'irst name:
ast name:
tudent ID:
lignature:

Read before you start:

- There are four questions.
- The examination is closed-book.
- No computer/calculator is allowed.
- The duration of the examination is 100 minutes.
- \bullet Besides correctness, the CLARITY of your presentation will also be graded.

$\mathbf{Q}1$	$\mathbf{Q2}$	$\mathbf{Q3}$	$\mathbf{Q4}$	Total

Consider the nonlinear system

$$\dot{x}_1 = x_2
 \dot{x}_2 = -x_1 - x_2 + x_2^2.$$

- (a) Obtain its linearization $\dot{\eta} = A\eta$ at the origin.
- (b) Find a quadratic Lyapunov function $V: \mathbb{R}^2 \to \mathbb{R}$ that satisfies (for the linear system) $\dot{V}(\eta) = -\|\eta\|^2$.
- (c) Using this V show that the origin of the nonlinear system is exponentially stable.
- (d) Find a positive number c for which the set $\{x \in \mathbb{R}^2 : V(x) \leq c\}$ is forward invariant with respect to the nonlinear system.

Suppose the system $\dot{x}=f(x)$ satisfies the Lipschitz condition $\|f(x)-f(y)\|\leq L\|x-y\|$ for some (fixed) L>0 and all $x,y\in\mathbb{R}^n$. Furthermore, suppose the origin is an equilibrium point. Using the function $V(x)=0.5\|x\|^2$ and the comparison lemma, show that this system does not exhibit finite escape times.

Consider the second-order system

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x_1^3 \\ x_2^3 \end{bmatrix}.$$

Investigate the stability properties of the origin with respect to the parameter $\theta \in [0, 2\pi)$. That is, find the ranges of θ for which the origin is stable, asymptotically stable, and unstable. Justify your answer. *Hint: You may want to use* $V(x) = 0.25x_1^4 + 0.25x_2^4$.

(a)
$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -\frac{x_1}{1+x_1^2} \end{cases}$$
 (b)
$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -\frac{x_1}{1+x_1^2} - x_2^3 \end{cases}$$

For each of the above systems answer the following questions.

- (i) Does the system have periodic orbits? Does it have limit cycles? Explain.
- (ii) Is the origin stable? Is it asy. stable? Is it globally asy. stable? Explain.

Hint:
$$\int_0^{x_1} \frac{z}{1+z^2} dz = \frac{1}{2} \ln(1+x_1^2).$$