First name:
Last name:
Student ID:
Sanatura

Read before you start:

- $\bullet\,$ There are four questions.
- $\bullet\,$ The examination is closed-book.
- No computer/calculator is allowed.
- \bullet The duration of the examination is 100 minutes.
- $\bullet\,$ Please EXPLAIN all your answers.

Q1	$\mathbf{Q2}$	Q3	$\mathbf{Q4}$	Total

It is known that the origin of $\dot{\eta} = [F + GH]\eta$ is asymptotically stable, where $F \in \mathbb{R}^{n \times n}$, $G \in \mathbb{R}^{n \times 1}$, and $H \in \mathbb{R}^{1 \times n}$. In particular, we have two symmetric positive definite matrices $P, Q \in \mathbb{R}^{n \times n}$ satisfying the Lyapunov equation

$$[F + GH]^T P + P[F + GH] = -Q.$$

Consider now the system

$$\dot{\eta} = F\eta + G\xi
\dot{\varepsilon} = u.$$

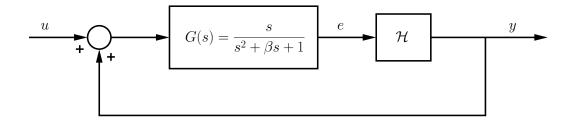
Using backstepping, design a feedback law $u = \psi(\eta, \xi)$ under which the origin of the closed-loop system is asymptotically stable.

Consider the second order system

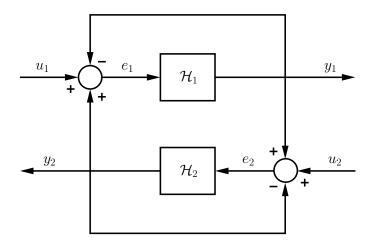
$$\mathcal{H}: \begin{cases} \dot{x}_1 = -\alpha x_1^3 - x_2 + e \\ \dot{x}_2 = x_1^3 \\ y = x_1^3 \end{cases}$$

with $\alpha > 0$, where e is the input and y the output.

- a) Show that the system \mathcal{H} is finite-gain \mathcal{L}_2 stable. Find an upper bound on the gain. Hint: You may want to work with $V(x) = 0.25x_1^4 + 0.5x_2^2$.
- b) Find a condition (in terms of α and β) under which the below closed-loop system (with input u and output y) is finite-gain \mathcal{L}_2 stable. Find an upper bound on the gain.



Let \mathcal{H}_1 and \mathcal{H}_2 be two single-input single-output systems. Both \mathcal{H}_1 and \mathcal{H}_2 are output strictly passive and zero state observable. Consider the following feedback connection with input $u = [u_1 \ u_2]^T$ and output $y = [y_1 \ y_2]^T$.



- a) Is the closed-loop system (from u to y) output strictly passive?
- b) Is the closed-loop system zero state observable?
- c) Is the origin of the unforced (u=0) closed-loop system asymptotically stable?

Determine whether each of the below systems is input-to-state stable or not. Hint: If needed, you may want to work with $V(x) = ||x||^2$ and use the inequality $2(x_1^4 + x_2^4) \ge ||x||^4$.

a)
$$\begin{cases} \dot{x}_1 = -x_1^3 + x_2 \\ \dot{x}_2 = -x_1 - x_2^3 + u \end{cases}$$
 b)
$$\begin{cases} \dot{x}_1 = -x_1^3 - x_2 + u \\ \dot{x}_2 = -x_1 - x_2^3 \end{cases}$$

b)
$$\begin{cases} \dot{x}_1 = -x_1^3 - x_2 + u \\ \dot{x}_2 = -x_1 - x_2^3 \end{cases}$$