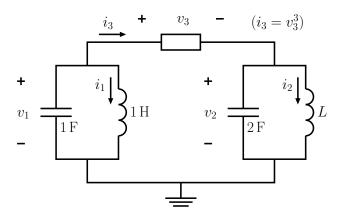
First name:
Last name:
Student ID:
Signature

Read before you start:

- There are five questions.
- $\bullet\,$ The examination is open-book.
- Besides correctness, the CLARITY of your presentation will also be graded.

$\mathbf{Q}1$	$\mathbf{Q2}$	$\mathbf{Q3}$	$\mathbf{Q4}$	$\mathbf{Q5}$	Total

Consider the following circuit where two LC oscillators are coupled via a nonlinear resistor whose i-v characteristics are described by the relation $i_3 = v_3^3$. Study the stability properties of the origin $x = [i_1 \ v_1 \ i_2 \ v_2]^T = 0$ of the system in terms of the inductance L > 0 of the second oscillator. That is, determine for what value(s) of the inductance the system is unstable / stable / asymptotically stable.



Sol'n. Let $V(x) = \frac{1}{2}L_1i_1^2 + \frac{1}{2}C_1v_1^2 + \frac{1}{2}L_2i_2^2 + \frac{1}{2}C_2v_2^2 = \frac{1}{2}i_1^2 + \frac{1}{2}v_1^2 + \frac{1}{2}Li_2^2 + v_2^2$, i.e., the total stored energy in the circuit. Note that V is positive definite. One can compute $\dot{V} = -i_3v_3 = -(v_1-v_2)^4$. Hence \dot{V} is negative semidefinite and the origin is stable for all inductance values L > 0. To study asymptotic stability let us employ the invariance principle. Suppose $\dot{V} \equiv 0$. This implies $v_1(t) \equiv v_2(t)$ as well as $i_3(t) \equiv 0$. Under the condition $i_3(t) \equiv 0$ the oscillators become decoupled and we have to have $v_1(t) = A_1 \cos(\omega_1 t + \phi_1)$ and $v_2(t) = A_2 \cos(\omega_2 t + \phi_2)$ for some A_1 , ϕ_1 , A_2 , ϕ_2 where $\omega_1 = 1/\sqrt{L_1C_1} = 1$ and $\omega_2 = 1/\sqrt{L_2C_2} = 1/\sqrt{2L}$ are the natural frequencies (in rad/sec) of the uncoupled oscillators. Now, if $\omega_1 \neq \omega_2$ (i.e., if $L \neq 1/2$) then $v_1(t) \equiv v_2(t)$ implies $v_1(t) \equiv v_2(t) \equiv 0$. The capacitor currents then must be zero, which by KCL yields $i_1(t) \equiv i_2(t) \equiv 0$ because $i_3(t) \equiv 0$. Consequently, the origin is asymptotically stable provided that $L \neq 1/2$. If L = 1/2H on the other hand the decoupled oscillators have the same natural frequency ($\omega_1 = \omega_2 = 1$ rad/sec) and nonzero steady state oscillations $v_1(t) = v_2(t) = A\cos(t + \phi)$ are possible. In other words, when L = 1/2H the origin is not asymptotically stable.

Consider the LTV system $\dot{x} = A(t)x$ where $x \in \mathbb{R}^n$ and the matrix $A(t) \in \mathbb{R}^{n \times n}$ is a continuous function of time.

- (a) Show that this system cannot exhibit finite escape times.
- (b) Show that no solution x(t) simultaneously satisfies $x(0) \neq 0$ and x(T) = 0 for some finite time T > 0.

Sol'n. (a) A short answer to this question is this: We can write $x(t) = \Phi(t, t_0)x(t_0)$, where Φ is the state transition matrix. Recall that the state transition matrix of a linear system is well defined for all times. Therefore the solution x(t) is well defined for all times.

An alternative answer is as follows. Given an (arbitrary) interval of time $[t_0, t_1]$ define

$$L = \max_{t \in [t_0, t_1]} ||A(t)||.$$

Since A(t) is continuous we have $L < \infty$. Then we can write for all $t \in [t_0, t_1]$ and all $x, y \in \mathbb{R}^n$

$$||A(t)x - A(t)y|| = ||A(t)(x - y)|| \le ||A(t)|| \cdot ||x - y|| \le L||x - y||.$$

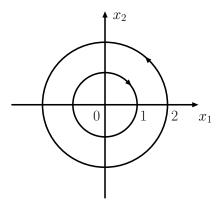
That is, the system satisfies Lipschitz property. Therefore for each initial condition $x(t_0)$ a unique solution exists on $[t_0, t_1]$ which rules out the possibility of finite escape times.

(b) A short answer to this question is this: We can write $x(T) = \Phi(T, 0)x(0)$. Hence x(T) = 0 implies $x(0) \in \text{null }\Phi(T, 0)$. Recall that the state transition matrix of a linear system is always nonsingular, i.e., $\text{null }\Phi(T, 0) = \{0\}$. Therefore x(0) = 0.

A more insightful answer is as follows. Suppose that there exists a solution x(t) satisfying $x(0) \neq 0$ and x(T) = 0. Using this solution define on the the interval [0, T] the function $\psi(t) = x(T-t)$. Note that $\psi(0) = 0$ and $\psi(T) \neq 0$. Also define the matrix B(t) = -A(T-t). Since A(t) is continuous, so is B(t). Note that we can write

$$\dot{\psi} = \frac{d}{dt} \{ x(T-t) \} = -A(T-t)x(T-t) = B(t)\psi.$$

Therefore $\psi(t)$ is a solution of the system $\dot{\psi} = B(t)\psi$ for the initial condition $\psi(0) = 0$. We know by the previous part that this solution is unique. But this contradicts the fact that the constant function $\dot{\psi}(t) \equiv 0$ is another possible solution starting from the same initial condition.



Let $\dot{x} = f(x)$ be a second-order autonomous system, where $x = [x_1 \ x_2]^T \in \mathbb{R}^2$ and $f : \mathbb{R}^2 \to \mathbb{R}^2$ is continuously differentiable. Suppose that this system has periodic orbits, two of which are shown in the phase plane above. The outer periodic orbit satisfies $x_1(t)^2 + x_2(t)^2 = 4$ and rotates in ccw direction, whereas the inner one satisfies $x_1(t)^2 + x_2(t)^2 = 1$ and rotates in cw direction. Either prove or find a counterexample for the below claim.

Claim. The ring $\mathcal{R} = \{x \in \mathbb{R}^2 : 1 \le x_1^2 + x_2^2 \le 4\}$ must contain at least one equilibrium point.

Sol'n. FALSE. Below is a counterexample in polar coordinates (r, θ) .

$$\dot{r} = \sin((r-1)\pi)$$

$$\dot{\theta} = 2r - 3$$
.

For $x = [x_1 \ x_2 \ \cdots \ x_n]^T \in \mathbb{R}^n$ let us introduce the notation $x^3 := [x_1^3 \ x_2^3 \ \cdots \ x_n^3]^T$. Consider the system

$$\dot{x} = -Px^3$$

where $P \in \mathbb{R}^{n \times n}$ is a symmetric positive definite matrix. Either prove or find a counterexample for the below claim.

Claim. The origin of this system must be asymptotically stable.

Sol'n. TRUE. Let $V(x) = \frac{1}{4} \sum_{i=1}^{n} x_i^4$. Note that V is positive definite (V > 0) and radially unbounded. We can write

$$\dot{V} = \sum_{i=1}^{n} x_i^3 \dot{x}_i = x^{3T} \dot{x} = -x^{3T} P x^3.$$

That is, \dot{V} is negative definite ($\dot{V} < 0$). Hence by Lyapunov's theorem the origin is GAS.

Alternatively, let $V(x) = \frac{1}{2}x^T P^{-1}x$. Note that V > 0 because P^{-1} is symmetric positive definite. We can write

$$\dot{V} = x^T P^{-1} \dot{x} = -x^T P^{-1} P x^3 = -x^T x^3 = -\sum_{i=1}^n x_i^4 < 0$$

whence GAS follows.

Let $h: \mathbb{R} \to \mathbb{R}$ be a continuously differentiable function that satisfies:

- h(0) = 0 and $h(z) \neq 0$ for $z \neq 0$.
- $\bullet \left[\frac{\partial h}{\partial z}\right]_{z=0} \neq 0.$
- (a) Show that the origin of the below second-order system cannot be asymptotically stable.

$$\dot{x}_1 = x_2
\dot{x}_2 = -h(x_1).$$

(b) Show that the origin of the below third-order system must be unstable.

$$\begin{aligned}
\dot{x}_1 &= x_2 \\
\dot{x}_2 &= x_3 \\
\dot{x}_3 &= -h(x_1).
\end{aligned}$$

Sol'n. (a) Let us construct $V(x) = \frac{1}{2}x_2^2 + \int_0^{x_1} h(s)ds$, which is not necessarily positive definite. However, it is continuous and satisfies V(0) = 0. Moreover, we have $\dot{V} = 0$ along the solutions of the system. Suppose now the origin is asymptotically stable. This means we can find some $\varepsilon > 0$ such that the solution x(t) starting from the initial state $(x_1(0), x_2(0)) = (0, \sqrt{2\varepsilon})$ satisfies $x(t) \to 0$. Since V is zero at zero and continuous, this implies $V(x(t)) \to 0$. But this cannot happen because $\dot{V} = 0$ implies $V(x(t)) = V(x(0)) = \varepsilon$ for all $t \ge 0$. Hence the origin cannot be asymptotically stable.

(b) Let $\alpha = [\partial h/\partial z]_{z=0}$. The Jacobian of the righthand side at x=0 reads

$$\left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -\alpha & 0 & 0 \end{array}\right]$$

which admits the characteristic polynomial $d(s) = s^3 + \alpha$. Since $\alpha \neq 0$ this means that the linearization of the system has at least one eigenvalue on the open right half complex plane. Therefore the origin is necessarily unstable.