EE502 Final Exam 2 June 2015

First name:	
Last name:	
Student ID:	
Cianatura	

Read before you start:

- $\bullet\,$ There are four questions.
- The examination is closed-book.
- No calculator is allowed.
- The duration of the examination is 150 minutes.
- PLEASE EXPLAIN ALL YOUR ANSWERS.

$\mathbf{Q}1$	$\mathbf{Q2}$	$\mathbf{Q3}$	$\mathbf{Q4}$	Total

Consider the system below.

$$\dot{x} = \begin{bmatrix} -1 & 1 \\ 2 & -2 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u$$

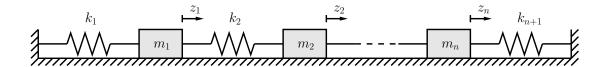
$$y = \begin{bmatrix} 2 & 1 \end{bmatrix} x.$$

- a) Is this system internally stable?
- b) Is this system BIBO stable?
- c) Is this system observable?
- d) Is this system detectable?

Consider the following system with impulse response $h(t) = 1 + e^t$.

$$\dot{x} = Ax + Bu
y = Cx.$$

- a) Find a suitable triple (A, B, C) such that the system is a minimal realization of H(s).
- b) For your design in part (a) find a feedback gain K such that under the state feedback u = -Kx all the closed-loop eigenvalues are located at $\lambda = -1$.
- c) For your design in part (a) construct an observer such that the eigenvalues of the error dynamics are located at $\lambda = -1$.
- d) Find a suitable triple (A, B, C) that is a realization of H(s) and satisfies all of the following constraints:
 - A has an eigenvalue at $\lambda = -2$,
 - The system is uncontrollable but stabilizable,
 - The unobservable subspace contains the vector $\begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T$.



Consider the coupled mass spring systems above whose dynamics read $M\ddot{z} + C^TC\dot{z} + Kz = 0$, where $z = [z_1 \ z_2 \ \dots \ z_n]^T \in \mathbb{R}^n$ and the matrices $M, \ K \in \mathbb{R}^{n \times n}$ are symmetric positive definite. The viscous friction is represented by $C \in \mathbb{R}^{q \times n}$.

- a) For the state choice $x = [x_1^T \ x_2^T]^T$ with $x_1 = z$ and $x_2 = \dot{z}$ obtain the state space representation $\dot{x} = Ax$.
- **b)** Employing the matrix $P = \begin{bmatrix} K/2 & 0_{n \times n} \\ 0_{n \times n} & M/2 \end{bmatrix}$ show that this system is stable. Note that $x^T Px$ is the total energy of the system.
- c) Show that if the pair $(C, M^{-1}K)$ is observable then so is the pair $([0_{q\times n}\ C], A)$.
- d) Show that if the pair $(C, M^{-1}K)$ is observable then the system is exponentially stable.

Let

$$A = \left[\begin{array}{cc} 2 & -4 \\ 1 & -2 \end{array} \right]$$

- a) Find the minimal polynomial and eigenvector(s) of A.
- **b)** Is the system $\dot{x} = Ax$ stable?
- c) Is the system $x^+ = Ax$ stable?
- d) Find (if possible) a symmetric positive definite matrix $P \in \mathbb{R}^{2 \times 2}$ satisfying $A^T P A P < 0$.