to it, it will issue a page fault. A victim page must
be chosen, but if all pages are in active use. So, the victim page selection and a new page
replacement will be needed to be done in a very short time. This means another page fault
will be issued shortly, and so on and so forth.

In case a process thrashes, the best thing to do is to suspend its execution and page out all
its pages in the memory to the backing store.

Local replacement algorithms can limit the effects of thrashing. If the degree of
multiprogramming is increased over a limit, processor utilization falls down considerably
because of thrashing.

 Processor
 Utilization Thrashing

 Degree of multiprogramming

To prevent thrashing, we must provide a process as many frames as it needs. For this, a
model called the working set model is developed which depends on the locality model of
program execution. But here we only mention its name and skip its details to limit the scope.

EE442 Operating Systems Ch. 4 Virtual Memory

Lecture Notes by Uğur Halıcı 40

4.7 Working Set Model

To prevent thrashing, we must provide a process as many frames as it needs. For this, we
shall use the working set model, which depends on the locality model of program execution,
discussed earlier.

We shall use a parameter, ∆, called the working set window size. We shall examine the last
∆ page references.

The set of pages in the last page references shall be called the working set of a process.

Example 4.6 : Assume ∆ = 10 , and consider the reference string given below, on which
the window is shown at difeferent time instants

 2 2 1 5 7 7 7 7 5 1 3 4 4 4 3 4 3 4 4 4

 t1 t2 t3

Working sets of this process at these time instants will be:

WS(t1) = {2,1,5,7}
WS(t2) = {7,5,1,3,4}
WS(t3) = {3,4}

Note that in calculating the working sets, we do not reduce consequent references to the
same page to a single reference. Choice of ∆ is crucial. If ∆ is to small, it will not cover the
entire working set. If it is too large, several localities of a process may overlap. Madnick and
Donovan suggested ∆ to be about 10.000 references.

Now, compute the WS size (WSS) for each process, and find the total demand, D of the
system at that instance in time, as the summation of all the WS sizes.

 D(tnow)=∑
=

p

i 1
WSSi(tnow)

If the number of frames is n, then

a. If D > n , the system is thrashing.
b. If D < n, the system is all right, the degree of multiprogramming can possibly be

increased.

In order to be able to use the working set model for virtual memory management, the OS
keeps track of the WS of each process. It allocates each process enough frames to provide
it with its WS.

If at one point D > n, OS selects a process to suspend. The frames that were used by the
selected process are reallocated to other processes.

We can also use the page fault frequency to decide on decreasing or increasing the no. of
frames allocated to a process.

EE442 Operating Systems Ch. 4 Virtual Memory

Lecture Notes by Uğur Halıcı 41

QUESTIONS

1. Consider a demand paging system with associative registers.

a. If the hit ratio for the system is 80%, register access time is 50 nanoseconds and the main
memory access time is 950 nanoseconds, calculate the effective memory access time
(emat). Assume that associative registers can be loaded in parallel with an access to the
main memory.

b. Let the probability of a page fault be 0.005 and calculate the effective access time if the
page fault service time is given as 5 msec. Use the emat calculated in part 'a'.

2. Consider a demand paging system. assume working set window is 7, and the following
reference string is given for process P:

1, 2, 1, 4, 3, 4, 1, 2, 1, 4, 5, 2, 5, 3, 5, 2, 3
 tnow

a. What is the current working set of this process?

b. What is the current working set size of this process?

c. What happens if the summation of working set sizes for all the currently executing
processes is larger than the total number of frames in the memory?

d. What would you suggest to solve the problem in 'c'?

3. The following reference string is given for a process executing in a demand paging system
which uses FIFO page replacement algorithm:

4, 3, 2, 1, 4, 3, 5, 4, 3, 2, 1, 5

a. If there are three memory frames allocated to these process, give a picture of all pages in
memory for the given reference string, after each page fault.

b. Repeat part 'a' for four memory frames.

c. Comment on the total number of page faults in part 'a' and part 'b'.

4. Consider a demand paging system with the following observed average device utilization
values:

processor utilization = 30%
disk utilization = 95%
I/O devices utilization = 10%

Discuss whether the following measures can improve the processor utilization: (considering
them one by one)

a. Replace the processor with a slower one.

b. Replace the processor with a faster one.

EE442 Operating Systems Ch. 4 Virtual Memory

Lecture Notes by Uğur Halıcı 42

c. Replace the disk with a faster one.

d. Increase the degree of multiprogramming.

e. Decrease the degree of multiprogramming.

f. Replace the I/O devices with faster ones.

5. In a demand paging system, the page replacement policy is: examine each page in
memory regularly, and swap those pages, which have not been used since the last
examination, to disk. Discuss whether this policy would result in better performance than
LRU page replacement policy or not.

6. Consider a demand paging system. The effective memory access time is 8000
nanoseconds. It takes 9 milliseconds to service a page fault if a free frame is found in
memory, or the page to be replaced is not dirty, and takes 22 milliseconds to service a page
fault if there are no free frames and the victim page is dirty. In 7 out of every 10 page faults,
a victim page has to be chosen and in 5 of these 7 cases, the victim page is dirty. What is
the acceptable page fault rate for this system in order to achieve an effective access time of
no more than 2 milliseconds ?

7. In a virtual memory system, what determines the size of a logical address space? What
determines the size of a physical address space? What (if any) relationship is there between
them?

8. A working set window is the most recent k page references made by a process. Assume
the most recent page references of a process are :

 ..., 6, 5, 3, 3, 4, 3, 2, 1, 4, 2 and ∆ is 7.

a. What is the current working set window of this process?

b. What is the current working set of this process?

9. a. Explain how the LRU page replacement algorithm works.

b. Why do we need extra hardware such as a dirty bit and a reference bit in order to
implement the LRU page replacement algorithm in a demand paging system?

c. A demand paging system with 4 page frames uses the LRU algorithm for page
replacement. Give a diagram of all pages in memory after each page fault, for the following
reference string:

 2,4,5,4,5,9,2,7,4,8,9,1,6,2,2,5,3,8

d. In a demand paging system, why is it generally more desirable to replace an unmodified
page than a modified one?

e. Under what circumstances might it be more desirable to replace a modified page?

10. An n_bit counter is associated with each frame in a virtual memory system with f frames
to implement demand paging. Every time any page is referenced by a process , a '1' is
shifted into the most significant bit of the counter associated with the referenced page and

EE442 Operating Systems Ch. 4 Virtual Memory

Lecture Notes by Uğur Halıcı 43

zeros are shifted into the counters of all other frames allocated to the referencing process.
This operation simply discards the least significant bit. The lowest numbered frame with the
lowest counter value is replaced in case of a page fault.

a. With this implementation, show the frame contents after each page reference for the
following reference string for n=2 (i.e. 2 bit counters) and f=4. Assume that initially all frames
are empty with counters=00. There is only one process.

Reference string: 4,3,4,7,2,3,5,8.

b. If this implementation is to be used in a multiprogramming environment with local page
replacement and equal allocation, give an expression for the maximum sensible allocation,
a, per process, in terms of n and f. Also give an expression for the minimum
multiprogramming degree p so that this implementation to function exactly as LRU. Explain
your reasoning.

c. How would your answer to part b. change if the underlined word lowest is changed to
highest in the explanation above ?

11. In each of the following cases, show the memory contents for the given page reference
string, initial memory contents and page replacement policy:

a. Assume that there is single process in the system.

 Page reference string: 1,6,1,4,1,2,5,7,3
 Initial memory contents
 Frame no: 1 2 3 4
 Content:: 4 8 3 5

Apply OPT policy.

b. Assume that there are two process in the system say A and B.

Page reference string: A4, A8, B2, B3, A3, B1, A5, A7, B3, B8, B7, B1, A4, A3
Initial memory contents

Frame no: 1 2 3 4
 Content: A5 A2 B3 B4

Apply local OPT policy with equal frame allocation

c. Same as b. with global OPT policy

d. Same as b. with local LRU policy

e. For the cases b., c. and d., calculate the average access time if total of page swap in and
swap out time is 40 msec, memory access time is 10 µsec and an average of 100 accesses
are made to a page once it is called.

12. A working set demand paging algorithm with window size = 4, (that is, the last 4 page
references of each process constitute the windows of those processes) is to be applied on
the reference string

time: 1 2 3 4 5 6 7 8 9 10 11 12 13 14
ref: A3 B1 A1 A2 B3 B4 A3 A4 B2 B4 A1 A3 A1 B2

EE442 Operating Systems Ch. 4 Virtual Memory

Lecture Notes by Uğur Halıcı 44

Assuming that this working set size correctly reflects program locality characteristics,

a. write the working sets
i. for t=9
ii. for t=14

b. Under the conditions and at the time instants in part a. should the operating system
increase the multiprogramming degree, or decrease it to improve CPU utilization? Why?

c. Answer part b. if real memory is extended to 7 frames.

13. In a demand paging system with equal local frame allocation policy, a process is
allocated f frames. All these f frames were initially empty. The process has a page reference
string length=s. There are exactly n distinct page numbers in this string. consider OPT, LRU,
and FIFO page replacement algorithms.

a. If n<= f,

i. What is the minimum number of page faults for this process with this reference
string? With which page replacement policy(ies) can this minimum number of page
faults be achieved?

ii. What is the maximum number of page faults for this process with this reference
string? Which page replacement policy(ies) may cause this many page faults?

b. If n>f, repeat i. and ii. of part a..

14. Consider a demand paging system with 3 frames in memory. Page replacement policy is
LRU, and a global replacement is done. However, it is given that each process needs at
least one page in memory for execution. There are two processes, P1 and P2 executing in
the system. Assume the following reference string is given.

(1,4,r) (1,4,w) (1,2,r) (1,3,w) (2,1,r) (2,1,w) (2,2,r) (2,3,w) (1,4,r) (1,2,w) (1,3,r) (2,1,w)

where it means :

 (i,j,r): i'th process references page j for a read.
 (i,j,w): i'th process references page j for a write.

Find and indicate the page faults caused by this string, and after each page fault, show the
page tables for P1 and P2, indicating the values of valid/invalid and the dirty bits. Assume
both processes have 5 pages.

Initially assume that all the 3 frames are empty. Also assume that the processes have not
completed their execution at the end of the given reference string.

Is this system trashing? If yes, what is the minimum number of frames this system should
have to execute this reference string of P1 and P2 efficiently?

EE442 Operating Systems Ch. 4 Virtual Memory

Lecture Notes by Uğur Halıcı 45

15. Consider a computer system which uses demand paging system. Assume the system
also has associative registers to implement the page table. Given :

 Associative register access time=100 nanoseconds
 Main memory access time = 300 nanoseconds
 Hit ratio in associative registers =80%.
 Page fault ratio = 0.1%
 Page-fault service time= 200 000 nanoseconds

a. What is the total memory access time if there is a hit in associative registers and no page
fault?

b. What is the total memory access time if there is a miss in associative registers but no
page fault?

c. What is the effective memory access time, no page fault?

d. What is the effective access time when page faults are considered?

16. In a system having 4 frames, consider the following page references of process A and B.

time: 1 2 3 4 5 6 7 8 9 10 11 12
ref: A1 A2 B1 B2 A1 A3 B3 B1 A1 A3 B1 B4

Show the content of memory, and indicate whenever there is a page fault if

a. FIFO algorithm is used with global replacement
b. FIFO algorithm is used with local replacement with equal allocation
c. repeat a. with LRU
d. repeat b. with LRU

17. A working set demand paging algorithm with window size=4 (that is, last 4 page
references of each process constitute the windows of those processes) is to be applied on
the reference string

time: 1 2 3 4 5 6 7 8 9 10 11 12
ref: A1 A2 B1 B2 A1 A3 B3 B1 A1 A3 B1 B4

a. write the working sets

i. for t=8, ii. for t=12.

b. if the system has 4 frames, decide on if the system is trashing or not for

i. t=8, and ii. t=12

EE442 Operating Systems Ch. 4 Virtual Memory

Lecture Notes by Uğur Halıcı 46

18. Consider a computer system having virtual memory with paging. Assume that the
system also has the associative registers. Let:

associative register access time=50 nanosec
memory access time=350 nanosec
hit ratio=90%
swap_in= 100000 msec
swap_out= 200000 msec

a. calculate effective memory access time if no page fault occurs

b. calculate effective access time if page-fault rate=0.001

c. calculate effective access time if dirty bit is used, and the probability for a page being dirty
is %60

19. In a system using working set model for frame allocation, explain what happens if the
window size is chosen

a. smaller than the proper size

b. larger than the proper size

