irst name:
ast name:
tudent ID:
ignature.

Read before you start:

- There are four questions.
- $\bullet\,$ The examination is closed-book.
- No computer/calculator is allowed.
- The duration of the examination is 100 minutes.
- Besides correctness, the CLARITY of your presentation will also be graded.

Q1	$\mathbf{Q2}$	$\mathbf{Q3}$	$\mathbf{Q4}$	Total

For each of the below dynamics determine whether the system has a periodic orbit.

(a)
$$\begin{cases} \dot{x}_1 = -x_2 + x_1(1 - 2x_1^2 - 3x_2^2) \\ \dot{x}_2 = x_1 \end{cases}$$
 (b)
$$\begin{cases} \dot{x}_1 = x_2 - x_1(1 - 2x_1^2 - 3x_2^2) \\ \dot{x}_2 = -x_1 \end{cases}$$

Consider the system

$$\dot{x}_1 = (x_1x_2 - 1)x_1^3 + (x_1x_2 - 1 + x_2^2)x_1$$

 $\dot{x}_2 = -x_2$.

- (a) Show that the set $\{x \in \mathbb{R}^2 : x_1x_2 \geq 2\}$ is forward invariant.
- (b) Find all the equilibrium points of this system.
- (c) Study the stability of each equilibrium point.
- (d) Does this system have a GAS equilibrium point?

Consider the second order system

$$\dot{x} = A\nabla V(x)$$

where $A \in \mathbb{R}^{2 \times 2}$ and $V : \mathbb{R}^2 \to \mathbb{R}$ is a continuously differentiable, positive definite function whose gradient satisfies $\nabla V(x) \neq 0$ for all $x \neq 0$. For each of the following cases study the stability of the origin of this system.

(a)
$$A = \begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix}$$
 (b) $A = \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix}$ (c) $A = \begin{bmatrix} 0 & -2 \\ 2 & 0 \end{bmatrix}$

(b)
$$A = \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix}$$

$$\mathbf{(c)} \quad A = \left[\begin{array}{cc} 0 & -2 \\ 2 & 0 \end{array} \right]$$

For each of the below systems study the stability of the origin.

(a)
$$\begin{cases} \dot{x}_1 = x_1 + x_2 \\ \dot{x}_2 = x_1^3 - x_2^3 \end{cases}$$
 Hint: Consider $V(x) = \frac{1}{4}x_1^4 - \frac{1}{2}x_2^2$.

(b)
$$\begin{cases} \dot{x}_1 = -x_1 - x_2 \\ \dot{x}_2 = x_1^3 \end{cases}$$
 Hint: Consider $V(x) = \frac{1}{4}x_1^4 + \frac{1}{2}x_2^2$.

(c)
$$\begin{cases} \dot{x}_1 = -x_1^3 - x_2 \\ \dot{x}_2 = x_1^3 - x_2 |x_2| \end{cases}$$
 Hint: Consider $V(x) = \frac{1}{4}x_1^4 + \frac{1}{2}x_2^2$.