STABILITY THEORY OF DYNAMIC SYSTEMS

METU EE555 - FALL 2025

Instructor: Emre Tuna; E113

Web: http://users.metu.edu.tr/etuna/ee555/

Scope: This course aims to cover some of the standard methods used in the stability analysis of nonlinear systems.

Prerequisite: Some knowledge of Linear Systems (EE502) is assumed.

Textbook: H.K. Khalil. Nonlinear Systems (Third Edition). Prentice Hall, 2002.

Tentative course outline:

- I. Basic concepts
 - Examples of nonlinear models
 - Second-order systems: phase plane, multiple equilibria, limit cycles
 - Fundamental properties of differential equations: existence/uniqueness, finite escape time
- II. Lyapunov Theory
 - Lyapunov functions
 - Linearization
 - Invariance principle
 - Converse theorems
- III. Various design and analysis tools
 - Backstepping
 - Input-to-state stability
 - *L*-stability
 - Small-gain theorem
 - Passivity
- IV. Discrete-time systems
 - Lyapunov Theory
 - Deadbeat observer