EE555 HW2 Sol'n

Problem 1 Consider the system $\dot{x} = f(x)$ with f(0) = 0. A solution x(t) is known to satisfy $x(0) \neq 0$ and x(T) = 0 for some finite T > 0. Show that f does not satisfy Lipschitz condition at the origin, that is, no L > 0 and $\varepsilon > 0$ exist such that $||f(x) - f(y)|| \leq L||x - y||$ for all $x, y \in \{\eta \in \mathbb{R}^n : ||\eta|| \leq \varepsilon\}$.

Sol'n. Let $\phi:[0,T]\to\mathbb{R}^n$ be a solution of $\dot{x}=f(x)$ with $\phi(0)\neq 0$ and $\phi(T)=0$ for some T>0. Without loss of generality let $\phi(t)\neq 0$ for all $t\in[0,T)$. Define $\psi_1:[0,T]\to\mathbb{R}^n$ as $\psi_1(t):=\phi(-t+T)$. Note that we can write

$$\dot{\psi}_1(t) = -\dot{\phi}(-t+T)
= -f(\phi(-t+T))
= -f(\psi_1(t)).$$

Hence ψ_1 is a solution of the system $\dot{x} = -f(x)$. Moreover, $\psi_1(0) = \phi(T) = 0$ and $\psi_1(t) = \phi(-t+T) \neq 0$ for $t \in (0, T]$. Since -f(0) = 0, the constant function $\psi_2 : [0, T] \to \mathbb{R}^n$ with $\psi_2(t) \equiv 0$ is also a solution of the system $\dot{x} = -f(x)$. Therefore the system $\dot{x} = -f(x)$ admits two different solutions ψ_1 and ψ_2 starting from the origin $\psi_1(0) = \psi_2(0) = 0$. This nonuniquess of solutions implies that the righthand side -f cannot be Lipschitz at the origin (Theorem 3.1). Therefore f cannot be Lipschitz at the origin either.

Problem 2 For each of the below systems determine whether or not finite escape times occur.

(a)
$$\begin{cases} \dot{x}_1 = -x_1 + x_1^2 x_2 \\ \dot{x}_2 = -x_2 \end{cases}$$
 (b)
$$\begin{cases} \dot{x}_1 = x_2^2 x_1 \\ \dot{x}_2 = x_2 + 10 \end{cases}$$

Sol'n. (a) First recall that the scalar system $\dot{y} = y^2$ is prey to finite escape times. In particular, for y(0) = 1 the solution $y : [0, 1) \to \mathbb{R}$ reads $y(t) = (1 - t)^{-1}$. That is, we have $y(t) \to \infty$ as $t \to 1$. Now returning to our system we can write

$$\dot{x}_1 = -x_1 + x_2(0)e^{-t}x_1^2.$$

Choose $x_1(0) = 1$ and $x_2(0) = 2e$. Then we can write for $t \in [0, 1]$

$$\dot{x}_1 = -x_1 + 2e^{1-t}x_1^2
\geq -x_1 + 2x_1^2
> x_1^2.$$

Hence, for some $\bar{t} \in (0, 1]$ we should have $x_1(t) \to \infty$ as $t \to \bar{t}$. That is, finite escape times do occur for the system.

(b) Note that $x_2(t) = -10 + (10 + x_2(0))e^t$. Therefore for any finite time interval $x_2(t)$ remains bounded. Now, given an arbitrary initial condition $x_2(0)$ let us define $a(t) := (-10 + (10 + x_2(0))e^t)^2$. Then we can write

$$\dot{x}_1 = a(t)x_1 =: f(t, x_1).$$

Given an arbitrary finite time T>0 let us define $L:=\max_{t\in[0,T]}|a(t)|$. Note that $L<\infty$ because a is continuous. Then we can write

$$|f(t, y) - f(t, z)| = |a(t)(y - z)|$$

 $< L|y - z|$

for all $y, z \in \mathbb{R}$ and $t \in [0, T]$. Then by Theorem 3.2 for any initial condition $x_1(0)$ the solution $x_1(t)$ is defined for all $t \in [0, T]$. But T was arbitrary. Therefore the solution $x_1(t)$ must exist for all $t \in [0, \infty)$. Hence the finite escape times are ruled out for this system.

Problem 3 Consider the system $\dot{x} = f(x)$ where f is continuous and $f(\lambda x) = \lambda f(x)$ for all $\lambda > 0$ and $x \in \mathbb{R}^n$.

- (a) Show that if $\phi(t)$ is a solution to this system so is $\lambda \phi(t)$ for each $\lambda > 0$.
- (b) Show that this system cannot exhibit finite escape times.
- (c) Show that no solution x(t) exists satisfying $x(0) \neq 0$ and x(T) = 0 for some finite T > 0.

Sol'n. (a) Given some solution $\phi(\cdot)$ and a positive number λ let us define $\psi(t) := \lambda \phi(t)$. We can write

$$\dot{\psi}(t) = \lambda \dot{\phi}(t) = \lambda f(\phi(t)) = f(\lambda \phi(t)) = f(\psi(t)).$$

(b)&(c) Let us define the set $\mathcal{R} := \{x \in \mathbb{R}^n : \frac{1}{2} \leq \|x\| \leq 2\}$ and $L := \max_{x \in \mathcal{R}} \|f(x)\|$. Since f is continuous and \mathcal{R} is compact we have $L < \infty$. Now consider any solution $x(\cdot)$ with $\|x(0)\| = 1$. Let T > 0 be such that $x(t) \in \mathcal{R}$ for all $t \in [0, T]$. We can write for $t \in [0, T]$

$$||x(t)|| = ||x(0) + \int_0^t f(x(\tau))d\tau||$$

$$\leq ||x(0)|| + \int_0^t ||f(x(\tau))||d\tau|$$

$$\leq 1 + Lt.$$
(1)

Likewise, again for $t \in [0, T]$,

$$||x(t)|| \ge ||x(0)|| - \int_0^t ||f(x(\tau))|| d\tau$$

 $\ge 1 - Lt$. (2)

Eq. (1) allows us to write

$$||x(0)|| = 1 \implies ||x(t)|| \le 2$$
 for all $t \in \left[0, \frac{1}{L}\right]$

Likewise, by eq. (2) we can write

$$||x(0)|| = 1 \implies ||x(t)|| \ge \frac{1}{2}$$
 for all $t \in \left[0, \frac{1}{2L}\right]$

Combining these we can write

$$||x(0)|| = 1 \implies \frac{1}{2} \le ||x(t)|| \le 2 \quad \text{for all} \quad t \in \left[0, \frac{1}{2L}\right]$$
 (3)

Now given an arbitrary solution $\phi(t)$ with $\phi(0) \neq 0$, let $\lambda := \|\phi(0)\|$. Define $\psi(t) := \lambda^{-1}\phi(t)$. By part (a) ψ is also a solution. Note that $\|\psi(0)\| = 1$. Hence we can write by (3)

$$\|\psi(t)\| \in [2^{-1}, 2] \quad \forall t \in [0, (2L)^{-1}] \quad \Longrightarrow \quad \lambda \|\psi(t)\| \in [2^{-1}\lambda, 2\lambda] \quad \forall t \in [0, (2L)^{-1}]$$
$$\Longrightarrow \quad \|\phi(t)\| \in [2^{-1}\|\phi(0)\|, 2\|\phi(0)\|] \quad \forall t \in [0, (2L)^{-1}]$$

By time invariance we can therefore write

$$2^{-k} \|\phi(0)\| \le \|\phi(t)\| \le 2^k \|\phi(0)\| \quad \forall t \in [0, k(2L)^{-1}]$$

for all $k = 1, 2, \ldots$

Problem 4 Exercise 4.3.

Sol'n. See end of document.

Problem 5 Exercise 4.7.

Sol'n. See end of document.

Problem 6 Exercise 4.21.

Sol'n. See end of document.

• 4.3 (1) Let $V(x) = (1/2)(x_1^2 + x_2^2)$.

$$\dot{V} = x_1(-x_1 + x_1x_2) - x_2^2$$

In the set ${||x||_2 \le r^2}$, we have $|x_1| \le r$. Hence,

$$\dot{V} \le -x_1^2 - x_2^2 + r|x_1| \ |x_2| = - \begin{bmatrix} |x_1| \\ |x_2| \end{bmatrix}^T \begin{bmatrix} 1 & -r/2 \\ -r/2 & 1 \end{bmatrix} \begin{bmatrix} |x_1| \\ |x_2| \end{bmatrix}$$

 \dot{V} is negative definite for r < 2. Thus, the origin is asymptotically stable. To investigate global asymptotic stability, note that the solution of the second equation is $x_2(t) = \exp(-t)x_2(0)$, which when substituted in the first equation yields

$$\dot{x}_1 = [-1 + \exp(-t)x_2(0)]x_1$$

This is a linear time-varying system whose solution does not have a finite escape time. After some finite time the coefficient of x_1 on the right-hand side will be less than a negative number. Hence, $\lim_{t\to\infty} x_1(t) = 0$. Thus, the origin is globally asymptotically stable.

(2) Let $V(x) = (1/2)(x_1^2 + x_2^2)$.

$$\dot{V} = -(x_1^2 + x_2^2)(1 - x_1^2 - x_2^2) = -2V(1 - 2V)$$

In the region V(x) < 1/2, \dot{V} is negative definite. Hence, the origin is asymptotically stable. For V > 1/2, \dot{V} is positive. Hence, trajectories starting in the region V(x) > 1/2 cannot approach the origin. In fact, they grow unbounded. Thus, the origin is not globally asymptotically stable.

(3) Let $V(x) = x^T P x = p_{11} x_1^2 + 2p_{12} x_1 x_2 + p_{22} x_2^2$, where P is a positive definite symmetric matrix.

$$\dot{V} = -2p_{12}x_1^2 + 2(p_{11} - p_{12} - p_{22})x_1x_2 - 2(p_{22} - p_{12})x_2^2 + \text{Higher order terms}$$

Near the origin, the quadratic term dominates the higher-order terms. Thus, \dot{V} will be negative definite in the neighborhood of the origin if the quadratic term is negative definite. Choosing $p_{12}=1$, $p_{22}=2$, and $p_{11}=3$ makes V(x) positive definite and $\dot{V}(x)$ negative definite. Hence, the origin is asymptotically stable. It is not globally asymptotically stable since the origin is not the unique equilibrium point. The set $\{x_1^2=1\}$ is an equilibrium set.

(4) Let $V(x) = x_1^2 + (1/2)x_2^2$.

$$\dot{V} = -2x_1^2 - 2x_1x_2 + 2x_1x_2 - x_2^4 = -x_1^2 - x_2^4$$

Hence, the origin is globally asymptotically stable.

• 4.7 (a) Let $\nabla V(x) = g(x)$. Then, $\dot{V} = -g^T(x)Q\phi(x)$. Choose g(x) = Px so that $V(x) = (1/2)x^TPx$. We need to choose $P = P^T > 0$ such that $\dot{V} = -x^TPQ\phi(x)$ is negative definite. Choosing $P = Q^{-1}$ yields

$$\dot{V} = -x^T \phi(x) = -\sum_{i=1}^n x_i \phi_i(x_i)$$

 \dot{V} is negative definite in the neighborhood of the origin because $y\phi(y)>0$ for $y\neq 0$. Hence, the origin is asymptotically stable.

- (b) The function V(x) is radially unbounded. The origin will be globally asymptotically stable if V is negative definite for all x. This will be the case if $y\phi_i(y) > 0$ for all $y \neq 0$.
- (c) The function ϕ_2 satisfies the condition $y\phi_i(y) > 0$ for all $y \neq 0$. The function ϕ_1 satisfies the condition only near y = 0 because $\phi_1(y)$ vanishes at y = 1. Thus, we can only show asymptotic stability of the origin using the Lyapunov function $V(x) = x^T Q^{-1} x = x_1^2 + 2x_1 x_2 + 2x_2^2$.

• 4.21

(a)

$$\dot{V}(x) = \frac{\partial V}{\partial x}\dot{x} = -(\nabla V)^T(\nabla V) \le 0$$

$$\dot{V}(x) = 0 \Leftrightarrow \nabla V(x) = 0 \Leftrightarrow \dot{x} = 0$$

Hence, V(x) = 0 if and only if x is an equilibrium point.

- (b) Every solution starts in a set Ω_c with $c \ge V(x_0)$. Since $\dot{V} \le 0$ in Ω_c , the solution remains in Ω_c for all $t \ge 0$. Since Ω_c is compact, we conclude by Theorem 3.3 that the solution is defined for all $t \ge 0$.
- (c) By LaSalle's theorem, $x(t) \to M = \{p_1, \dots, p_r\}$ as $t \to \infty$. Since the points p_1, \dots, p_r are isolated, we conclude from Exercise 4.20 that $x(t) \to p_i$ as $t \to \infty$ for some $p_i \in M$.