irst name:
ast name:
tudent ID:
ignature.

Read before you start:

- There are four questions.
- $\bullet\,$ The examination is closed-book.
- No computer/calculator is allowed.
- The duration of the examination is 100 minutes.
- Besides correctness, the CLARITY of your presentation will also be graded.

Q1	$\mathbf{Q2}$	$\mathbf{Q3}$	$\mathbf{Q4}$	Total

Consider the following second-order system

$$\dot{x}_1 = x_1 + (1 + x_1^2)x_2
\dot{x}_2 = u$$

where u is the control input. Using backstepping, design a state feedback law $\phi: \mathbb{R}^2 \to \mathbb{R}$ such that the origin of the closed-loop system (obtained by letting $u = \phi(x_1, x_2)$) is globally asymptotically stable.

Consider the following system

$$\dot{x} = Ax + Bu
y = B^T Px$$

where $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times m}$ make a controllable pair (A, B). The matrix $P \in \mathbb{R}^{n \times n}$ is symmetric positive definite and satisfies $A^T P + PA = 0$.

- (a) Is this system passive? Explain.
- (b) Is this system zero state observable? Explain.
- (c) Find (if possible) an output feedback $u = \phi(y)$ such that the origin of the resulting closed-loop system is globally asymptotically stable.

Consider the following second-order system.

$$\dot{x}_1 = -x_1(1-\sin x_2)
\dot{x}_2 = -x_2 + u$$

- (a) Show that the origin of the unforced (u=0) system is globally asymptotically stable.
- (b) Show that under bounded input the state remains bounded.
- (c) Show that the system is not input-to-state stable. Hint: Consider $u(t) \equiv \frac{\pi}{2}$ with $x_2(0) = \frac{\pi}{2}$.

Consider the below systems where a and b are positive constants.

$$\mathcal{H}_1: \begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -ax_1^2x_2 - x_1^3 + x_1e_1 \\ y_1 = x_1x_2 \end{cases} \qquad \mathcal{H}_2: \begin{cases} \dot{x}_3 = -bx_3^3 - x_4 + e_2 \\ \dot{x}_4 = x_3^3 \\ y_2 = x_3^3 \end{cases}$$

- (a) Show that the system \mathcal{H}_1 is \mathcal{L}_2 stable. Hint: Use $V_1 = \frac{1}{4}x_1^4 + \frac{1}{2}x_2^2$
- (b) Show that the system \mathcal{H}_2 is \mathcal{L}_2 stable. Hint: Use $V_2 = \frac{1}{4}x_3^4 + \frac{1}{2}x_4^2$.
- (c) For each of the below feedback connections find conditions on a and b so that the closed-loop system is \mathcal{L}_2 stable from the input $u = [u_1 \ u_2]^T$ to the output $y = [y_1 \ y_2]^T$.



