First name:
Last name:
Student ID:
Signature:

Read before you start:

- $\bullet\,$ There are four questions.
- The examination is closed-book.
- No calculator is allowed.
- The duration of the examination is 100 minutes.
- PLEASE EXPLAIN ALL YOUR ANSWERS.

Q1	$\mathbf{Q2}$	Q3	Q4	Total

Let $M \in \mathbb{R}^{10 \times 10}$ be the multiplication table, i.e., $m_{ij} = i \times j$. Note that we can write $M = [1\ 2\ 3\ \cdots\ 10]^T \times [1\ 2\ 3\ \cdots\ 10]$.

- (a) Write the range space of M.
- (b) Find the eigenvalues of M.
- (c) Write the Jordan form of M.
- (d) Discuss the stability of the system $\dot{x} = -Mx$.

Let $L \in \mathbb{R}^{n \times n}$ $(n \ge 137)$ be the normalized Laplacian matrix of a complete graph. That is, $L = I - \frac{1}{n}bb^T$, where $b \in \mathbb{R}^n$ is the vector of ones, i.e., $b = [1 \ 1 \ \cdots \ 1]^T$.

- (a) Show that L is a projection matrix, i.e., $L^T = L$ and $L^2 = L$.
- (b) Is L positive (semi)definite? Hint: Lb = ?
- (c) Compute e^{Lt} .
- (d) Let $v = [v_1 \ v_2 \ \cdots \ v_n]^T$ denote the vector of voltages of identical capacitors coupled via identical resistors. Then the normalized dynamics of this bank of capacitors read $\dot{v} = -Lv$. Find the limit $\lim_{t \to \infty} v_i(t)$ if it exists.

Given:

- $W \in \mathbb{R}^{n \times n}$ is a symmetric positive definite matrix satisfying W < I.
- $S \in \mathbb{R}^{n \times n}$ is a skew-symmetric matrix, i.e., $S^T + S = 0$.
- $Q \in \mathbb{R}^{n \times n}$ is an orthogonal matrix, i.e., $Q^TQ = I$.

Determine the stability of the below systems. Your solution should be general. That is, do not assign numerical values to the parameters n, W, S, Q.

- (a) $\dot{x} = [S W]x$.
- **(b)** $\dot{x} = [S + W]x$.
- (c) $x^+ = QWx$.
- (d) $x^+ = WQx$.

Consider the second-order system below.

$$\dot{x} = \begin{bmatrix} 4 & -1 \\ 2 & 1 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} x$$

- (a) Compute the eigenvalues and the eigenvectors of the system matrix.
- (b) Let $u(t) \equiv 0$. Find (if possible) a nonzero initial condition x(0) so that y(t) is bounded.
- (c) Let $u(t) \equiv 0$. Find (if possible) a nonzero initial condition x(0) so that x(t) is bounded.
- (d) Let $u(t) = 12e^{-t}$. Find (if possible) an initial condition x(0) so that x(t) is bounded.