First name:		
Last name:		
Student ID:		
Did you take EE501?	\square Yes	\square No
Signature:		

Read before you start:

- There are four questions.
- The examination is closed-book.
- No calculator is allowed.
- The duration of the examination is 100 minutes.
- PLEASE EXPLAIN ALL YOUR ANSWERS.

Q1	$\mathbf{Q2}$	$\mathbf{Q3}$	$\mathbf{Q4}$	Total

Given two nonzero vectors $B,\,C^T\in\mathbb{R}^n$ consider the system

$$\begin{array}{rcl} \dot{x} & = & BCx + Bu \\ y & = & Cx \,. \end{array}$$

- (a) Obtain the state transition matrix. Characterize stability in terms of $\lambda := CB$.
- **(b)** Is this system zero state equivalent to $\left\{ \begin{array}{lcl} \dot{z} & = & CBz + CBu \\ y & = & z \end{array} \right\} ?$

For each of the below cases determine the stability of the system $x^+ = Ax$.

- (a) $A^T A I < 0$.
- **(b)** $A^T A I = 0$.
- (c) $A^T A I > 0$.

For $A, B \in \mathbb{R}^{n \times n}$ consider the LTV system

$$\dot{x} = e^{-At} B e^{At} x \,.$$

- (a) Obtain the state transition matrix $\Phi(t, \tau)$. Hint: employ $z(t) := e^{At}x(t)$.
- **(b)** Find the solution x(t) given that $Ax(0) = \alpha x(0)$ and $Bx(0) = \beta x(0)$ for some $\alpha, \beta \in \mathbb{R}$.

For $y \in \mathbb{R}^n$ and $Q = Q^T > 0$ consider the system

$$\ddot{y} + Q^{-1}y = 0.$$

- (a) Obtain a state space representation $\left\{ \begin{array}{lcl} \dot{x} & = & Ax \\ y & = & Cx \end{array} \right\}.$
- (b) Find a block diagonal $P = P^T > 0$ that satisfies $A^T P + PA = 0$.
- (c) Can A have a 2×2 Jordan block?