First name:
Last name:
Student ID:
Signatura

Read before you start:

- There are four questions.
- $\bullet\,$ The examination is closed-book.
- No computer/calculator is allowed.
- $\bullet\,$ The duration of the examination is 100 minutes.
- Besides correctness, the CLARITY of your presentation will also be graded.

Q1	$\mathbf{Q2}$	$\mathbf{Q3}$	$\mathbf{Q4}$	Total

Q1. 20%

Consider the system

$$\dot{x} = f(x, u)
y = h(x, u)$$

where $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ is locally Lipschitz with f(0,0) = 0 and $h: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$ is continuous with h(0,0) = 0. Suppose that this system is zero state observable and lossless with a continuously differentiable positive definite storage function. Let $Q \in \mathbb{R}^{m \times m}$ be a symmetric positive definite matrix. Determine whether the below claim is true or false. If you think that the claim is true, provide a proof; if you think that it is false, find a counterexample.

Claim. The origin of the closed-loop system under the feedback u = -Qy is asymptotically stable.

 $\mathbf{Q2}$.

Consider the system

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -4x_2 - \operatorname{sat}(x_1) + u$$

$$y = x_2$$

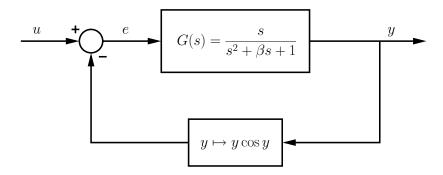
where $sat(\cdot)$ is the saturation function.¹

- a) Is this system input to state stable? Explain. Hint: Consider $u(t) = 4x_2(0) + \operatorname{sat}(x_1(t))$.
- b) Is this system \mathcal{L}_{∞} stable? Explain.
- c) Is this system \mathcal{L}_2 stable? Explain. Hint: Consider $V(x) = \int_0^{x_1} \operatorname{sat}(\alpha) d\alpha + \frac{1}{2}x_2^2$.

 $^{^{1}\}mathrm{sat}(\alpha) = \begin{cases} \min\{\alpha, 1\} & \text{for } \alpha \ge 0\\ \max\{\alpha, -1\} & \text{for } \alpha < 0 \end{cases}$

Q3. 20%

Consider the block diagram below.



- a) Find the range of β for which the open-loop system (i.e. the map from e to y) is \mathcal{L}_2 stable.
- **b)** Find the range of β for which the closed-loop system (i.e. the map from u to y) is \mathcal{L}_2 stable. Hint: Use the small gain theorem and note that we can write $G(j\omega) = \frac{1}{\beta + j(\omega \omega^{-1})}$.

 $\mathbf{Q4.}$

Part I. Using $V(x) = 0.25x_1^4 + 0.5x_2^2$ show that the below system is passive.

$$\begin{aligned}
\dot{x}_1 &= x_2 \\
\dot{x}_2 &= -x_1^3 + u \\
y &= x_2
\end{aligned}$$

Part II. Consider now the identical pair of systems below.

System (1):
$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -x_1^3 + u \\ y = x_2 \end{cases}$$
 System (2):
$$\begin{cases} \dot{\hat{x}}_1 = \hat{x}_2 \\ \dot{\hat{x}}_2 = -\hat{x}_1^3 + \hat{u} \\ \hat{y} = \hat{x}_2 \end{cases}$$

Suppose that the systems are coupled via $u = \hat{y} - y$ and $\hat{u} = y - \hat{y}$.

- a) Show that the origin $(x, \hat{x}) = 0$ is stable.
- **b)** Show that the systems asymptotically synchronize. That is, for all initial conditions x(0) and $\hat{x}(0)$, the solutions satisfy $||x(t) \hat{x}(t)|| \to 0$ as $t \to \infty$.