First name:
Last name:
Student ID:
Signature:

Read before you start:

- There are four questions.
- $\bullet\,$ The examination is closed-book.
- No computer/calculator is allowed.
- The duration of the examination is 100 minutes.
- Besides correctness, the CLARITY of your presentation will also be graded.

Q1	$\mathbf{Q2}$	$\mathbf{Q3}$	$\mathbf{Q4}$	Total

Consider the function $V: \mathbb{R}^2 \to \mathbb{R}$ given as

$$V(x) = x_1^2 - x_1 x_2^2 + x_2^4.$$

- (a) Show that V is positive definite.
- **(b)** Show that $\nabla V(x) = 0$ only when x = 0.
- (c) For each of the below systems determine whether the origin is stable, asy. stable, unstable.

(i)
$$\begin{cases} \dot{x}_1 = x_2^2 - 2x_1 \\ \dot{x}_2 = 2x_1x_2 - 4x_2^3 \end{cases}$$
 (ii)
$$\begin{cases} \dot{x}_1 = 2x_1x_2 - 4x_2^3 \\ \dot{x}_2 = 2x_1 - x_2^2 \end{cases}$$

(d) Find a sufficient condition on α so that the origin of the below system is GAS.

$$\dot{x} = \begin{bmatrix} -1 & 1 \\ -7 & \alpha \end{bmatrix} \nabla V(x)$$

For each of the below systems study the stability of the origin.

(a)
$$\begin{cases} \dot{x}_1 = 2x_1^3 - x_2 \\ \dot{x}_2 = -x_1^3 - x_2 \end{cases}$$
 Hint: Consider $V(x) = \frac{1}{4}x_1^4 - \frac{1}{2}x_2^2$.

(b)
$$\begin{cases} \dot{x}_1 = -2x_1^3 - x_2 \\ \dot{x}_2 = x_1^3 \end{cases}$$
 Hint: Consider $V(x) = \frac{1}{4}x_1^4 + \frac{1}{2}x_2^2$.

(c)
$$\begin{cases} \dot{x}_1 = -2x_1^3 - x_2 \\ \dot{x}_2 = x_1^3 + 3(x_4 - x_2) \\ \dot{x}_3 = -x_4 \\ \dot{x}_4 = x_3^3 + 3(x_2 - x_4) \end{cases}$$
 Hint: Consider $V(x) = \frac{1}{4}x_1^4 + \frac{1}{2}x_2^2 + \frac{1}{4}x_3^4 + \frac{1}{2}x_4^2$.

Consider the following system

$$\dot{x}_1 = 3x_2 - x_1
\dot{x}_2 = x_1 - x_2^3 + x_2.$$

- (a) Find all the equilibrium points of the system.
- (b) Study the stability of each equilibrium using linearization.
- (c) Show that this system cannot have finite escape times.

Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be continuously differentiable and f(x) = 0 only for x = 0. Suppose the origins of both $\dot{x} = f(x)$ and $\dot{y} = -f(y)$ are stable. Show that the system $\dot{x} = f(x)$ has a periodic orbit.