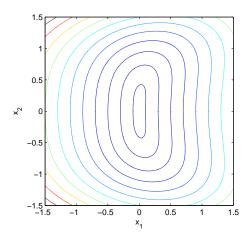
First name:
Last name:
Student ID:
Signatura

Read before you start:

- There are four questions.
- $\bullet\,$ The examination is closed-book.
- No computer/calculator is allowed.
- $\bullet\,$ The duration of the examination is 100 minutes.
- Besides correctness, the CLARITY of your presentation will also be graded.

$\mathbf{Q}1$	$\mathbf{Q2}$	Q3	$\mathbf{Q4}$	Total



Consider the second-order system

$$\begin{array}{rcl} \dot{x}_1 & = & \partial V/\partial x_2 \\ \dot{x}_2 & = & -\partial V/\partial x_1 \end{array}$$

where $V(x) = 3x_1^2 - x_1x_2^2 + x_2^4$. The level surfaces of V are shown in the figure above.

- a) Find all the equilibrium points of this system.
- b) Is the origin stable? Is it asymptotically stable?
- c) Does the system have periodic orbits? Does it have limit cycles?
- d) Sketch the phase portrait.

Note that we can write $V(x) = 2.5x_1^2 + 0.5x_2^4 + 0.5(x_1 - x_2^2)^2$.

Consider the second-order system $\,$

$$\dot{x}_1 = \partial V/\partial x_2 - \partial V/\partial x_1
\dot{x}_2 = -\partial V/\partial x_1$$

where
$$V(x) = 3x_1^2 - x_1x_2^2 + x_2^4$$
.

- a) Is the origin stable?
- b) Is the origin asymptotically stable? Is it globally asymptotically stable?
- c) Is the origin exponentially stable? Is it globally exponentially stable?

Consider the LTV system

$$\dot{x} = A(t)x$$

the origin of which is uniformly asymptotically stable. That is, there exist a constant c > 0 and a class- \mathcal{KL} function β such that the solutions of the system satisfy

$$||x(t_0)|| \le c \implies ||x(t)|| \le \beta(||x(t_0)||, t - t_0)$$
 for all $t \ge t_0$.

- a) Show that the origin is globally uniformly asymptotically stable.
- b) Show that the origin is globally exponentially stable.

Note that if x(t) is a solution then $\hat{x}(t) = \alpha x(t)$ is also a solution for any scalar α .

For each of the below situations determine whether the claim is true (T) or false (F). (No explanation is required.)

- a) Consider the system $\dot{x} = f(x)$ where f is locally Lipschitz and the origin is an equilibrium point. Each solution of this system satisfies $\lim_{t\to\infty} ||x(t)|| \to 0$. Claim: The origin must be asymptotically stable.
- **b)** Consider the LTV system $\dot{x} = A(t)x$ where A(t) is continuous. Each solution of this system satisfies $\lim_{t\to\infty} ||x(t)|| \to 0$. Claim: The origin must be asymptotically stable.
- c) Consider the LTV system $\dot{x} = A(t)x$ where A(t) is continuous. Each solution of this system satisfies $\lim_{t \to \infty} ||x(t)|| \to 0$. Claim: The origin must be uniformly stable.
- d) Let α_1 , α_2 be class- \mathcal{K}_{∞} functions. Define $\alpha_3(s) := \min\{\alpha_1(s), \alpha_2(s)\}$. Claim: α_3 must be a class- \mathcal{K}_{∞} function.
- e) Let $V: \mathbb{R}^n \to \mathbb{R}$ be a positive definite, continuous function. Claim: There must exist $\alpha \in \mathcal{K}$ such that $V(x) \leq \alpha(\|x\|)$ for all $x \in \mathbb{R}^n$.
- f) Let positive definite function $V : \mathbb{R}^n \to \mathbb{R}$ and $\alpha \in \mathcal{K}$ satisfy $\alpha(\|x\|) \leq V(x)$ for all $x \in \mathbb{R}^n$. Claim: V must be radially unbounded.
- **g)** Let $V: \mathbb{R}^n \to \mathbb{R}$ be a positive definite, continuously differentiable function. Suppose $\nabla V(x) \neq 0$ for all $x \neq 0$. Claim: The origin of the system $\dot{x} = -\nabla V(x)$ must be asymptotically stable.
- **h)** Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be continuously differentiable and f(x) = 0 only for x = 0. The origins of both $\dot{x} = f(x)$ and $\dot{x} = -f(x)$ are stable. Claim: The system $\dot{x} = f(x)$ must have a periodic orbit.

Your answer:

a	b	c	d	e	f	\mathbf{g}	h