EE555 HW4 Not to be submitted

Problem 1 Exercise 6.11.

Problem 2 Exercise 6.16.

Problem 3 Exercise 6.19.

Problem 4 Consider the following linear system

$$x^{+} = Ax$$
$$y = Cx$$

where $A \in \mathbb{R}^{n \times n}$ and $C \in \mathbb{R}^{1 \times n}$. Suppose A is nonsingular and the pair (C, A) is observable. Show that applying Glad's observer construction to this system leads to the observer dynamics $\hat{x}^+ = A\hat{x} + L(y - C\hat{x})$. What is the observer gain L? What can be said about the eigenvalues of the matrix A - LC?

Problem 5 Let the origin of the continuous-time linear system $\dot{x} = Ax$ be asymptotically stable. Show that the origin of the discrete-time system obtained by Euler approximation $x^+ = x + \varepsilon Ax$ is asymptotically stable for small enough $\varepsilon > 0$ (a) by eigenvalue analysis and (b) by Lyapunov equation.

Problem 6 Consider the system $x^+ = f(x)$ where $f: \mathbb{R}^n \to \mathbb{R}^n$ is continuous. Suppose $f(\lambda x) = \lambda f(x)$ for all $\lambda \geq 0$ and $x \in \mathbb{R}^n$. Show that the asymptotic stability of the origin implies global exponential stability.

Problem 7 Consider the system $x^+ = f(x)$ where $f: \mathbb{R}^n \to \mathbb{R}^n$ is continuous. Suppose the origin is globally exponentially stable. Show that there exists a Lyapunov function $V: \mathbb{R}^n \to \mathbb{R}$ satisfying

$$c_1 ||x||^2 \le V(x) \le c_2 ||x||^2$$

 $V(f(x)) - V(x) \le -c_3 ||x||^2$

for some positive numbers c_1 , c_2 , c_3 . Hint: Try $V(x) := \sum_{k=0}^{\infty} ||f^k(x)||^2$ where $f^0(x) = x$.