First name:	-
Last name:	-
Student ID:	-
Signatura	

Read before you start:

- $\bullet\,$ There are four questions.
- $\bullet\,$ The examination is open-book.
- No calculator is allowed.
- The duration of the examination is 100 minutes.
- PLEASE EXPLAIN ALL YOUR ANSWERS.

$\mathbf{Q}1$	$\mathbf{Q2}$	$\mathbf{Q3}$	$\mathbf{Q4}$	Total

Consider the below system.

$$\dot{x} = \begin{bmatrix} -4 & 3 & 1 \\ -6 & 5 & 0 \\ 0 & 0 & -3 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} u$$

$$y = \begin{bmatrix} -2 & 1 & 7 \end{bmatrix} x.$$

- (a) Is this system stable in the sense of Lyapunov?
- (b) Is this system controllable?
- (c) Is this system stabilizable?
- (d) Is this system BIBO stable?

Consider the following third order system with scalar input and scalar output

$$\dot{x} = Ax + Bu
y = [\alpha \beta 2] x$$

whose full-state impulse response, i.e., $h(t) = \mathcal{L}^{-1}\{(sI - A)^{-1}B\}$ is given below.

$$h(t) = \begin{bmatrix} e^t + e^{-t} \\ 2 + e^{-t} \\ 1 - e^t \end{bmatrix}$$

- (a) Find B.
- (b) Compute the controllability matrix.
- (c) Does the vector $\bar{x} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T$ belong to the reachable subspace?
- (d) Find α and β so that the system is BIBO stable.

Consider the below system which is known to be uncontrollable but stabilizable.

$$\dot{x} = \begin{bmatrix} -5 & 4 \\ -6 & 5 \end{bmatrix} x + \begin{bmatrix} 2 \\ \alpha \end{bmatrix} u$$

- (a) Find α .
- (b) Obtain the controllable decomposition $\dot{z} = \bar{A}z + \bar{B}u$ via the transformation $z = T^{-1}x$, where the columns of T are the eigenvectors of A.
- (c) Choose a diagonal $\bar{P} > 0$ satisfying the Lyapunov inequality $\bar{A}\bar{P} + \bar{P}\bar{A}^T \bar{B}\bar{B}^T < 0$.
- (d) Choose a gain $K \in \mathbb{R}^{1 \times 2}$ in terms of \bar{B} , \bar{P} , T such that the feedback law u = -Kx makes the closed-loop system exponentially stable. Do not compute K here; just give its expression.

Consider the predator-prey equations

$$\dot{x}_1 = x_1(1-x_2)$$

 $\dot{x}_2 = -x_2(1-x_1)$.

- (a) Find all the equilibrium points of this system.
- (\mathbf{b}) At each equilibrium obtain the linearization.
- (c) What can (based on the linearization) be said about the local stability of each equilibrium?