First name:	-
Last name:	-
Student ID:	-
Signatura	

Read before you start:

- $\bullet\,$ There are five questions.
- The examination is closed-book.
- No calculator is allowed.
- The duration of the examination is 100 minutes.
- PLEASE EXPLAIN ALL YOUR ANSWERS unless otherwise stated.

Q1	$\mathbf{Q2}$	$\mathbf{Q3}$	$\mathbf{Q4}$	$\mathbf{Q5}$	Total

Let $Q \in \mathbb{R}^{n \times n}$ be a symmetric positive definite matrix with distinct eigenvalues. Consider the following nonlinear system.

$$\dot{x} = [xx^T - Q]x.$$

- a) Find all the equilibria of this system.
- b) Determine the (local) stability of each of these equilibria through linearization.

Note that
$$\frac{\partial}{\partial x} \{xx^Tx\} = ||x||^2 I + 2xx^T$$
.

Let $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times k}$, and $K \in \mathbb{R}^{k \times n}$. Also, let $P \in \mathbb{R}^{n \times n}$ be a symmetric positive definite matrix. Prove the following statements.

- a) If the system $\dot{x} = [A BK]x$ is exponentially stable, then the system $\dot{x} = Ax + Bu$ is stabilizable.
- **b)** If the pair (A, B) is controllable and the equation $APA^T P + BB^T = 0$ holds, then the system $x^+ = Ax$ is exponentially stable.

Consider the following system

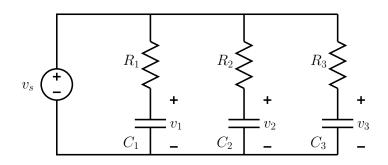
$$\dot{x} = \left(\begin{bmatrix} 2 & -1 \\ -2 & 1 \end{bmatrix} - \begin{bmatrix} 1 \\ -1 \end{bmatrix} K \right) x + \begin{bmatrix} 1 \\ -1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 4 & 3 \end{bmatrix} x$$

where $K = [k_1 \ k_2]$ represents the state feedback gain.

- a) Obtain the controllable decomposition for the open-loop (K=0) system.
- b) If possible, find a gain K such that the closed-loop system is internally stable.
- \mathbf{c}) If possible, find a gain K such that the closed-loop system is BIBO stable and compute the resulting closed-loop transfer function.

Consider the following third-order circuit where the capacitor voltages v_i are related to the input voltage v_s through $R_iC_i\dot{v}_i + v_i = v_s$ for i = 1, 2, 3.



$$R_1 = 2 \,\mathrm{k}\Omega \,, \ C_1 = \frac{1}{4} \,\mathrm{mF}$$
 $R_2 = 2 \,\mathrm{k}\Omega \,, \ C_2 = \frac{1}{6} \,\mathrm{mF}$

- a) Take $C_3 = \frac{1}{12}$ mF. Suppose the initial capacitor voltages are $v_1(0) = 1$ V, $v_2(0) = -2$ V, and $v_3(0) = 3$ V. We want to completely discharge all three capacitors within T = 137msec, i.e., the goal is to achieve $v_i(T) = 0$ for i = 1, 2, 3. For what value(s) of the resistance $R_3 > 0$ is our goal impossible?
- b) Take $C_3 = \frac{1}{24}$ mF and $R_3 = 8 \,\mathrm{k}\Omega$. Suppose that the capacitors are initially uncharged, i.e., $v_i(0) = 0$ for i = 1, 2, 3. Determine whether the below given triplets of capacitor voltages are attainable. $(T = 137 \mathrm{msec.})$
 - (i) $(v_1(T), v_2(T), v_3(T)) = (4, -3, 5).$
 - (ii) $(v_1(T), v_2(T), v_3(T)) = (-6, -6, 5).$
 - (iii) $(v_1(T), v_2(T), v_3(T)) = (0, 7, 7).$
 - (iv) $(v_1(T), v_2(T), v_3(T)) = (3, 9, 3).$
 - (v) $(v_1(T), v_2(T), v_3(T)) = (12, 12, 12).$

Determine whether each of the following statements is true (T) or false (F). (No explanation is required.)

- a) If (A, B) is a controllable pair, so is (A^T, B) .
- **b)** If (A, B) is a controllable pair, so is (A, BB^T) .
- c) If (A, B) is a controllable pair, so is (A BK, B).
- d) If a continuous-time LTV system is reachable on some interval $[t_0, t_1]$, it is controllable on the same interval.
- e) Any system $\dot{x} = Ax + Bu$, y = Cx can be made BIBO stable by state feedback. I.e., we can always find an appropriate feedback gain K such that the closed-loop system $\dot{x} = (A BK)x + Bu$, y = Cx is BIBO stable.
- f) A second-order system $\dot{x} = Ax + Bu$, y = Cx with impulse response $h(t) = \cos(t)$ must be controllable.
- g) If the linearization of a nonlinear system $\dot{x} = f(x)$ at an equilibrium point x_e is unstable, then x_e cannot be asymptotically stable for $\dot{x} = f(x)$.
- h) If the linearization of a nonlinear system $\dot{x} = f(x)$ at an equilibrium point x_e is asymptotically stable, then x_e cannot be unstable for $\dot{x} = f(x)$.

Your answer:

a	b	c	d	e	f	g	h