Due:	26 .	Jan	2021,	17:30
------	------	-----	-------	-------

First name:
Last name:
Student ID:
Signature:

Read before you start:

- There are five questions.
- $\bullet\,$ The examination is open-book.
- Besides correctness, the CLARITY of your presentation will also be graded.

$\mathbf{Q}1$	$\mathbf{Q2}$	$\mathbf{Q3}$	Q4	$\mathbf{Q5}$	Total

Consider the following system of order 2n

$$\dot{x}_1 = x_2
\dot{x}_2 = -Px_1 - Qx_2$$

where $x_1, x_2 \in \mathbb{R}^n$ and $P, Q \in \mathbb{R}^{n \times n}$. The matrix P is symmetric positive definite and Q is symmetric positive semidefinite.

- (a) By choosing an appropriate Lyapunov function find conditions¹ on the pair (P, Q) under which the origin is stable.
- (b) Using the same Lyapunov function find conditions on the pair (P, Q) under which the origin is asymptotically stable.

¹Conditions you find here (Q1) and in the following question (Q2) should be as unrestrictive as possible.

Consider the following system of order 2n

$$\dot{x}_1 = x_2
\dot{x}_2 = -Px_1 - Qx_2 + Ru
y = Rx_2$$

where $x_1, x_2, u, y \in \mathbb{R}^n$ and $P, Q, R \in \mathbb{R}^{n \times n}$. The matrix P is symmetric positive definite and Q, R are symmetric positive semidefinite.

- (a) Find conditions on the triple (P, Q, R) under which the system is passive.
- (b) Find conditions on the triple (P, Q, R) under which the system is output strictly passive.
- (c) Find conditions on the triple (P, Q, R) under which the system is input-to-state stable.
- (d) Suppose both Q and R are positive definite. Find an upper bound on the \mathcal{L}_2 gain of the system.

Consider the following system

$$\dot{x} = Ax - B\rho(Cx)$$

where $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, $C \in \mathbb{R}^{m \times n}$, and the function $\rho : \mathbb{R}^m \to \mathbb{R}^m$ is continuous. Suppose there exists a symmetric positive definite matrix $P \in \mathbb{R}^{n \times n}$ satisfying $PB = C^T$. Further assume that ρ satisfies $y^T \rho(y) > 0$ for all nonzero $y \in \mathbb{R}^m$. Show that this system cannot display finite escape times.

Consider the following linear system

$$x^{+} = Fx$$
$$y = Hx$$

where $F \in \mathbb{R}^{n \times n}$ and $H \in \mathbb{R}^{1 \times n}$. Suppose F is nonsingular and the pair (H, F) is observable. Show that applying Glad's observer construction to this system leads to the observer dynamics $\hat{x}^+ = F\hat{x} + L(y - H\hat{x})$ for some constant matrix $L \in \mathbb{R}^{n \times 1}$. Find a closed-form expression for this L (in terms of F and H).

Consider the following system

$$x^+ = f(x)$$

where $f: \mathbb{R}^n \to \mathbb{R}^n$ is continuous and f(0) = 0. Suppose the origin is globally exponentially stable. Let the function $V: \mathbb{R}^n \to \mathbb{R}$ be constructed as

$$V(x) = ||x||^2 + ||f(x)||^2 + ||f(f(x))||^2 + ||f(f(f(x)))||^2 + \cdots$$

Show that there exist positive constants c_1 , c_2 , c_3 such that V satisfies

$$c_1 ||x||^2 \le V(x) \le c_2 ||x||^2 \tag{1}$$

$$V(f(x)) - V(x) \le -c_3 ||x||^2 \tag{2}$$

for all $x \in \mathbb{R}^n$.