First name:	
Last name:	
Student ID:	
Signature:	

Read before you start:

- There are four questions.
- The duration of the examination is 100 minutes.
- The examination is closed-book.
- Please explain all your answers.

Q1	$\mathbf{Q2}$	Q3	$\mathbf{Q4}$	Total

Consider the following system

$$\dot{x} = \begin{bmatrix} 5 & -3 & 3 & 1 \\ 6 & -4 & 1 & 4 \\ 0 & 0 & -2 & 1 \\ 0 & 0 & -5 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ -1 \\ 0 \\ 0 \end{bmatrix} u$$

$$y = \begin{bmatrix} 2 & -1 & 2 & 7 \end{bmatrix} x.$$

- (a) Is this system in controllable decomposition form?
- (b) Is this system stabilizable?
- (c) Is this system BIBO stable?
- (d) Determine, if possible, the range of $k \in \mathbb{R}$ for which the output feedback law u = -ky renders the closed-loop system asymptotically stable.

Given

$$A = \left[\begin{array}{cc} 0 & 1 \\ -0.5 & -1.5 \end{array} \right], \quad B = \left[\begin{array}{c} 2 \\ -1 \end{array} \right]$$

determine (without direct computation) whether a symmetric positive definite solution $P \in \mathbb{R}^{2 \times 2}$ exists or not for each of the following matrix (in)equalities.

(a)
$$AP + PA^T + BB^T = 0$$
.

(b)
$$A^T P + PA + BB^T = 0.$$

(c)
$$APA^T - P - BB^T < 0$$
.

(d)
$$A^T P A - P - B B^T < 0$$
.

Consider the system

$$\dot{x} = \left[\begin{array}{cc} 0 & 4 \\ 2 & 2 \end{array} \right] x + \left[\begin{array}{c} 1 \\ 1 \end{array} \right] u \, .$$

- (a) Is this system stable?
- **(b)** Is this system controllable?
- (c) Is this system stabilizable?
- (d) Find, if possible, a feedback gain $K \in \mathbb{R}^{1 \times 2}$ such that the feedback law u = -Kx renders the closed-loop system asymptotically stable.

Definition. Let $\beta_i : \mathbb{R} \to \mathbb{R}$ for i = 1, 2, ..., n be given. The functions $\beta_1(t), \beta_2(t), ..., \beta_n(t)$ are said to be *linearly independent* if the equation

$$\alpha_1 \beta_1(t) + \alpha_2 \beta_2(t) + \dots + \alpha_n \beta_n(t) = 0 \quad \forall t \in \mathbb{R}$$

(where $\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{R}$) has no solution other than the trivial solution: $\alpha_i = 0$ for all i.

Now, prove the following claim.

Claim. Let the system $\dot{x} = Ax + Bu$ (with $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times 1}$) be controllable. Then the entries of the vector $e^{At}B$ must be linearly independent.