First name:	-
Last name:	-
Student ID:	-
Signature:	

Read before you start:

- There are four questions.
- \bullet The duration of the examination is 100 minutes.
- The examination is closed-book.
- Please explain all your answers.

$\mathbf{Q}1$	$\mathbf{Q2}$	Q3	Q4	Total

Q1. 20%

Let $g: \mathbb{R} \to \mathbb{R}$ be a continuously differentiable function that satisfies:

• g(0) = 0 and $g(y) \neq 0$ for $y \neq 0$,

$$\bullet \ \left[\frac{\partial g}{\partial y}\right]_{y=0} \neq 0.$$

Consider the third order system

$$\ddot{y} + g(y) = 0.$$

- (a) Using a suitable choice of state, obtain the state space representation $\dot{x} = f(x)$.
- (b) Find the equilibrium point(s) of the system $\dot{x} = f(x)$.
- (c) Investigate the (local) stability properties of the origin x = 0.

Q2. 30%

Consider the following single-input single-output LTI system. It is known that, when u = 0, for each initial condition x(0) the resulting output y(t) is bounded.

$$\dot{x} = \begin{bmatrix} -5 & 3 \\ -6 & 4 \end{bmatrix} x + Bu$$

$$y = \begin{bmatrix} c_1 & -1 \end{bmatrix} x.$$

- (a) Is this system stable in the sense of Lyapunov?
- (b) Find, if possible, a nonzero $B \in \mathbb{R}^{2 \times 1}$ such that the system is not BIBO stable.
- (c) Find c_1 .
- (d) Find, if possible, a nonzero $B \in \mathbb{R}^{2 \times 1}$ such that the impulse response is zero.

 $\mathbf{Q3.}$

Let $\{v_1, v_2, v_3\}$ be an orthonormal basis for \mathbb{R}^3 , i.e., $v_k^T v_\ell = 0$ for $k \neq \ell$ and $v_k^T v_k = 1$. Furthermore, suppose the vectors v_1, v_2, v_3 have no zero entries. Define $A := v_1 v_2^T - v_2 v_1^T$.

- (a) Find null(A) and range(A).
- (b) Find the characteristic polynomial of A. Hint: $A^3 = ?$
- (c) Find the eigenvalues of A.
- (d) Find the eigenvectors of A.

Q3.

- (e) Write the Jordan form of A.
- (f) Find $\alpha_0(t)$, $\alpha_1(t)$, $\alpha_2(t)$ such that $e^{At} = \alpha_0(t)I + \alpha_1(t)A + \alpha_2(t)A^2$.
- (g) Determine the stability of the system $\dot{x} = Ax$.
- (h) Determine the stability of the system $x^+ = Ax$.

Q4.

Given

$$A = \left[\begin{array}{cc} 2 & -4 \\ -2 & 0 \end{array} \right]$$

determine (without direct computation) whether a symmetric positive definite solution $P \in \mathbb{R}^{2\times 2}$ exists or not for each of the following matrix equations.

(a)
$$A^TP + PA = -I$$
.

(b)
$$A^T P + P A = I$$
.

(c)
$$A^T P A - P = -I$$
.

(d)
$$A^T P A - P = I$$
.