First name:
Last name:
Student ID:
Signature:

Read before you start:

- $\bullet\,$ There are five questions.
- The examination is closed-book.
- No calculator is allowed.
- The duration of the examination is 150 minutes.
- PLEASE EXPLAIN ALL YOUR ANSWERS!

$\mathbf{Q}1$	$\mathbf{Q2}$	Q3	$\mathbf{Q4}$	$\mathbf{Q5}$	Total

Let \mathcal{M} denote the linear space of 2×2 real matrices and \mathcal{P} the linear space of polynomials (in t) of degree ≤ 2 . Consider the linear mapping $T : \mathcal{M} \to \mathcal{P}$ defined via the following relation

$$T\left(\left[\begin{array}{cc}a&b\\c&d\end{array}\right]\right)=bt^2+(c+d)t+a\,.$$

- (a) Choose bases \mathcal{B}_m and \mathcal{B}_p for the spaces \mathcal{M} and $\mathcal{P},$ respectively.
- (b) Find the matrix representation of the mapping T with respect to the pair $(\mathcal{B}_{\mathrm{m}}, \mathcal{B}_{\mathrm{p}})$.

Let \mathcal{V} be the real inner product space of polynomials of degree ≤ 2 defined over the interval [0, 1] equipped with the inner product

$$\langle p, q \rangle := \int_0^1 p(t)q(t)dt$$
.

Let $S \subset V$ be the subspace of constant polynomials (i.e., p(t) = constant). Find a basis for S^{\perp} .

Let \mathcal{V} be the normed space of continuous functions defined over the interval [0, 1] with the norm

$$||f|| := \max_{t \in [0,1]} |f(t)|$$
.

Are the following sequences $\{f_n\}_{n=1}^{\infty}$ of functions (in \mathcal{V}) convergent when $n \to \infty$? Which function are they converging to if they are convergent?

- (a) $f_n(t) = t/n$
- **(b)** $f_n(t) = 1 t^n$
- (c) $f_n(t) = \sin(nt)$
- (d) $f_n(t) = \sin(t/n)$

Consider the following matrix

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

It is known that all the eigenvalues of this matrix are at $\lambda = 1$.

- (a) Find the minimal polynomial of A.
- **(b)** Find A^{-1} .
- (c) Find the Jordan form J of the matrix A. (Assume that the blocks are ordered from largest to smallest.)
- (d) Find the matrix P that transforms A into J, i.e., $P^{-1}AP = J$.

Let $v \in \mathbb{R}^n$ be a unit vector (i.e., $\langle v, v \rangle = v^T v = 1$). Define the $n \times n$ matrix $P := vv^T$.

- (a) Show that P is a projection matrix. In other words, prove that $P^2 = P$ and $P^T = P$.
- (b) Show that the minimal polynomial of P is m(s) = s(s-1). Hint: $P^2 = P$.
- (c) What are the eigenvalues of P?
- (d) Find $\mathcal{R}(P)$, rank of P, and dim $\mathcal{N}(P)$.
- (e) Write the characteristic polynomial d(s) of P.
- (f) Write the subspace $S \subset \mathbb{R}^n$ that P projects onto.
- (g) How many linearly independent eigenvectors does P have?
- (h) Write the Jordan form of P.