First name:
Last name:
student ID:
Signature

Read before you start:

- There are four questions.
- The examination is closed-book.
- No computer/calculator is allowed.
- The duration of the examination is 100 minutes.
- Besides correctness, the CLARITY of your presentation will also be graded.

$\mathbf{Q}1$	$\mathbf{Q2}$	$\mathbf{Q3}$	$\mathbf{Q4}$	Total

Consider the following second-order system

$$\dot{x}_1 = x_1 x_2
\dot{x}_2 = (1 + x_2^2) u$$

where u is the control input. Using backstepping, design a state feedback law $\phi: \mathbb{R}^2 \to \mathbb{R}$ such that the origin of the closed-loop system (obtained by letting $u = \phi(x_1, x_2)$) is globally asymptotically stable.

Consider the following system, where $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times m}$ are constant matrices.

$$\dot{x} = [A - ||x||^2 I]x + Bu$$

For each of the below claims either provide a proof (if true) or find a counterexample (if false).

- (a) If A is Hurwitz then the system is ISS.
- (b) If the system is ISS then A is Hurwitz.

(a) Is the below system \mathcal{L}_2 stable? Explain. Hint: Use $V(x) = \frac{1}{4}x_1^4 + \frac{1}{2}x_2^2$.

$$\dot{x}_1 = x_2
\dot{x}_2 = -(1+x_1^2)x_2 - x_1^3 + x_1 u
 y = x_1 x_2$$

(b) Is the below system¹ \mathcal{L}_{∞} stable? Explain. Hint: Use $V(x) = \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2 + \int_0^{x_1} \operatorname{sat}(z)dz$.

$$\dot{x}_1 = -x_1 + x_2$$
 $\dot{x}_2 = -x_1 - \text{sat}(x_1) - x_2 + u$
 $y = x_2$

$$^{1}\mathrm{sat}(\alpha) = \begin{cases} \min\{\alpha, 1\} & \text{for } \alpha \ge 0\\ \max\{\alpha, -1\} & \text{for } \alpha < 0 \end{cases}$$

(a) Consider the following second-order system.

$$\dot{x}_1 = x_2
\dot{x}_2 = -(1+x_1^2)x_2 - x_1^3 + x_1 u
y = x_1 x_2$$

- i) Is this system strictly passive? Explain.
- ii) Is this system output strictly passive? Explain.
- iii) Is this system zero-state observable? Explain.
- (b) Investigate the stability properties of the origin of the fourth-order system below.

$$\dot{x}_1 = x_2
\dot{x}_2 = -(1+x_1^2)x_2 - x_1^3 - x_1x_4
\dot{x}_3 = -x_3 + x_4
\dot{x}_4 = -x_3 - \operatorname{sat}(x_3) - x_4 + x_1x_2$$