First name:
Last name:
Student ID:
Signature:

Read before you start:

- There are four questions.
- $\bullet\,$ The examination is open-book.
- No computer/calculator is allowed.
- $\bullet\,$ The duration of the examination is 100 minutes.
- Besides correctness, the CLARITY of your presentation will also be graded.

$\mathbf{Q}1$	$\mathbf{Q2}$	Q3	$\mathbf{Q4}$	Total

Q1. 20%

Consider a planar system $\dot{x} = f(x)$ and a compact set $M \subset \mathbb{R}^2$, where M contains no equilibrium of the system and is positively invariant with respect to its solutions. Either prove or find a counterexample for the following claim.

Claim: M cannot be convex.¹

¹A set $C \subset \mathbb{R}^n$ is convex if for any two points $y, z \in C$ the straight line segment with endpoints y and z lies entirely in C. For instance, full moon (\bigcirc) is convex whereas crescent (\emptyset) is not.

Q2. 25%

Consider the second-order system

$$\dot{x}_1 = g(x_2)
\dot{x}_2 = -x_1 - g(x_2)$$

where g is continuous and satisfies $x_2^2 \le x_2 g(x_2) \le K x_2^2$ for some K > 1.

a) Show that the below function is positive definite.

$$V(x) = \frac{1}{2}x_1^2 + \int_0^{x_2} g(s)ds$$

- b) Using this V as an energy function show that the origin is stable.
- c) Employing the invariance principle establish asymptotic stability of the origin.

 $\mathbf{Q3.}$

Consider the second-order system

$$\dot{x}_1 = g(x_2)
\dot{x}_2 = -x_1 - g(x_2)$$

where g is continuous and satisfies $x_2^2 \le x_2 g(x_2) \le K x_2^2$ for some K > 1. Show that the origin is globally asymptotically stable by using the below function

$$V(x) = \frac{1}{2}x_1^2 + \int_0^{x_2} g(s)ds + \varepsilon x_1 x_2$$

where $\varepsilon > 0$ is your design parameter. Hint: $|x_1x_2| \leq \frac{\alpha x_1^2}{2} + \frac{x_2^2}{2\alpha}$ for all $\alpha > 0$.

 $\mathbf{Q4.}$

Consider the system $\dot{x} = f(x)$, where f is continuous and $f(\lambda x) = \lambda^2 f(x)$ for all $\lambda > 0$ and $x \in \mathbb{R}^n$.

- a) Show that if $\phi(t)$ is a solution of this system then so is $\psi(t) := \lambda \phi(\lambda t)$ for each $\lambda > 0$.
- b) Can this system display finite escape times?
- c) Can this system have no equilibrium? Can it have exactly two equilibria?
- d) Can this system have a limit cycle?
- e) Show for the origin of this system that asymptotic stability implies global asymptotic stability.