First name:
Last name:
Student ID:
Sanatura

Read before you start:

- There are four questions.
- The examination is closed-book.
- No calculator is allowed.
- The duration of the examination is 100 minutes.
- PLEASE EXPLAIN ALL YOUR ANSWERS.

$\mathbf{Q}1$	$\mathbf{Q2}$	$\mathbf{Q3}$	$\mathbf{Q4}$	Total

For $\alpha, \beta, \gamma \in [0, 2\pi)$ consider the second-order LTI system

$$\dot{x} = \underbrace{\left(\begin{bmatrix} \cos \alpha \\ \sin \alpha \end{bmatrix} [\cos \beta \sin \beta]}_{A} x + \underbrace{\begin{bmatrix} \cos \gamma \\ \sin \gamma \end{bmatrix}}_{B} u$$

$$y = Cx$$

- (a) Find the eigenvectors and eigenvalues of A^T .
- (b) Find conditions on the triple (α, β, γ) under which the system is controllable.
- (c) Find conditions on the triple (α, β, γ) under which the system is stabilizable.
- (d) Find conditions on the triple (α, β, γ) under which the system is BIBO stable for all C.

Recall: $\cos(\theta - \psi) = \cos\theta\cos\psi + \sin\theta\sin\psi$ & $\sin(\theta - \psi) = \sin\theta\cos\psi - \cos\theta\sin\psi$.

Consider the second-order discrete-time system below.

$$x_1^+ = x_2^2$$

 $x_2^+ = x_1^2 + 2x_2$.

- (a) Find all the equilibrium points of this system.
- (b) At each equilibrium obtain the linearization.
- (c) Determine (if possible) the local stability of each equilibrium based on its linearization.

Given $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times m}$, let us define the set $S := \{v \in \mathbb{C}^n : v^*e^{At}B = 0 \text{ for all } t \geq 0\}$. Prove *only one* of the following statements. [If you attempt both, only the \spadesuit will be graded.]

 \spadesuit If the pair (A, B) is controllable then $S = \{0\}$.

♣ If $S = \{0\}$ then the pair (A, B) is controllable.

Consider the system

$$\dot{x} = \underbrace{\begin{bmatrix} 3 & -1 \\ 5 & -1 \end{bmatrix}}_{A} x + \underbrace{\begin{bmatrix} 0 \\ 1 \end{bmatrix}}_{B} u.$$

- (a) Is the above representation in controllable decomposition?
- (b) Can we find a matrix $P^T = P > 0$ satisfying $AP + PA^T = -BB^T$?
- (c) Find the feedback gain $K \in \mathbb{R}^{1 \times 2}$ such that the control law u = -Kx places the eigenvalues of the closed-loop system at $\lambda_{1,2} = -2, -3$.
- (d) Can we find a matrix $P^T = P > 0$ satisfying $[A BK]P + P[A BK]^T = -BB^T$, where K is the gain you found in part (c)?