First name:	_
Last name:	_
Student ID:	_
Signaturo	

Read before you start:

- There are four questions.
- $\bullet\,$ The examination is closed-book.
- No computer/calculator is allowed.
- $\bullet\,$ The duration of the examination is 150 minutes.
- Besides correctness, the CLARITY of your presentation will also be graded.

Q1	$\mathbf{Q2}$	$\mathbf{Q3}$	$\mathbf{Q4}$	Total

 $\mathbf{Q1.}$ 25%

Consider the function $V: \mathbb{R}^2 \to \mathbb{R}$ defined as

$$V(x) = x_1^4 + (x_2^2 - x_1)^2 + x_2^2$$

whose gradient vanishes only at the origin. For each of the below systems determine:

- Whether the origin is stable or not. (If stable, check also asymptotic stability.)
- Whether finite escape times occur or not.
- Whether (nontrivial) periodic solutions exist or not.

a)
$$\begin{cases} \dot{x}_1 = -\frac{\partial V}{\partial x_1} \\ \dot{x}_2 = -\frac{\partial V}{\partial x_2} \end{cases}$$
 b)
$$\begin{cases} \dot{x}_1 = \frac{\partial V}{\partial x_2} \\ \dot{x}_2 = -\frac{\partial V}{\partial x_1} \end{cases}$$

Q2. 25%

Consider the Duffing map

$$x_1^+ = x_2$$

 $x_2^+ = -x_1 + 3x_2 - x_2^3$
 $y = x_2$.

- a) Find the equilibrium point(s) of this system.
- **b)** For the initial condition $x(0) = \begin{bmatrix} 1 & 0 \end{bmatrix}^T$ find x(3).
- c) For this system find the observer dynamics $\hat{x}^+ = g(\hat{x}, y)$ by applying Glad's method.
- **d)** For the initial conditions $x(0) = \begin{bmatrix} 1 & 0 \end{bmatrix}^T$ and $\hat{x}(0) = \begin{bmatrix} -7 & 3 \end{bmatrix}^T$ find $\hat{x}(3)$.

 $\mathbf{Q3.}$

Part I. For each of the below systems determine whether the system is lossless, output strictly passive, or strictly passive.

a)
$$H_1: \begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -x_1^3 + u_1 \end{cases}$$
 Hint: Consider $V_1(x_1, x_2) = \frac{1}{4}x_1^4 + \frac{1}{2}x_2^2$.

b)
$$H_2: \left\{ \begin{array}{ll} \dot{x}_3 & = & -x_3 + u_2 \\ y_2 & = & x_3^3 \end{array} \right.$$
 Hint: Choose a suitable storage function $V_2(x_3)$.

Q3.

Part II. Consider now the following feedback connection of the systems H_1 and H_2 .

$$\dot{x}_1 = x_2
 \dot{x}_2 = -x_1^3 + ky_2
 \dot{x}_3 = -x_3 - ky_1.$$

For each of the below cases determine whether the origin is stable or unstable. (If stable, check also asymptotic stability.)

- a) When k = 1.
- **b)** When k = -1.
- c) When k = 0.

 $\mathbf{Q4.}$

Consider the system $x^+ = f(x)$ with $x \in \mathbb{R}^n$. Assume that we can write f(x) = Ax + g(x) for some $A \in \mathbb{R}^{n \times n}$ and $g : \mathbb{R}^n \to \mathbb{R}^n$. Further assume that the following hold.

- $||g(x)|| \le \gamma ||x||$ for some $\gamma > 0$.
- $A^T P A P = -I$ for some symmetric positive definite $P \in \mathbb{R}^{n \times n}$.
- a) What can be said about the eigenvalues of the matrix A?
- b) Using the Lyapunov function $V(x) = x^T P x$ find a range for γ for which the origin is asymptotically stable.
- c) Suppose γ belongs to the range you found in part (b). What can be said about the set of (real) solutions of the equation f(z) = z?