First name:	
Last name:	
Student ID:	
Signature	

Read before you start:

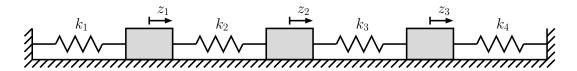
- $\bullet\,$ There are FIVE QUESTIONS.
- The examination is OPEN-BOOK.
- Besides correctness, the CLARITY of your presentation will also be graded.

Due: 2 July 2021, 17:30

• NO COLLABORATION with others.

$\mathbf{Q}1$	$\mathbf{Q2}$	$\mathbf{Q3}$	$\mathbf{Q4}$	$\mathbf{Q5}$	Total

Consider the LTI mass spring system below, where there is no friction. The blocks are identical with unit mass, i.e., $m_1 = m_2 = m_3 = 1$. The displacements of the blocks from the equilibrium positions are denoted by $z_1, z_2, z_3 \in \mathbb{R}$ as shown in the figure. The spring constants are denoted by $k_i > 0$ for i = 1, 2, 3, 4. For each of the following cases find (if exists) a condition¹ on the spring constants so that the system is unobservable from the indicated output y.



- (a) $y = z_1$.
- (b) $y = z_2$.

¹Your condition should be of the form $\sum_{i=1}^{4} \alpha_i k_i = 0$ for some $\alpha_i \in \mathbb{R}$.

Let $P, Q, R \in \mathbb{R}^{n \times n}$ be symmetric positive definite matrices.

(a) Find (if possible) a pair (P, Q) such that the following system is unstable. Explain if impossible.

$$\dot{x} = \left[\begin{array}{cc} 0 & -P \\ Q & 0 \end{array} \right] x$$

(b) Find (if possible) a triple (P, Q, R) such that the following system is stable. Explain if impossible.

$$\dot{x} = \left[\begin{array}{cc} P & -R \\ R & Q \end{array} \right] x$$

Let $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times m}$. Consider the discrete-time system x(k+1) = Ax(k) + Bu(k). Suppose this system is stabilizable. Hence we can find a feedback gain $K_1 \in \mathbb{R}^{m \times n}$ such that under the feedback law $u(k) = -K_1x(k)$ the closed-loop system is exponentially stable. Does this imply that we can find a feedback gain $K_2 \in \mathbb{R}^{m \times n}$ such that the closed-loop system under $u(k) = -K_2x(k-1)$ is exponentially stable? Explain.

Consider the following system

$$\dot{x} = \begin{bmatrix} -1 & 1 & 0 \\ -2 & 0 & 2 \\ 1 & 1 & -2 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u
y = \begin{bmatrix} 1 & -1 & 0 \end{bmatrix} x.$$

- (a) Is this system detectable? Explain.
- (b) Is this system BIBO stable? Explain.

Consider the following system

$$x^{+} = \begin{bmatrix} -1 & 1 & 0 \\ -2 & 0 & 2 \\ 1 & 1 & -2 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & -1 & 0 \end{bmatrix} x.$$

Design the observer gain $L \in \mathbb{R}^{3\times 1}$ and the feedback gain $K \in \mathbb{R}^{1\times 3}$ such that under the observer-based feedback law $u = -K\hat{x}$ (where \hat{x} is the state estimate generated by your observer) the closed-loop system is finite-time stable. That is, there exists some finite integer N such that all the solutions satisfy x(k) = 0 for $k \ge N$ regardless of the initial conditions x(0) and $\hat{x}(0)$. Write also your observer dynamics.