EE555 Final Exam Sol'n

First name:
Last name:
Student ID:
Signaturo

Read before you start:

- There are five questions.
- $\bullet\,$ The examination is open-book.
- Besides correctness, the CLARITY of your presentation will also be graded.

$\mathbf{Q}1$	$\mathbf{Q2}$	$\mathbf{Q3}$	Q4	$\mathbf{Q5}$	Total

Consider the following system of order 2n

$$\dot{x}_1 = x_2
\dot{x}_2 = -Px_1 - Qx_2$$

where $x_1, x_2 \in \mathbb{R}^n$ and $P, Q \in \mathbb{R}^{n \times n}$. The matrix P is symmetric positive definite and Q is symmetric positive semidefinite.

- (a) By choosing an appropriate Lyapunov function find conditions¹ on the pair (P, Q) under which the origin is stable.
- (b) Using the same Lyapunov function find conditions on the pair (P, Q) under which the origin is asymptotically stable.

Sol'n. (a) Let $V(x_1, x_2) = \frac{1}{2}x_1^T P x_1 + \frac{1}{2}x_2^T x_2$. Note that V is positive definite and yields $\dot{V} = x_1^T P \dot{x}_1 + x_2^T \dot{x}_2 = x_1^T P x_2 + x_2^T (-P x_1 - Q x_2) = -x_2^T Q x_2$. Since $Q \ge 0$ we have $\dot{V} \le 0$. Hence the origin is stable for all (P, Q).

(b) To establish asymptotic stability we can use the invariance principle. For this we need the implication $\dot{V} \equiv 0 \implies x \equiv 0$ where $x = \begin{bmatrix} x_1^T & x_2^T \end{bmatrix}^T$ is the overall state of the system. Now, we can proceed as follows. $\dot{V} \equiv 0 \implies x_2^T Q x_2 \equiv 0$ and since Q is symmetric positive semidefinite we can write $x_2^T Q x_2 \equiv 0 \implies Q x_2 \equiv 0$. Under $Q x_2 \equiv 0$ the state evolves via

$$\dot{x} = \left[\begin{array}{cc} 0 & I \\ -P & 0 \end{array} \right] x \, .$$

Therefore if the above system is observable from the output $y = [0 \ Q]x$ then we can claim $\dot{V} \equiv 0 \implies x \equiv 0$. By the eigenvector test (sometimes called the PBH test) for observability it can be shown that the observability of the pair $\left(\begin{bmatrix} 0 \ Q \end{bmatrix}, \begin{bmatrix} 0 \ I \\ -P \ 0 \end{bmatrix}\right)$ is equivalent to the observability of the pair (Q, P). Hence the origin is asymptotically stable if the pair (Q, P) is observable.

¹Conditions you find here (Q1) and in the following question (Q2) should be as unrestrictive as possible.

Consider the following system of order 2n

$$\dot{x}_1 = x_2
\dot{x}_2 = -Px_1 - Qx_2 + Ru
y = Rx_2$$

where $x_1, x_2, u, y \in \mathbb{R}^n$ and $P, Q, R \in \mathbb{R}^{n \times n}$. The matrix P is symmetric positive definite and Q, R are symmetric positive semidefinite.

- (a) Find conditions on the triple (P, Q, R) under which the system is passive.
- (b) Find conditions on the triple (P, Q, R) under which the system is output strictly passive.
- (c) Find conditions on the triple (P, Q, R) under which the system is input-to-state stable.
- (d) Suppose both Q and R are positive definite. Find an upper bound on the \mathcal{L}_2 gain of the system.

Sol'n. (a) Let $V(x_1, x_2) = \frac{1}{2}x_1^T P x_1 + \frac{1}{2}x_2^T x_2$ be our storage function. We have $\dot{V} = -x_2^T Q x_2 + x_2^T R u = -x_2^T Q x_2 + y^T u$. Since Q is positive semidefinite we can therefore write $\dot{V} \leq y^T u$. Hence the system is passive for all (P, Q, R).

- (b) Output strict passivity requires the existence of a function $\rho: \mathbb{R}^n \to \mathbb{R}^n$ satisfying $\dot{V} = -x_2^T Q x_2 + y^T u \le -y^T \rho(y) + y^T u$ and $y^T \rho(y) > 0$ for $y \ne 0$. Such a function exists if the implication $x_2^T Q x_2 \ne 0 \Longrightarrow y \ne 0$ holds. Since Q is symmetric positive semidefinite we have $x_2^T Q x_2 \ne 0 \Longleftrightarrow Q x_2 \ne 0$. Hence the system is OSP if the implication $Q x_2 \ne 0 \Longrightarrow R x_2 \ne 0$ holds or, equivalently, if null $Q \subset \text{null } R$.
- (c) The system is LTI. Therefore it is ISS if and only if the origin of the unforced (u = 0) system is GAS. This situation is already studied in Q1(b). Hence the system is ISS if the pair (Q, P) is observable.
- (d) We can write

$$y^{T}u = x_{2}^{T}Qx_{2} + \dot{V}$$

$$\geq \lambda_{\min}(Q)\|x_{2}\|^{2} + \dot{V}$$

$$\geq \frac{\lambda_{\min}(Q)}{\lambda_{\max}(R^{2})}x_{2}^{T}R^{2}x_{2} + \dot{V}$$

$$= \frac{\lambda_{\min}(Q)}{\lambda_{\max}(R^{2})}\|y\|^{2} + \dot{V}.$$

Hence the system is finite-gain \mathcal{L}_2 stable and its \mathcal{L}_2 gain is no greater than $\frac{\lambda_{\max}(R^2)}{\lambda_{\min}(Q)}$ by Lemma 6.5.

Consider the following system

$$\dot{x} = Ax - B\rho(Cx)$$

where $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, $C \in \mathbb{R}^{m \times n}$, and the function $\rho : \mathbb{R}^m \to \mathbb{R}^m$ is continuous. Suppose there exists a symmetric positive definite matrix $P \in \mathbb{R}^{n \times n}$ satisfying $PB = C^T$. Further assume that ρ satisfies $y^T \rho(y) > 0$ for all nonzero $y \in \mathbb{R}^m$. Show that this system cannot display finite escape times.

Sol'n. Let us construct the positive definite function $V(x) = x^T P x$, which yields $\dot{V} = 2x^T P \dot{x} = 2x^T P A x - 2x^T P B \rho(Cx) = 2x^T P A x - 2(Cx)^T \rho(Cx) \le 2x^T P A x$. We can then proceed as

$$\dot{V} \leq 2x^T P A x
\leq 2\|P\| \cdot \|A\| \cdot \|x\|^2
\leq \frac{2\|P\| \cdot \|A\|}{\lambda_{\min}(P)} V.$$

Defining $\gamma:=\|P\|\cdot\|A\|/\lambda_{\min}(P)$ allows us to write $\dot{V}\leq 2\gamma V$ which implies $V(x(t))\leq e^{2\gamma t}V(x(0))$ for all $t\geq 0$. Since $\lambda_{\min}(P)\|x\|^2\leq V(x)\leq \lambda_{\max}(P)\|x\|^2$ we can then write

$$||x(t)|| \le e^{\gamma t} \sqrt{\lambda_{\max}(P)/\lambda_{\min}(P)} ||x(0)||.$$

In other words, the solution x(t) is defined for all $t \geq 0$.

Consider the following linear system

$$x^{+} = Fx$$
$$y = Hx$$

where $F \in \mathbb{R}^{n \times n}$ and $H \in \mathbb{R}^{1 \times n}$. Suppose F is nonsingular and the pair (H, F) is observable. Show that applying Glad's observer construction to this system leads to the observer dynamics $\hat{x}^+ = F\hat{x} + L(y - H\hat{x})$ for some constant matrix $L \in \mathbb{R}^{n \times 1}$. Find a closed-form expression for this L (in terms of F and H).

Sol'n. We begin by writing

$$\begin{array}{rcl} H\eta & = & y \\ HF^{-1}\eta & = & HF^{-1}\hat{x} \\ HF^{-2}\eta & = & HF^{-2}\hat{x} \\ & & \vdots \\ HF^{-(n-1)}\eta & = & HF^{-(n-1)}\hat{x} \end{array}$$

which can be compactly written as

$$W\eta = W\hat{x} + e_1(y - H\hat{x}).$$

where the matrix $W \in \mathbb{R}^{n \times n}$ and the unit vector $e_1 \in \mathbb{R}^n$ are defined as

$$W = \begin{bmatrix} H \\ HF^{-1} \\ \vdots \\ HF^{-(n-1)} \end{bmatrix}, \quad e_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

Then we have $\eta = \hat{x} + W^{-1}e_1(y - H\hat{x})$. The inverse W^{-1} exists by the observability assumption. Finally, $\hat{x}^+ = F\eta = F\hat{x} + FW^{-1}e_1(y - H\hat{x})$ which tells us that we have to have $L = FW^{-1}e_1$.

Consider the following system

$$x^+ = f(x)$$

where $f: \mathbb{R}^n \to \mathbb{R}^n$ is continuous and f(0) = 0. Suppose the origin is globally exponentially stable. Let the function $V: \mathbb{R}^n \to \mathbb{R}$ be constructed as

$$V(x) = ||x||^2 + ||f(x)||^2 + ||f(f(x))||^2 + ||f(f(f(x)))||^2 + \cdots$$

Show that there exist positive constants c_1 , c_2 , c_3 such that V satisfies

$$c_1 ||x||^2 \le V(x) \le c_2 ||x||^2 \tag{1}$$

$$V(f(x)) - V(x) \le -c_3 ||x||^2 \tag{2}$$

for all $x \in \mathbb{R}^n$.

Sol'n. Since the origin is globally exponentially stable there exist constants $0 < \lambda < 1$ and M > 0 such that every solution satisfies $||x(k)|| \le M\lambda^k ||x(0)||$. Note that we can write

$$V(x) = ||x||^2 + ||f(x)||^2 + ||f(f(x))||^2 + ||f(f(f(x)))||^2 + \cdots$$

$$\leq \sum_{k=0}^{\infty} (M\lambda^k ||x||)^2$$

$$= M^2 \left(\sum_{k=0}^{\infty} \lambda^{2k}\right) ||x||^2$$

$$= \frac{M^2}{1 - \lambda^2} ||x||^2.$$

Hence we can let $c_2 = \frac{M^2}{1 - \lambda^2}$. Likewise,

$$V(x) = ||x||^2 + ||f(x)||^2 + ||f(f(x))||^2 + ||f(f(f(x)))||^2 + \cdots$$

$$\geq ||x||^2.$$

That is, we can let $c_1 = 1$. Finally,

$$V(x) = ||x||^2 + ||f(x)||^2 + ||f(f(x))||^2 + ||f(f(f(x)))||^2 + \cdots$$

= $||x||^2 + V(f(x))$

which allows us to pick $c_3 = 1$.