EE555 HW3 Due 20 Dec 2013

Problem 1 Exercise 4.54.

Problem 2 Consider the system below

$$\dot{x}_1 = -ax_1 + x_2
\dot{x}_2 = bx_1 - q(x_1) - x_2 + u$$

where a > 0, g(0) = 0, and $sg(s) \ge 0$ for all s. Using the below function

$$V(x) = \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2 + \int_0^{x_1} g(s)ds$$

find a condition on the parameter b so that the system is input-to-state stable.

Problem 3 Consider the below system

$$\dot{y} = f(y) + g(y)u$$

where f is continuously differentiable and has a bounded Jacobian matrix, g is continuous and bounded, and the origin of $\dot{y} = f(y)$ is globally exponentially stable. Using Theorem 4.14 show that the system is input-to-state stable with a linear gain function. [By gain function we mean the class- \mathcal{K} function γ of the inequality (4.47) in the text.]

Problem 4 Consider the second-order system

$$\dot{x}_1 = f(x_1) + g(x_2)x_2^4$$

 $\dot{x}_2 = -x_2|x_2|^3 + \varepsilon x_1$

where f and g satisfy the conditions of the previous problem. Show that the origin is globally asymptotically stable when $\varepsilon = 0$. Show also that if $\varepsilon \neq 0$ is sufficiently small we can still establish GAS. Hint: You may want to use the Lyapunov function $V(x) = V_1(x_1) + \frac{K}{5}|x_2|^5$ where K > 0 is your design parameter and you already know what V_1 is from the previous problem.

Problem 5 Exercise 5.10.

Problem 6 Exercise 5.13.

Problem 7 Exercise 5.15(4).

Problem 8 Exercise 5.16. Hint: See the Lyapunov function construction of Problem 2.