First name:
Last name:
Student ID:
Signatura

Read before you start:

- $\bullet\,$ There are four questions.
- The examination is closed-book.
- No calculator is allowed.
- The duration of the examination is 100 minutes.
- PLEASE EXPLAIN ALL YOUR ANSWERS.

$\mathbf{Q}1$	$\mathbf{Q2}$	$\mathbf{Q3}$	$\mathbf{Q4}$	Total

Consider the first-order LTV system

$$\dot{x} = A(t)x, \qquad t \ge 0$$

a solution of which is known to be $x(t) = \frac{1}{1+t}$.

- (a) Find A(t).
- (b) Find the state transition matrix $\Phi(t, t_0)$.
- (c) Find the solution starting from the initial condition x(3) = -7.
- (d) Is this system stable? Is it asymptotically stable? Is it exponentially stable?

The impulse response of a single input single output LTI system reads $h(t) = 1 + te^{-3t}$.

- (a) Obtain the transfer function H(s) of this system.
- (b) Write a state space representation $\left\{ \begin{array}{lcl} \dot{x} & = & Ax + Bu \\ y & = & Cx \end{array} \right\}$ for this system.
- (c) Write the Jordan form of A.
- (d) Find an initial condition x(0) which yields y(t) = h(t) for zero input $u(t) \equiv 0$.

Let a matrix $A \in \mathbb{R}^{n \times n}$ satisfy

$$A^T P A - \rho^2 P < 0$$

for some symmetric positive definite matrix $P \in \mathbb{R}^{n \times n}$ and positive real number ρ .

- (a) Show that all eigenvalues of A satisfy $|\lambda_i| < \rho$.
- (b) Let x(k) denote the solution of the system $x^+ = Ax$. Show that we can find some c > 0 such that $||x(k)|| \le c\rho^k ||x(0)||$ for k = 0, 1, 2, ...

Consider

$$\dot{x} = \begin{bmatrix} -6 & a_{12} \\ a_{21} & a_{22} \end{bmatrix} x$$

$$y = \begin{bmatrix} 4 & c_2 \end{bmatrix} x.$$

It is known that $[1 \ 2]^T$ is an equilibrium point for this system. Moreover, it has been observed that for all initial conditions $x(0) = x_0$ the output always has the form $y(t) = ke^{-t}$, where the constant k depends on x_0 .

- (a) Find the eigenvectors of the system matrix A.
- (b) Determine $\operatorname{null} A$ and $\operatorname{range} A$.
- (c) Find c_2 .
- (d) Determine the stability properties of the system.