- **Q1.** Let $n \times n$ matrix A have n distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$. Given some polynomial p(s), show that the eigenvalues of matrix p(A) are $p(\lambda_1), p(\lambda_2), \ldots, p(\lambda_n)$.
- **Q2.** Consider the standard inner product $\langle x, y \rangle := y^*x$ in \mathbb{C}^n . Let $||x|| = \langle x, x \rangle^{1/2}$ for $x \in \mathbb{C}^n$ and $||A|| = \max_{||x||=1} ||Ax||$ for $A \in \mathbb{C}^{n \times n}$. Show that $||A||^2$ equals the largest eigenvalue of A^*A . Hint: The eigenvalues of A^*A are real and nonnegative. Moreover, A^*A has n eigenvectors that are pairwise orthogonal.
- **Q3.** Let $\mathbb{C}^n = \mathcal{U} \oplus \mathcal{V}$ where subspace \mathcal{U} is known to be invariant under some linear transformation $A : \mathbb{C}^n \to \mathbb{C}^n$. Show that with respect to a basis formed by concatenating bases for \mathcal{U} and \mathcal{V} , mapping A has a matrix representation

$$\left[\begin{array}{cc} A_1 & A_2 \\ 0 & A_3 \end{array}\right]$$

Determine also the size of each block in this representation.

- **Q4.** Let A be a 2×2 matrix with $A^2 = 0$. Prove that either one of the following must be true.
 - A = 0.
 - \bullet There exists P such that

$$P^{-1}AP = \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right]$$

Q5. Let A be a 2×2 matrix. Prove that there exists P such that either

$$P^{-1}AP = \begin{bmatrix} \alpha & 0 \\ 0 & \beta \end{bmatrix} \quad \text{or} \quad P^{-1}AP = \begin{bmatrix} \alpha & 0 \\ 1 & \alpha \end{bmatrix}$$

Hint: See Q4.

- **Q6.** Let A be an $n \times n$ matrix with $A^k = 0$ for some integer k. Prove that $A^n = 0$.
- **Q7.** Find the characteristic polynomial d(s) and minimal polynomial m(s) for the below matrices.

$$\begin{bmatrix} \lambda_1 & 0 & 0 & 0 & 0 \\ 1 & \lambda_1 & 0 & 0 & 0 \\ 0 & 0 & \lambda_1 & 0 & 0 \\ 0 & 0 & 0 & \lambda_2 & 0 \\ 0 & 0 & 0 & 0 & \lambda_2 \end{bmatrix}, \begin{bmatrix} \lambda_1 & 0 & 0 & 0 & 0 \\ 1 & \lambda_1 & 0 & 0 & 0 \\ 0 & 1 & \lambda_1 & 0 & 0 \\ 0 & 0 & 1 & \lambda_1 & 0 \\ 0 & 0 & 1 & \lambda_1 & 0 \\ 0 & 0 & 0 & \lambda_1 \end{bmatrix}, \begin{bmatrix} \lambda_1 & 0 & 0 & 0 & 0 \\ 1 & \lambda_1 & 0 & 0 & 0 \\ 0 & 0 & \lambda_1 & 0 & 0 \\ 0 & 0 & 1 & \lambda_1 & 0 \\ 0 & 0 & 0 & 0 & \lambda_1 \end{bmatrix}$$

- **Q8.** Let $v \in \mathbb{C}^n$ be a nonzero vector.
- (a) Show that $P = \frac{vv^*}{v^*v}$ is an orthogonal projection matrix. What is the subspace that P projects onto?

- **(b)** Find d(s) and m(s) for P.
- **Q9.** Consider Hilbert space $\mathcal{V} = \{f | f : [0, 2\pi] \to \mathbb{C}, f \text{ continuous} \}$ with inner product $\langle f, g \rangle := \int_0^{2\pi} f(t) \overline{g(t)} dt$. Let $f_1, f_2, f_3 \in \mathcal{V}$ satisfy $f_1(t) = 1, f_2(t) = t$, and $f_3(t) = e^{jt}$ for all t. Define $\mathcal{M} := \operatorname{span}\{f_2, f_3\}$. For which $g \in \mathcal{M}$ is $||f_1 g||$ minimum?
- **Q10.** Consider Hilbert space $\mathcal{V} = \{f | f : [-\pi, \pi] \to \mathbb{C}, f \text{ continuous}\}$ with inner product $\langle f, g \rangle := \int_{-\pi}^{\pi} f(t) \overline{g(t)} dt$. Define $\mathcal{M} := \text{span}\{1, \sin t, \cos t, e^{jt}, e^{-jt}\}$.
- (a) Determine $\dim M$.
- (b) Find the orthogonal projections of the following functions onto \mathcal{M} : $f_1(t) = e^t$, $f_2(t) = 5$, $f_3(t) = e^{-j2t}$.
- **Q11.** Consider the space of 2×2 matrices with $\langle A, B \rangle := \operatorname{tr}(B^*A)$.
- (a) Find a basis for \mathcal{M}^{\perp} where

$$\mathcal{M} = \operatorname{span} \left\{ \left[\begin{array}{cc} 1 & 0 \\ 0 & j \end{array} \right] \right\}$$

(b) Find the orthogonal projections of the below matrices onto \mathcal{M} .

$$\left[\begin{array}{cc} 5j & 0 \\ 0 & 5 \end{array}\right], \quad \left[\begin{array}{cc} 0 & 2 \\ -3 & 0 \end{array}\right], \quad \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right]$$

Q12. Consider the linear systems of equations

$$\begin{bmatrix} 3 & 4 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 7 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} = \begin{bmatrix} 14 \\ 10 \\ 21 \\ 6 \\ 2 \end{bmatrix}$$

- (a) Comment on the existence and uniqueness of the solution.
- (b) Find the exact (or approximate) solution.
- Q13. Consider

$$\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = b.$$

Find the solution (or approximate solution) for $b = \begin{bmatrix} 5 & -1 & 5 \end{bmatrix}^T$ and $b = \begin{bmatrix} 5 & 0 & -5 \end{bmatrix}^T$.

Q14. Let

$$A = \left[\begin{array}{c} 1\\2\\3 \end{array} \right] [3 \ 2 \ 1]$$

(a) Find bases for $\mathcal{R}(A)$ and $\mathcal{R}(A^T)$.

- **(b)** Find bases for $\mathcal{N}(A)$ and $\mathcal{N}(A^T)$.
- (c) Show that $\mathcal{R}(A) \perp \mathcal{N}(A^T)$.
- **Q15.** Consider equation Ax = b, where $A = vv^*$ for some $v \in \mathbb{C}^n$.
- (a) Find $\mathcal{R}(A)$ and $\mathcal{N}(A)$.
- (b) Discuss the existence and uniqueness of the solution.
- **Q16.** Note that matrix $Q \in \mathbb{R}^{n \times n}$ is said to be *orthogonal* if $Q^TQ = I$ and that matrix $S \in \mathbb{R}^{n \times n}$ is said to be *skew-symmetric* if $S + S^T = 0$. Prove the following.
- (a) If $\lambda \in \mathbb{C}$ is an eigenvalue of an orthogonal matrix then $|\lambda| = 1$.
- (b) If $\lambda \in \mathbb{C}$ is an eigenvalue of a skew-symmetric matrix then $\text{Re}(\lambda) = 0$.
- (c) If S is skew-symmetric then e^S is orthogonal, where $e^S = I + S + \frac{S^2}{2} + \frac{S^3}{3!} + \dots$
- **Q17.** Find d(s) and m(s) for the matrix below. Hint: The matrix has a single eigenvalue.

$$\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & -1 & 0 \\
0 & 1 & 2 & 2 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]$$