First name:	3	
Last name: VEY		
Student ID:	. a . a . a . a . a . a . a . a . a . a	4
Signature:		

Read before you start:

- There are four questions.
- The examination is closed-book.
- No computer/calculator is allowed.
- The duration of the examination is 100 minutes.
- Besides correctness, the CLARITY of your presentation will also be graded.

$\mathbf{Q}1$	$\mathbf{Q2}$	Q3	Q4	Total

Consider the system

$$\dot{x} = f(x, u)
y = h(x, u)$$

where $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ is locally Lipschitz with f(0,0) = 0 and $h: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$ is continuous with h(0,0) = 0. Suppose that this system is zero state observable and lossless with a continuously differentiable positive definite storage function. Let $Q \in \mathbb{R}^{m \times m}$ be a symmetric positive definite matrix. Determine whether the below claim is true or false. If you think that the claim is true, provide a proof; if you think that it is false, find a counterexample.

Claim. The origin of the closed-loop system under the feedback u = -Qy is asymptotically stable.

Let it be the storage function.

Hence, solutions converge to the largest invariant set within f(r=0). (La Dille)

Therefore the origin is GAS.

Consider the system

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -4x_2 - \operatorname{sat}(x_1) + u$$

$$y = x_2$$

where $sat(\cdot)$ is the saturation function.¹

- a) Is this system input to state stable? Explain. Hint: Consider $u(t) = 4x_2(0) + \text{sat}(x_1(t))$.
- b) Is this system \mathcal{L}_{∞} stable? Explain.
- c) Is this system \mathcal{L}_2 stable? Explain. Hint: Consider $V(x) = \int_0^{x_1} \operatorname{sat}(\alpha) d\alpha + \frac{1}{2} x_2^2$.

a) Let
$$u(t) = 4x_2(0) + 50 + (x_1(t))$$
 & $x_2(0) \neq 0$
Then $\dot{x}_2 = 0$ => $\dot{x}_1 = x_2(0)$
=> $x_1(t) = x_1(0) + x_2(0) + x_3(0) + x_4(0) + x$

However, |u(+)| < |4x20)| +1 for all t.

we'lle obtained:

-> bounded input] =) NOT ISS]

-> unsampled state]

b)
$$\dot{y} = -4y - 50 + (x_1) + 0$$

=> $y(t) = e^{-4t}y(0) + \int_{0}^{t} e^{-4(t-7)} [-50 + (x_1(7)) + v(7)] d7$
=> $|y(t)| \le |y(0)| + \left(\int_{0}^{t} e^{-4(t-7)} d7\right) \left(1 + 50 + v(7)\right)$
 $= \frac{1}{4} \frac{1}{4}$

$$=> \sup_{\tau \in (at]} |y|^{t}) \left[|y|_{\sigma} \right] + \frac{1}{4} \left[+ \frac{1}{4} \sup_{\tau \in (a,t]} |v(\tau)| \right]$$

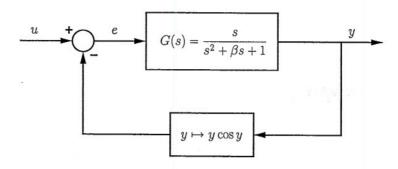
$$^{1}\mathrm{sat}(\alpha) = \begin{cases} \min\{\alpha, 1\} & \text{for } \alpha \ge 0\\ \max\{\alpha, -1\} & \text{for } \alpha < 0 \end{cases}$$

c)
$$\dot{V} = \dot{x}_1 S + (x_1) + \dot{x}_2 x_2$$

= $x_2 S + (x_1) + (-hx_2 - s + (x_1) + v) x_2$
= $-4x_2^2 + vx_2 = -4y^2 + vy$

- =) System output strictly passive with linear p(.) further.
- =) L2 Stuble

Consider the block diagram below.



- a) Find the range of β for which the open-loop system (i.e. the map from e to y) is \mathcal{L}_2 stable.
- b) Find the range of β for which the closed-loop system (i.e. the map from u to y) is \mathcal{L}_2 stable. Hint: Use the small gain theorem and note that we can write $G(j\omega) = \frac{1}{\beta + j(\omega \omega^{-1})}$.
- a) for L₂ stability we need BIBO stability

 for G(3). Hence we need all the pales A;

 of G(3) satisfy RefA; \(\)(0)
- b) let $x_1 = d_2$ gam of G(i) $x_2 = d_2$ gam of " $y \mapsto y \cos y$ "

$$\begin{cases}
\gamma_2 = 1 & \text{since } |y \omega y| \leq 1 \cdot |y| \\
\gamma_1 = m \times |G(j \omega)| = m \times \left(\frac{1}{\beta^2 + (\omega - \omega^{-1})^2}\right)^{\frac{1}{2}} \\
= \frac{1}{\beta^2}$$

$$Y_1Y_2 < 1 \Rightarrow \frac{1}{13} < 1$$

Part I. Using $V(x) = 0.25x_1^4 + 0.5x_2^2$ show that the below system is passive.

$$\begin{array}{rcl} \dot{x}_1 & = & x_2 \\ \dot{x}_2 & = & -x_1^3 + u \\ y & = & x_2 \end{array}$$

Part II. Consider now the identical pair of systems below.

System (1):
$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -x_1^3 + u \\ y = x_2 \end{cases}$$
 System (2):
$$\begin{cases} \dot{\hat{x}}_1 = \hat{x}_2 \\ \dot{\hat{x}}_2 = -\hat{x}_1^3 + \hat{u} \\ \hat{y} = \hat{x}_2 \end{cases}$$

Suppose that the systems are coupled via $u = \hat{y} - y$ and $\hat{u} = y - \hat{y}$.

- a) Show that the origin $(x, \hat{x}) = 0$ is stable.
- b) Show that the systems asymptotically synchronize. That is, for all initial conditions x(0) and $\hat{x}(0)$, the solutions satisfy $||x(t) \hat{x}(t)|| \to 0$ as $t \to \infty$.

Port I

$$ir = x_1^5 \dot{x}_1 + x_2 \dot{x}_2 = x_1^3 \dot{x}_2 - x_1^3 \dot{x}_2 + x_2 \upsilon$$

=> $ir = \upsilon y$ => system possive (lossless).

Port II

a) Let $W(x_1 \dot{x}) = V(x) + V(\dot{x})$

=) W is pos. def. & radially unbounded.

 $ir = \dot{v}(x) + \dot{v}(\dot{x}) = \upsilon y + \dot{\upsilon} \dot{y}$

= $(\dot{y} - \dot{y})\dot{y} + (\dot{y} - \dot{y})\dot{y}$

= $-(\dot{y} - \dot{y})^2$

=) $\dot{w} \le 0$ => the arism is stable. If

b) Lasslie => solutions converge to the largest mudriant yet within $\dot{y} \dot{w} = 0\dot{y}$
 $\ddot{w} = 0$ => $y - \dot{y} = 0$ => $\upsilon = 0$ & $\dot{v} = 0$