Estimating Production Functions


Erol Taymaz
http://users.metu.edu.tr/etaymaz






Dipartimento di Scienze Economiche e Statistiche (DiSES) / UNISA


September 23, 2025

Why production functions?

Production functions

Production functions - one input

Production functions - two inputs

Isoquants - two inputs

Type of production functions

Some concepts

Marginal rate of technical substitution

Elasticity of substitution

Some concepts - CD case

Production function \(Q = e^{beta_0}K^{\beta_K}L^{\beta_L}\)
or \(q = \beta_0 + \beta_Kk + \beta_Ll\)

Estimation of production functions

Estimation methods

Estimation issues

Variables



Type Function Output Level
KL Q = f(K, L) Value added Country, Sector
KLM Q = f(K, L, M) Gross output Sector, Firm
KLEM Q = f(K, L, E, M) Gross output Sector, Firm
KLEMS Q = f(K, L, E, M, S) Gross output Sector, Firm

Functional forms

Cobb-Douglas function

\(Q = AK^{\beta_K}L^{\beta_L}\)
\(q = a + \beta k + \alpha l\)

Leontieff function

\(Q = min(aK, bL)\)

Translog function

\(Q = AK^{\beta_K + beta_{KK}k + beta_{KL}l}L^{\beta_L + beta_{LL}l + beta_{KL}k}\)
\(q = \beta_0 + \beta_Kk + \beta_Ll + \beta_{KK}k^2 + \beta_{LL}l^2 + 2\beta_{KL}kl\)

Constant elasticity of substitution (CES) function

\(Q = A[\theta (a_KK)^\gamma + (1 - \theta) (a_LL)^\gamma]^{\rho / \gamma}\)
\(\rho\) degree of homogeneity
\(\gamma\) degree of substitutability of inputs
Elasticity of substitution \(\sigma = 1/(1 - \gamma)\)

CES, CD and Leontieff functions

Taylor series expansion

Production function in log form, \(q = f(k, l)\)


1st order Taylor series expansion of \(f(k, l)\) at point \((a,b)\)

\(q ≈ f(a, b) + f_k(a, b)(k - a) + f_l(a, b)(l - b)\)

\(q ≈ \beta_0 + \beta_Kk + \beta_Ll\)


2nd order Taylor series expansion of \(f(k, l)\) at point \((a,b)\)

\(q ≈ f(a, b) + f_k(a, b)(k - a) + f_l(a, b)(l - b) +\)
\(½[f_{kk}(a, b)(k -a)^2 + 2f_{kl}(a, b)(k -a)(l - b) + f_{ll}(a, b)(l - b)^2]\)

\(q ≈ \beta_0 + \beta_Kk + \beta_Ll + \beta_{KK}k^2 + \beta_{LL}l^2 + \beta_{KL}kl\)

CD vs translog

Taylor series expansion, 1st, 2nd and 3rd order

CD functions

Technological change

CD function and technological change

Deterministic technological change


We cannot identify TFP, capital efficiency and labor efficiency effects in a CD function. They are all observationally equivalent.

CD functions and technological change

Stochastic technological change

Translog function and technological change

Deterministic technological change

\(q = \beta_0 + \beta_Kk + \beta_Ll + \beta_{KK}k^2 + \beta_{LL}l^2 + \beta_{KL}kl\)
\(+ \beta_Tt + \beta_{TT}t^2 + \beta_{TK}tk + \beta_{TL}tl\)

Stochastic technological change

\(q = \beta_0 + \beta_Kk + \beta_Ll + \beta_{KK}k^2 + \beta_{LL}l^2 + \beta_{KL}kl + \omega_{it}\)
\(\omega_{it} = \rho \omega_{it-1} + ε_{it}\)

Technological change and substitution

Technological change and substitution

Technological change and substitution

Technological change and substitution

Technical efficiency

Stochastic production frontiers

\(q = \beta_0 + \beta_Kk + \beta_Ll + ε - u\)

\(u\) is non-negative technical efficiency term, \(TE = exp^{-u}\), therefore \(0 ≤ TE ≤ 1\)

\(u \sim N^+(\mu, \sigma^2)\)

Production frontiers and efficiency

Technical efficiency vs plant size in Turkish motor vehicle industry

Taymaz, Erol and Gulin Saatci (1997), “Technical Change and Efficiency in Turkish Manufacturing Industries”, Journal of Productivity Analysis, 8: 461-475.

Endogeneity/omitted variable bias

Endogeneity/omitted variable bias

Endogeneity/omitted variable bias

How to solve the endogeneity bias?

Endogeneity/omitted variable bias

Blundell & Bond (2000)

\(q_{it} = \beta_Ll_{it} + \beta_Kk_{it} + \gamma_t + \eta_i + v_{it} + m_{it}\)

\(v_{it} = \rho v_{it-1} + e_{it}\)

\(e_{it} \ sim N(0, \sigma_e), m_{it} \sim N(0, \sigma_m)\)

Both employment (l)and capital (k) are potentially correlated with the firm-specific effects (\(\eta\)), and with both productivity shocks (e)and measurement errors (m).

\(q_{it} = \rho q_{it-1} + \beta_Ll_{it} - \rho \beta_Ll_{it-1} + \beta_Kk_{it} - \rho \beta_Kk_{it-1} + \gamma_t - \rho \gamma_{t-1} + \eta_i (1 - \rho) + e_{it} + m_{it} - \rho m_{it-1}\)

\(q_{it} = \pi_1 q_{it-1} + \pi_2l_{it} - \pi_3l_{it-1} + \pi_4k_{it} - \pi_5k_{it-1} + \gamma_t^* + \eta_i^* + \omega_{it}\)

Blundell & Bond (2000)

Take the first difference to eliminate firm specific effects

\(\Delta q_{it} = \pi_1 \Delta q_{it-1} + \pi_2 \Delta l_{it} - \pi_3 \Delta l_{it-1} + \pi_4 \Delta k_{it} - \pi_5 \Delta k_{it-1} + \Delta \gamma_t^* + \Delta \omega_{it}\)

Moment conditions

\(E[x_{it-s} \Delta \omega_{it}] = 0\)

where \(x_{it} = (l_{it}, k_{it}, q_{it})\) for \(s \ge 3\)

De Ridder, Grassi and Morzenti (2025)

Case 1. Quantity data, no persistence in productivity

\(q_{it} = \alpha v_{it} + \omega_{it}\)

The firms sets v after observing \(\omega\)

GMM estimator: \(E[\omega_{it}v_{it-1}] = 0\)
\(v_{it-1}\) is a valid instrument if \(E[v_{it} v_{it-1}] ≠ 0\)

Case 2. Measurement error

\(\tilde q_{it} = \alpha v_{it} + \omega_{it} + \eta_{it}\)

GMM is still consistent but has a higher variance if \(E[\eta_{it}v_{it-1}] = 0\)

De Ridder, Grassi and Morzenti (2025)

Case 3. Revenue as a proxy for output output

\(r_{it} = q_{it} + p_{it}\)

GMM is not consistent if \(E[p_{it}v_{it-1}] ≠ 0\)

Under imperfect competition, they are likely to be correlated

Case 4. Persistent productivity

\(q_{it} = \alpha v_{it} + \omega_{it}\)
\(\omega_{it} % |rho \omega_{it-1} + ε_{it}\)

GMM estimator: \(E[e_{it}v_{it-1}] = 0\) and \(E[e_{it}\omega_{it-1}] = 0]\)
\(\omega_{it} = q_{it} - \alpha v_{it}\) and \(e_{it} = q_{it} - \alpha c_{it} - \rho \omega_{it-1}\)

If there is a persistence in productivity, there may be two solutions, one is unbiased, the other one is biased!

Selection

Heterogeneity

Do all firms use the same technology?

Good practice

Good practice

Food and Beverages Industry in Belgium

Source: Ilke Van Beveren (2010), “Total Factor Productivity Estimation: A Practical Review”, Journal of Economic Surveys, 1-38.

Good practice

Food and Beverages Industry in Belgium

Source: Ilke Van Beveren (2010), “Total Factor Productivity Estimation: A Practical Review”, Journal of Economic Surveys, 1-38.