EE502 Final Exam 3 June 2014

First name:
Last name:
Student ID:
Signatura

Read before you start:

- There are four questions.
- $\bullet\,$ The examination is open-book.
- No computer/calculator is allowed.
- The duration of the examination is 150 minutes.
- PLEASE EXPLAIN ALL YOUR ANSWERS.

$\mathbf{Q}1$	$\mathbf{Q2}$	$\mathbf{Q3}$	$\mathbf{Q4}$	Total

Consider the following system.

$$\dot{x} = \begin{bmatrix} 3 & -4 & 0 \\ 2 & -3 & 0 \\ 1 & 0 & 2 \end{bmatrix} x + \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} u
y = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} x.$$

- (a) Is this system controllable?
- (b) Is this system observable?
- (c) Can we stabilize this system by state feedback u = -Kx?
- (d) Can we asymptotically estimate the state of this system by an observer?
- (e) Is this system BIBO stable?

Consider the following system.

$$\dot{x} = \begin{bmatrix} \alpha & 8 \\ -4 & \beta \end{bmatrix} x + \begin{bmatrix} 2 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 4 & -1 \end{bmatrix} x.$$

It is known that this system is observable and BIBO stable. Also, for some initial condition $x(0) = \eta$ and zero input u = 0, the output is measured to be $y(t) = 9e^t$.

- (a) Find α and β .
- (b) Find η .

Let $\{v_1, v_2, \ldots, v_n\}$ be an orthonormal basis for \mathbb{R}^n , that is, $v_i^T v_i = 1$ and $v_i^T v_j = 0$ for $i \neq j$. Define $A := v_1 v_2^T + v_2 v_1^T$.

- (a) Write range(A).
- **(b)** Write null(A).
- (c) Determine the minimal polynomial of A. Hint: $A^3 = ?$
- (d) Find all the eigenvalues of A.
- (e) Find all the eigenvectors of A.

 $\mathbf{Q3.}$ Cont'd

- (f) Write the Jordan form of A.
- (g) Compute e^{At} .
- (h) Compute A^k .
- (i) Determine the stability of $\dot{x} = Ax$.
- (j) Determine the stability of $x^+ = Ax$.

Theorem. Let $A, P \in \mathbb{R}^{n \times n}$ and $C \in \mathbb{R}^{m \times n}$. Suppose (C, A) is observable, $P^T = P > 0$, and the Lyapunov equality $A^T P A - P = -C^T C$ holds. Then the system $x^+ = Ax$ is exp. stable.

Proof. ?