EE502 Midterm 2 8 May 2012

First name:
Last name:
Student ID:
Signatura

Read before you start:

- $\bullet\,$ There are four questions.
- $\bullet\,$ The examination is open-book.
- No calculator is allowed.
- The duration of the examination is 100 minutes.
- PLEASE EXPLAIN ALL YOUR ANSWERS.

$\mathbf{Q}1$	$\mathbf{Q2}$	$\mathbf{Q3}$	$\mathbf{Q4}$	Total

Let $P \in \mathbb{R}^{n \times n}$ be an orthogonal projection matrix, i.e., $P^2 = P$ and $P^T = P$. Suppose $P \neq I$. Let $v \in \mathbb{R}^n$ be a unit vector $(v^T v = 1)$ that belongs to the range space of P. Now consider the single input single output system

$$\begin{array}{rcl} \dot{x} & = & Px + vu \\ y & = & v^T x \,. \end{array}$$

- (a) Write the minimal polynomial of P. Hint: $P^2 = P$.
- (b) Show that Pv = v.
- (c) Compute e^{Pt} . Hint: use the power series definition.
- (d) Compute the transfer function G(s) = Y(s)/U(s).

Answer:

Let $P \in \mathbb{R}^{n \times n}$ be an orthogonal projection matrix, i.e., $P^2 = P$ and $P^T = P$. Suppose $P \neq I$. Let $v \in \mathbb{R}^n$ be a unit vector $(v^T v = 1)$ that belongs to the range space of P. Again consider the single input single output system

$$\dot{x} = Px + vu
y = v^T x.$$

- (a) Is this system BIBO stable? Is it internally stable?
- (b) Compute the controllable subspace \mathcal{S}_c .
- (c) Let $w \in \mathbb{R}^n$ be such that w are v are linearly independent. Can we find an input signal u(t) that transfers the state x(t) from the origin x(0) = 0 to x(1) = w?
- (d) Is this system stabilizable?

Answer:

Consider the system

$$\dot{x} = \begin{bmatrix} 5 & -4 \\ 8 & -7 \end{bmatrix} x + \begin{bmatrix} \alpha \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} -1 & \beta \end{bmatrix} x.$$

- (a) Is this system stable in the sense of Lyapunov?
- (b) Find α so that the system is BIBO stable for all β .
- (c) Is the system stabilizable for the α you found in part (b)?
- (d) Find β so that the system is BIBO stable for all α .

Answer:

Consider the single input single output system

$$\dot{x} = Ax + Bu
y = Cx$$

where

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -a & -b & -c \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

- (a) Show that this system is controllable.
- **(b)** Show that $\det(sI A) = s^3 + cs^2 + bs + a$.

For the rest of the question consider the below feedback configuration.

- (c) Find the state space representation of the closed-loop system. I.e., find the triple $(A_{\rm cl}, B_{\rm cl}, C_{\rm cl})$ in terms of A, B, C such that $\dot{x} = A_{\rm cl}x + B_{\rm cl}w$ and $y = C_{\rm cl}x$.
- (d) Find C in terms of a, b, c.