First name:
Last name:
Student ID:
Signatura

Read before you start:

- There are four questions.
- The examination is closed-book.
- No calculator is allowed.
- The duration of the examination is 110 minutes.
- PLEASE EXPLAIN ALL YOUR ANSWERS!

$\mathbf{Q}1$	$\mathbf{Q2}$	$\mathbf{Q3}$	$\mathbf{Q4}$	Total

Given a matrix $Q \in \mathbb{R}^{2 \times 2}$ we define the function $f_Q : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ as $f_Q(x, y) := x^T Q y$. Let

$$R = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, $P = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$, and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

- (a) Find a counterexample to show that f_R is NOT an inner product in \mathbb{R}^2 .
- (b) Show that f_P is an inner product in \mathbb{R}^2 .
- (c) Consider the subspace

$$S = \operatorname{span} \left\{ \left[\begin{array}{c} 1 \\ \alpha \end{array} \right] \right\}$$

Let \mathcal{S}_P^{\perp} and \mathcal{S}_I^{\perp} denote the orthogonal complements of \mathcal{S} with respect to the inner products f_P and f_I , respectively. Find a suitable value for α so that $\mathcal{S}_P^{\perp} = \mathcal{S}_I^{\perp}$.

Let $\mathcal{V} = \{f : [0, 1] \to \mathbb{R}, f \text{ square-integrable}\}\$ be the Hilbert space of square-integrable functions with the inner product

$$\langle f, g \rangle := \int_0^1 f(t)g(t)dt$$
.

Consider the linear transformation $T: \mathcal{V} \to \mathcal{V}$ defined as

$$T(f) := \int_0^t f(\tau) d\tau.$$

Find the adjoint T^* of T.

Let

$$A = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & -1 \end{bmatrix} \quad \text{and} \quad b = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

Find the vector $\bar{x} \in \mathbb{R}^3$ that simultaneously satisfies:

- $||A\bar{x} b|| \le ||Ax b||$ for all $x \in \mathbb{R}^3$.
- $||A\bar{x} b|| = ||Ax b||$ implies $||\bar{x}|| \le ||x||$.

Consider the set of functions $\mathcal{F} = \{f_k\}_{k=0}^{\infty}$ where each $f_k : [0, 1] \to \mathbb{C}$ is defined as

$$f_0(t) = 1$$

$$f_1(t) = e^{-j2\pi t}$$

$$f_2(t) = e^{-j2\pi t} + e^{j2\pi t}$$

$$f_3(t) = e^{j2\pi t} + e^{-j4\pi t}$$

$$f_4(t) = e^{j4\pi t} + e^{-j6\pi t}$$

$$\vdots$$

Let the inner product be $\langle f, g \rangle := \int_0^1 f(t)g^*(t)dt$ where $g^*(t)$ is the complex conjugate of g(t).

- (a) Find the projection of g(t) = t onto the subspace $S_1 = \text{span } \{f_0, f_1, f_2\}.$
- (b) Apply Gram-Schmidt process to \mathcal{F} to obtain an orthogonal set of functions $\mathcal{H} = \{h_k\}_{k=0}^{\infty}$ with span $\mathcal{H} = \operatorname{span} \mathcal{F}$.
- (c) Find the orthogonal projection of g(t) = t onto the subspace $S_2 = \text{span } \{h_0, h_1, h_2\}$. Compare the result with the result of part (a).