First name:
Last name:
Student ID:
Signatura

Read before you start:

- There are four questions.
- $\bullet\,$ The examination is open-book.
- No computer/calculator is allowed.
- $\bullet\,$ The duration of the examination is 100 minutes.
- Besides correctness, the CLARITY of your presentation will also be graded.

$\mathbf{Q}1$	$\mathbf{Q2}$	$\mathbf{Q3}$	$\mathbf{Q4}$	Total

Q1. 25%

Consider the second-order linear time-varying system

$$\dot{x}_1 = -2x_1 - g(t)x_2$$

$$\dot{x}_2 = x_1 - g(t)x_2$$

where $g(t) = 2 + \cos(\omega t)$ with $\omega > 0$.

- a) Using the function $V(t, x) = x_1^2 + g(t)x_2^2$ find a condition on ω for which the origin is exponentially stable.
- **b)** For $\omega = 1$ find a pair of positive constants (c, λ) such that all solutions of the system satisfy $||x(t)|| \leq ce^{-\lambda t}||x(0)||$.

Q2. 25%

System (1):
$$\begin{cases} \dot{x}_1 &= f_1(x_1, u_1) \\ y_1 &= x_1 \end{cases}$$
 System (2):
$$\begin{cases} \dot{x}_2 &= f_2(x_2, u_2) \\ y_2 &= x_2 \end{cases}$$

It is known that the above systems (1) and (2), with continuous right-hand sides, are finite-gain \mathcal{L}_2 stable with gains γ_1 and γ_2 , respectively. For the below interconnection

System (3):
$$\begin{cases} \dot{x}_1 = f_1(x_1, x_2) \\ \dot{x}_2 = f_2(x_2, x_1) \end{cases}$$

prove the following claims.

- a) System (3) cannot have a nonzero equilibrium point if $\gamma_1 \gamma_2 < 1$.
- **b)** System (3) cannot have a (nontrivial) periodic solution if $\gamma_1 \gamma_2 < 1$.

 $\mathbf{Q3.}$

Let $V_1: \mathbb{R}^n \to \mathbb{R}$ and $V_2: \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable, positive definite functions. Consider the following system.

$$\dot{x}_1 = \nabla V_2(x_2)$$

 $\dot{x}_2 = -\nabla V_1(x_1) - \nabla V_2(x_2) + u$
 $y = h(x)$

- a) Find a nontrivial output function h (i.e., $h(x) \equiv 0$ is not allowed) for which the system is finite-gain \mathcal{L}_2 stable. What is the gain? *Hint:* Try $V(x) = V_1(x_1) + V_2(x_2)$.
- **b)** Show that if the system is input-to-state stable then ∇V_1 cannot be bounded, that is, no K > 0 exists such that $\|\nabla V_1(x_1)\| \leq K$ for all $x_1 \in \mathbb{R}^n$.

 $\mathbf{Q4.}$

Consider the system

$$\dot{x} = Fxx^Tx + Guu^Tu$$

where $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$, $F \in \mathbb{R}^{n \times n}$, and $G \in \mathbb{R}^{n \times m}$.

- a) Suppose there exists a symmetric positive definite matrix P satisfying the Lyapunov equation $F^TP + PF + I = 0$. Show that the system is input-to-state stable. Hint: Try $V(x) = x^T Px$.
- **b)** Show that if F is not full rank then the system cannot be input-to-state stable.