

MATH 420 “Point Set Topology”

Set #3 SOLUTIONS

Section 17:

P4: If U is open in X and A is closed in X , then $X - U$ is closed in X and $X - A$ is open in X . Thus, $U - A = U \cap (X - A)$ is the intersection of two open sets, and hence is open. Also $A - U = A \cap (X - U)$ is the intersection of two closed sets, and hence is closed.

P12: Let A be a subspace of X , X Hausdorff. Given $a, b \in A$ distinct points, since X is Hausdorff we can find U, V open in X , $U \cap V = \emptyset$, $a \in U$, $b \in V$. Then $U' = U \cap A$, $V' = V \cap A$ are open in A , $a \in U'$, $b \in V'$ and $U' \cap V' = \emptyset$. Thus, A is Hausdorff.

P13: X Hausdorff $\Rightarrow \Delta$ closed in $X \times X$: Let (a, b) be in $X \times X - \Delta$, then $a \neq b$ in X . Since X is Hausdorff, we can find U nbhd of a and V nbhd of b such that $U \cap V = \emptyset$. Then $(a, b) \in U \times V$ open in $X \times X$. Also note that if $(z, z) \in U \times V$, then $z \in U \cap V$, a contradiction to U, V being disjoint so $U \times V \subset X \times X - \Delta$. Thus, we see that $X \times X - \Delta$ is open. Hence, Δ is closed.

Δ closed in $X \times X \Rightarrow X$ Hausdorff: Δ closed in $X \times X$ implies that $X \times X - \Delta$ is open. Now if $a, b \in X$ are distinct, then $(a, b) \in X \times X - \Delta$. But since $X \times X - \Delta$ is open we can find basis set $U \times V$ such that $(a, b) \in U \times V \subset X \times X - \Delta$. Since $U \times V$ does not intersect Δ we conclude that U and V are disjoint open sets of X . Since $a \in U$ and $b \in V$, we conclude that X is indeed Hausdorff.

P16: (a) *Standard topology:* $\text{closure}(K) = K \cup \{0\}$.
K-topology: $\text{closure}(K) = K$. (To see this, note that

$$\mathbb{R} - K = [(-100, 100) - K] \cup (99, \infty) \cup (-\infty, -99)]$$

and these three pieces are open in the *K*-topology so $\mathbb{R} - K$ is open in the *K*-topology, and so K is closed in the *K*-topology.)

Finite complement topology: $\text{closure}(K) = \mathbb{R}$. This is because if $a \in \mathbb{R}$, then a nbhd of a in the finite complement topology is of the form $\mathbb{R} - F$, F a finite set. Since K is infinite we see $\mathbb{R} - F$ must intersect K and so every nbhd of a intersects K , so $a \in \text{closure}(K)$.

Upper limit topology: $\text{closure}(K) = K$.

$$\mathbb{R} - K = (-\infty, 0] \cup \bigcup_{n \in \mathbb{Z}_+} A_n \cup (1, \infty)$$

where $A_n = (1/(n+1), 1/n)$. Each of these pieces is open in the upper limit topology (which is finer than the standard topology) and so $\mathbb{R} - K$ is open in the upper limit topology and so K is closed in this topology.

Ray topology, basis $(-\infty, a)$: $\text{closure}(K) = \{x \in \mathbb{R} | x \geq 0\}$. If $b \in \mathbb{R}, b \geq 0$ and $b \in (-\infty, a)$, then $a > b$ and so $a > 0$. Thus, $(-\infty, a)$ intersects K . So $b \in \text{closure}(K)$. On the other hand, if $b < 0$, then $b \in (-\infty, b/2)$ which is disjoint from K , so b is not in $\text{closure}(K)$.

(b) Note that Hausdorff $\Rightarrow T_1$. Standard Topology: Hausdorff.
K-topology: Hausdorff (finer than standard).

Finite complement topology: T_1 but not Hausdorff. This is since $\{x\}$ has complement $\mathbb{R} - \{x\}$ which is open in finite complement topology since $|\{x\}| = 1$ is finite. Thus, $\{x\}$ is closed in this topology. On the other hand, given a, b distinct, U nbhd of a , V nbhd of b in this topology, then $U = \mathbb{R} - F$, $V = \mathbb{R} - F'$ where F, F' are finite. Since $F \cup F'$ is finite and \mathbb{R} is infinite there must be $x \in \mathbb{R} - (F \cup F')$, and this x will be in both U and V , so U and V intersect. Thus, this topology is not Hausdorff.

Upper Limit Topology: Hausdorff (finer than standard.)

Ray topology: Neither. It is not T_1 since if $\{x\}$ is a point, then $\mathbb{R} - \{x\} = (-\infty, x) \cup (x, \infty)$, and if $y \in (x, \infty)$, no basis element around y lies inside $\mathbb{R} - \{x\}$. Thus, $\mathbb{R} - \{x\}$ is not open in this topology and so $\{x\}$ is not closed in this topology. If a space is not T_1 , it cannot be Hausdorff. (contrapositive of the statement at the top of this question's solution)

P18: $\text{Closure}(A) = A \cup \{((0, 1))\}$. $\text{Closure}(B) = B \cup \{((1, 0))\}$.

$\text{Closure}(C) = C \cup \{((x, 1)) | 0 \leq x < 1\} \cup \{((1, 0))\}$.

$\text{Closure}(D) = D \cup \{((x, 1)) | 0 \leq x < 1\} \cup \{((x, 0)) | 0 < x \leq 1\}$.

$\text{Closure}(E) = E \cup \{((1/2, 1)), ((1/2, 0))\}$.

P20: (a) $\text{Int}(A) = \emptyset$, $\text{Boundary}(A) = A$.

(b) $\text{Int}(B) = B$, $\text{Boundary}(B) = (\text{y-axis}) \cup (\text{nonnegative x-axis})$

(c) $\text{Int}(C) = \{((x, y)) | x > 0\}$, $\text{Boundary}(C) = (\text{y-axis}) \cup (\text{negative x-axis})$.

(d) $\text{Int}(D) = \emptyset$, $\text{Boundary}(D) = \mathbb{R}^2$.

(e) $\text{Int}(E) = \{((x, y)) | 0 < x^2 - y^2 < 1\}$,

$\text{Boundary}(E) = \{((x, y)) | x^2 - y^2 = 1 \text{ or } 0\}$.

(f) $\text{Int}(F) = \{((x, y)) | x \neq 0, y < 1/x\}$,

$\text{Boundary}(F) = (\text{y-axis}) \cup \{((x, y)) | x \neq 0, y = 1/x\}$.