First name:	
Last name:	
Student ID:	
Q: A	

Read before you start:

- There are five questions.
- $\bullet\,$ The examination is open-book.
- Besides correctness, the CLARITY of your presentation will also be graded.

Due: 4 Jan 2021, 17:30

Q1	$\mathbf{Q2}$	$\mathbf{Q3}$	$\mathbf{Q4}$	$\mathbf{Q5}$	Total

Consider the following second-order system

$$\dot{x}_1 = x_1^2 x_2
\dot{x}_2 = \sin(x_1) + u$$

where u is the control input. Using backstepping, design a state feedback law $\phi: \mathbb{R}^2 \to \mathbb{R}$ such that the origin of the closed-loop system (obtained by letting $u = \phi(x_1, x_2)$) is globally asymptotically stable.

(a) Using input-to-state stability (ISS) arguments, show that the origin of the below third-order system is globally asymptotically stable.

$$\dot{x}_1 = -x_1 + x_2^2 + x_3^2
\dot{x}_2 = -x_2^3 + x_3^4
\dot{x}_3 = -x_3^5$$

(b) Determine whether the below second-order system is ISS or not.

$$\dot{x}_1 = x_2
\dot{x}_2 = -\frac{x_1}{1+|x_1|} - x_2 + u$$

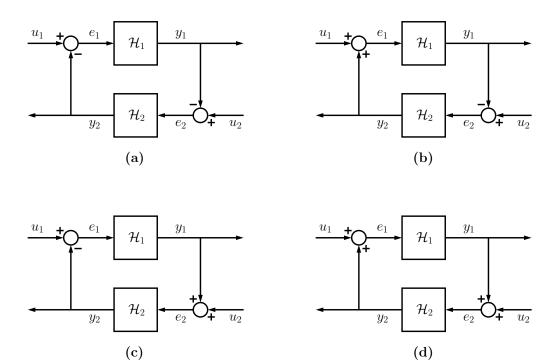
Consider the following systems \mathcal{H}_1 and \mathcal{H}_2

$$\mathcal{H}_{1}: \left\{ \begin{array}{rcl} \dot{x} & = & [S - \alpha C^{T}C]x + C^{T}e_{1} \\ y_{1} & = & Cx \,, \end{array} \right. \qquad \mathcal{H}_{2}: \left\{ \begin{array}{rcl} \dot{z}_{1} & = & z_{2}^{3} \\ \dot{z}_{2} & = & -\gamma z_{1}^{3} - \beta z_{2}^{3} + e_{2} \\ y_{2} & = & z_{2}^{3} \,. \end{array} \right.$$

The system \mathcal{H}_1 is of order n, where $e_1 \in \mathbb{R}$ is the input, $y_1 \in \mathbb{R}$ is the output, $S \in \mathbb{R}^{n \times n}$ is a skew-symmetric matrix, $C \in \mathbb{R}^{1 \times n}$, and (the scalar) α is a positive constant. The system \mathcal{H}_2 is second order, whose input and output are e_2 and y_2 , respectively. The constants β and γ are positive.

- (a) Choosing a suitable storage function, show that the system \mathcal{H}_1 is output strictly passive. Find an upper bound on the \mathcal{L}_2 gain of the system.
- (b) Choosing a suitable storage function, show that the system \mathcal{H}_2 is also output strictly passive. Find an upper bound on the \mathcal{L}_2 gain of the system.

Consider the systems \mathcal{H}_1 and \mathcal{H}_2 of the previous problem. For each of the below feedback connections find (unrestrictive) conditions on the parameters α , β , γ under which the closed-loop system with input $u = [u_1 \ u_2]^T$ and output $y = [y_1 \ y_2]^T$ is finite-gain \mathcal{L}_2 stable.



Consider the feedback connection (c) of the previous problem under the condition that the external inputs are zero: $u_1 = u_2 = 0$. Let $\eta = [x^T \ z_1 \ z_2]^T \in \mathbb{R}^{n+2}$ denote the state of the closed-loop system. Investigate the stability properties of the origin $\eta = 0$ in terms of the parameters $S, C, \alpha, \beta, \gamma$.